961 lines
39 KiB
C++
961 lines
39 KiB
C++
#include <catch2/catch.hpp>
|
|
|
|
#include <libslic3r/Emboss.hpp>
|
|
#include <libslic3r/SVG.hpp> // only debug visualization
|
|
|
|
#include <optional>
|
|
#include <libslic3r/AABBTreeIndirect.hpp>
|
|
#include <libslic3r/Utils.hpp> // for next_highest_power_of_2()
|
|
|
|
using namespace Slic3r;
|
|
|
|
namespace Private{
|
|
|
|
// calculate multiplication of ray dir to intersect - inspired by
|
|
// segment_segment_intersection when ray dir is normalized retur distance from
|
|
// ray point to intersection No value mean no intersection
|
|
std::optional<double> ray_segment_intersection(const Vec2d &r_point,
|
|
const Vec2d &r_dir,
|
|
const Vec2d &s0,
|
|
const Vec2d &s1)
|
|
{
|
|
auto denominate = [](const Vec2d &v0, const Vec2d &v1) -> double {
|
|
return v0.x() * v1.y() - v1.x() * v0.y();
|
|
};
|
|
|
|
Vec2d segment_dir = s1 - s0;
|
|
double d = denominate(segment_dir, r_dir);
|
|
if (std::abs(d) < std::numeric_limits<double>::epsilon())
|
|
// Line and ray are collinear.
|
|
return {};
|
|
|
|
Vec2d s12 = s0 - r_point;
|
|
double s_number = denominate(r_dir, s12);
|
|
bool change_sign = false;
|
|
if (d < 0.) {
|
|
change_sign = true;
|
|
d = -d;
|
|
s_number = -s_number;
|
|
}
|
|
|
|
if (s_number < 0. || s_number > d)
|
|
// Intersection outside of segment.
|
|
return {};
|
|
|
|
double r_number = denominate(segment_dir, s12);
|
|
if (change_sign) r_number = -r_number;
|
|
|
|
if (r_number < 0.)
|
|
// Intersection before ray start.
|
|
return {};
|
|
|
|
return r_number / d;
|
|
}
|
|
|
|
Vec2d get_intersection(const Vec2d & point,
|
|
const Vec2d & dir,
|
|
const std::array<Vec2d, 3> &triangle)
|
|
{
|
|
std::optional<double> t;
|
|
for (size_t i = 0; i < 3; ++i) {
|
|
size_t i2 = i + 1;
|
|
if (i2 == 3) i2 = 0;
|
|
if (!t.has_value()) {
|
|
t = ray_segment_intersection(point, dir, triangle[i],
|
|
triangle[i2]);
|
|
continue;
|
|
}
|
|
|
|
// small distance could be preccission inconsistance
|
|
std::optional<double> t2 = ray_segment_intersection(point, dir,
|
|
triangle[i],
|
|
triangle[i2]);
|
|
if (t2.has_value() && *t2 > *t) t = t2;
|
|
}
|
|
assert(t.has_value()); // Not found intersection.
|
|
return point + dir * (*t);
|
|
}
|
|
|
|
Vec3d calc_hit_point(const igl::Hit & h,
|
|
const Vec3i & triangle,
|
|
const std::vector<Vec3f> &vertices)
|
|
{
|
|
double c1 = h.u;
|
|
double c2 = h.v;
|
|
double c0 = 1.0 - c1 - c2;
|
|
Vec3d v0 = vertices[triangle[0]].cast<double>();
|
|
Vec3d v1 = vertices[triangle[1]].cast<double>();
|
|
Vec3d v2 = vertices[triangle[2]].cast<double>();
|
|
return v0 * c0 + v1 * c1 + v2 * c2;
|
|
}
|
|
|
|
Vec3d calc_hit_point(const igl::Hit &h, indexed_triangle_set &its)
|
|
{
|
|
return calc_hit_point(h, its.indices[h.id], its.vertices);
|
|
}
|
|
} // namespace Private
|
|
|
|
std::string get_font_filepath() {
|
|
std::string resource_dir =
|
|
std::string(TEST_DATA_DIR) + "/../../resources/";
|
|
return resource_dir + "fonts/NotoSans-Regular.ttf";
|
|
}
|
|
|
|
#include "imgui/imstb_truetype.h"
|
|
TEST_CASE("Read glyph C shape from font, stb library calls ONLY", "[Emboss]") {
|
|
std::string font_path = get_font_filepath();
|
|
char letter = 'C';
|
|
|
|
// Read font file
|
|
FILE *file = fopen(font_path.c_str(), "rb");
|
|
REQUIRE(file != nullptr);
|
|
// find size of file
|
|
REQUIRE(fseek(file, 0L, SEEK_END) == 0);
|
|
size_t size = ftell(file);
|
|
REQUIRE(size != 0);
|
|
rewind(file);
|
|
std::vector<unsigned char> buffer(size);
|
|
size_t count_loaded_bytes = fread((void *) &buffer.front(), 1, size, file);
|
|
REQUIRE(count_loaded_bytes == size);
|
|
|
|
// Use stb true type library
|
|
int font_offset = stbtt_GetFontOffsetForIndex(buffer.data(), 0);
|
|
REQUIRE(font_offset >= 0);
|
|
stbtt_fontinfo font_info;
|
|
REQUIRE(stbtt_InitFont(&font_info, buffer.data(), font_offset) != 0);
|
|
int unicode_letter = (int) letter;
|
|
int glyph_index = stbtt_FindGlyphIndex(&font_info, unicode_letter);
|
|
REQUIRE(glyph_index != 0);
|
|
stbtt_vertex *vertices;
|
|
int num_verts = stbtt_GetGlyphShape(&font_info, glyph_index, &vertices);
|
|
CHECK(num_verts > 0);
|
|
}
|
|
|
|
#include <libslic3r/Utils.hpp>
|
|
TEST_CASE("Convert glyph % to model", "[Emboss]")
|
|
{
|
|
std::string font_path = get_font_filepath();
|
|
char letter = '%';
|
|
float flatness = 2.;
|
|
|
|
auto font = Emboss::create_font_file(font_path.c_str());
|
|
REQUIRE(font != nullptr);
|
|
|
|
std::optional<Emboss::Glyph> glyph = Emboss::letter2glyph(*font, letter, flatness);
|
|
REQUIRE(glyph.has_value());
|
|
|
|
ExPolygons shape = glyph->shape;
|
|
REQUIRE(!shape.empty());
|
|
|
|
float z_depth = 1.f;
|
|
Emboss::ProjectZ projection(z_depth);
|
|
indexed_triangle_set its = Emboss::polygons2model(shape, projection);
|
|
|
|
CHECK(!its.indices.empty());
|
|
}
|
|
|
|
TEST_CASE("Test hit point", "[AABBTreeIndirect]")
|
|
{
|
|
indexed_triangle_set its;
|
|
its.vertices = {
|
|
Vec3f(1, 1, 1),
|
|
Vec3f(2, 10, 2),
|
|
Vec3f(10, 0, 2),
|
|
};
|
|
its.indices = {Vec3i(0, 2, 1)};
|
|
auto tree = AABBTreeIndirect::build_aabb_tree_over_indexed_triangle_set(
|
|
its.vertices, its.indices);
|
|
|
|
Vec3d ray_point(8, 1, 0);
|
|
Vec3d ray_dir(0, 0, 1);
|
|
igl::Hit hit;
|
|
AABBTreeIndirect::intersect_ray_first_hit(its.vertices, its.indices, tree,
|
|
ray_point, ray_dir, hit);
|
|
Vec3d hp = Private::calc_hit_point(hit, its);
|
|
CHECK(abs(hp.x() - ray_point.x()) < .1);
|
|
CHECK(abs(hp.y() - ray_point.y()) < .1);
|
|
}
|
|
|
|
TEST_CASE("ray segment intersection", "[MeshBoolean]")
|
|
{
|
|
Vec2d r_point(1, 1);
|
|
Vec2d r_dir(1, 0);
|
|
|
|
// colinear
|
|
CHECK(!Private::ray_segment_intersection(r_point, r_dir, Vec2d(0, 0), Vec2d(2, 0)).has_value());
|
|
CHECK(!Private::ray_segment_intersection(r_point, r_dir, Vec2d(2, 0), Vec2d(0, 0)).has_value());
|
|
|
|
// before ray
|
|
CHECK(!Private::ray_segment_intersection(r_point, r_dir, Vec2d(0, 0), Vec2d(0, 2)).has_value());
|
|
CHECK(!Private::ray_segment_intersection(r_point, r_dir, Vec2d(0, 2), Vec2d(0, 0)).has_value());
|
|
|
|
// above ray
|
|
CHECK(!Private::ray_segment_intersection(r_point, r_dir, Vec2d(2, 2), Vec2d(2, 3)).has_value());
|
|
CHECK(!Private::ray_segment_intersection(r_point, r_dir, Vec2d(2, 3), Vec2d(2, 2)).has_value());
|
|
|
|
// belove ray
|
|
CHECK(!Private::ray_segment_intersection(r_point, r_dir, Vec2d(2, 0), Vec2d(2, -1)).has_value());
|
|
CHECK(!Private::ray_segment_intersection(r_point, r_dir, Vec2d(2, -1), Vec2d(2, 0)).has_value());
|
|
|
|
// intersection at [2,1] distance 1
|
|
auto t1 = Private::ray_segment_intersection(r_point, r_dir, Vec2d(2, 0), Vec2d(2, 2));
|
|
REQUIRE(t1.has_value());
|
|
auto t2 = Private::ray_segment_intersection(r_point, r_dir, Vec2d(2, 2), Vec2d(2, 0));
|
|
REQUIRE(t2.has_value());
|
|
|
|
CHECK(abs(*t1 - *t2) < std::numeric_limits<double>::epsilon());
|
|
}
|
|
|
|
TEST_CASE("triangle intersection", "[]")
|
|
{
|
|
Vec2d point(1, 1);
|
|
Vec2d dir(-1, 0);
|
|
std::array<Vec2d, 3> triangle = {Vec2d(0, 0), Vec2d(5, 0), Vec2d(0, 5)};
|
|
Vec2d i = Private::get_intersection(point, dir, triangle);
|
|
CHECK(abs(i.x()) < std::numeric_limits<double>::epsilon());
|
|
CHECK(abs(i.y() - 1.) < std::numeric_limits<double>::epsilon());
|
|
}
|
|
|
|
#ifndef __APPLE__
|
|
#include <string>
|
|
#include <iostream>
|
|
#include <filesystem>
|
|
namespace fs = std::filesystem;
|
|
// Check function Emboss::is_italic that exist some italic and some non-italic font.
|
|
TEST_CASE("Italic check", "[Emboss]")
|
|
{
|
|
std::queue<std::string> dir_paths;
|
|
#ifdef _WIN32
|
|
dir_paths.push("C:/Windows/Fonts");
|
|
#elif defined(__linux__)
|
|
dir_paths.push("/usr/share/fonts");
|
|
//#elif defined(__APPLE__)
|
|
// dir_paths.push("//System/Library/Fonts");
|
|
#endif
|
|
bool exist_italic = false;
|
|
bool exist_non_italic = false;
|
|
while (!dir_paths.empty()) {
|
|
std::string dir_path = dir_paths.front();
|
|
dir_paths.pop();
|
|
for (const auto &entry : fs::directory_iterator(dir_path)) {
|
|
const fs::path &act_path = entry.path();
|
|
if (entry.is_directory()) {
|
|
dir_paths.push(act_path.u8string());
|
|
continue;
|
|
}
|
|
std::string ext = act_path.extension().u8string();
|
|
std::transform(ext.begin(), ext.end(), ext.begin(),
|
|
[](unsigned char c) { return std::tolower(c); });
|
|
if (ext != ".ttf") continue;
|
|
std::string path_str = act_path.u8string();
|
|
auto font_opt = Emboss::create_font_file(path_str.c_str());
|
|
if (font_opt == nullptr) continue;
|
|
|
|
unsigned int collection_number = 0;
|
|
if (Emboss::is_italic(*font_opt, collection_number))
|
|
exist_italic = true;
|
|
else
|
|
exist_non_italic = true;
|
|
|
|
if (exist_italic && exist_non_italic) break;
|
|
//std::cout << ((Emboss::is_italic(*font_opt)) ? "[yes] " : "[no ] ") << entry.path() << std::endl;
|
|
}
|
|
}
|
|
CHECK(exist_italic);
|
|
CHECK(exist_non_italic);
|
|
}
|
|
#endif // not __APPLE__
|
|
|
|
|
|
#include <CGAL/Polygon_mesh_processing/corefinement.h>
|
|
#include <CGAL/Exact_integer.h>
|
|
#include <CGAL/Surface_mesh.h>
|
|
#include <CGAL/Cartesian_converter.h>
|
|
|
|
// Referencing a glyph contour (an ExPolygon) plus a vertex base of the contour.
|
|
struct GlyphContour
|
|
{
|
|
// Index of a glyph in a vector of glyphs.
|
|
int32_t glyph{-1};
|
|
// Index of an ExPolygon in ExPolygons of a glyph.
|
|
int32_t expoly{-1};
|
|
// Index of a contour in ExPolygon.
|
|
// 0 - outer contour, >0 - hole
|
|
int32_t contour{-1};
|
|
// Base of the zero'th point of a contour in text mesh.
|
|
// There are two vertices (front and rear) created for each contour,
|
|
// thus there are 2x more vertices in text mesh than the number of contour points.
|
|
int32_t vertex_base{-1};
|
|
};
|
|
|
|
struct GlyphID
|
|
{
|
|
int32_t glyph_contour{-1};
|
|
// vertex or edge ID, where edge ID is the index of the source point.
|
|
// There are 4 consecutive indices generated for a single glyph edge:
|
|
// 0th - 1st text edge (straight)
|
|
// 1th - 1st text face
|
|
// 2nd - 2nd text edge (diagonal)
|
|
// 3th - 2nd text face
|
|
int32_t idx{-1};
|
|
|
|
GlyphID &operator++()
|
|
{
|
|
++idx;
|
|
return *this;
|
|
}
|
|
};
|
|
|
|
namespace Slic3r::MeshBoolean::cgal2 {
|
|
|
|
namespace CGALProc = CGAL::Polygon_mesh_processing;
|
|
namespace CGALParams = CGAL::Polygon_mesh_processing::parameters;
|
|
|
|
// using EpecKernel = CGAL::Exact_predicates_exact_constructions_kernel;
|
|
using EpicKernel = CGAL::Exact_predicates_inexact_constructions_kernel;
|
|
using _EpicMesh = CGAL::Surface_mesh<EpicKernel::Point_3>;
|
|
// using _EpecMesh = CGAL::Surface_mesh<EpecKernel::Point_3>;
|
|
|
|
using CGALMesh = _EpicMesh;
|
|
|
|
// Add an indexed triangle mesh to CGAL Surface_mesh.
|
|
// Store map of CGAL face to source face index into object_face_source_id.
|
|
void triangle_mesh_to_cgal(
|
|
const std::vector<stl_vertex> &V,
|
|
const std::vector<stl_triangle_vertex_indices> &F,
|
|
CGALMesh &out,
|
|
CGALMesh::Property_map<CGAL::SM_Face_index, int32_t> object_face_source_id)
|
|
{
|
|
if (F.empty()) return;
|
|
|
|
size_t vertices_count = V.size();
|
|
size_t edges_count = (F.size() * 3) / 2;
|
|
size_t faces_count = F.size();
|
|
out.reserve(vertices_count, edges_count, faces_count);
|
|
|
|
for (auto &v : V)
|
|
out.add_vertex(typename CGALMesh::Point{v.x(), v.y(), v.z()});
|
|
|
|
using VI = typename CGALMesh::Vertex_index;
|
|
for (auto &f : F) {
|
|
auto fid = out.add_face(VI(f(0)), VI(f(1)), VI(f(2)));
|
|
object_face_source_id[fid] = int32_t(&f - &F.front());
|
|
}
|
|
}
|
|
|
|
void glyph2model(
|
|
const ExPolygons &glyph,
|
|
int32_t glyph_id,
|
|
const Slic3r::Emboss::IProject &projection,
|
|
CGALMesh &out,
|
|
std::vector<GlyphContour> &glyph_contours,
|
|
CGALMesh::Property_map<CGAL::SM_Edge_index, GlyphID> &glyph_id_edge,
|
|
CGALMesh::Property_map<CGAL::SM_Face_index, GlyphID> &glyph_id_face)
|
|
{
|
|
std::vector<CGALMesh::Vertex_index> indices;
|
|
auto insert_contour = [&projection, &indices, &out, glyph_id,
|
|
&glyph_contours, &glyph_id_edge,
|
|
&glyph_id_face](const Polygon &polygon,
|
|
int32_t iexpoly, int32_t id) {
|
|
indices.clear();
|
|
indices.reserve(polygon.points.size() * 2);
|
|
size_t num_vertices_old = out.number_of_vertices();
|
|
GlyphID glid{int32_t(glyph_contours.size()), 0};
|
|
glyph_contours.push_back(
|
|
{glyph_id, iexpoly, id, int32_t(num_vertices_old)});
|
|
for (const Point &p2 : polygon.points) {
|
|
auto p = projection.project(p2);
|
|
auto vi = out.add_vertex(typename CGALMesh::Point{p.first.x(),
|
|
p.first.y(),
|
|
p.first.z()});
|
|
assert((size_t) vi == indices.size() + num_vertices_old);
|
|
indices.emplace_back(vi);
|
|
vi = out.add_vertex(typename CGALMesh::Point{p.second.x(),
|
|
p.second.y(),
|
|
p.second.z()});
|
|
assert((size_t) vi == indices.size() + num_vertices_old);
|
|
indices.emplace_back(vi);
|
|
}
|
|
for (int32_t i = 0; i < int32_t(indices.size()); i += 2) {
|
|
int32_t j = (i + 2) % int32_t(indices.size());
|
|
auto find_edge = [&out](CGALMesh::Face_index fi,
|
|
CGALMesh::Vertex_index from,
|
|
CGALMesh::Vertex_index to) {
|
|
CGALMesh::Halfedge_index hi = out.halfedge(fi);
|
|
for (; out.target(hi) != to; hi = out.next(hi))
|
|
;
|
|
assert(out.source(hi) == from);
|
|
assert(out.target(hi) == to);
|
|
return hi;
|
|
};
|
|
auto fi = out.add_face(indices[i], indices[i + 1], indices[j]);
|
|
glyph_id_edge[out.edge(
|
|
find_edge(fi, indices[i], indices[i + 1]))] = glid;
|
|
glyph_id_face[fi] = ++glid;
|
|
glyph_id_edge[out.edge(
|
|
find_edge(fi, indices[i + 1], indices[j]))] = ++glid;
|
|
glyph_id_face[out.add_face(indices[j], indices[i + 1],
|
|
indices[j + 1])] = ++glid;
|
|
++glid;
|
|
}
|
|
};
|
|
|
|
size_t count_point = count_points(glyph);
|
|
out.reserve(out.number_of_vertices() + 2 * count_point,
|
|
out.number_of_edges() + 4 * count_point,
|
|
out.number_of_faces() + 2 * count_point);
|
|
|
|
for (const ExPolygon &expolygon : glyph) {
|
|
int32_t idx_contour = &expolygon - &glyph.front();
|
|
insert_contour(expolygon.contour, idx_contour, 0);
|
|
for (const Polygon &hole : expolygon.holes)
|
|
insert_contour(hole, idx_contour,
|
|
1 + (&hole - &expolygon.holes.front()));
|
|
}
|
|
}
|
|
} // namespace Slic3r::MeshBoolean::cgal2
|
|
|
|
bool its_write_obj(const indexed_triangle_set &its,
|
|
const std::vector<Vec3f> &color,
|
|
const char *file)
|
|
{
|
|
Slic3r::CNumericLocalesSetter locales_setter;
|
|
FILE *fp = fopen(file, "w");
|
|
if (fp == nullptr) { return false; }
|
|
|
|
for (size_t i = 0; i < its.vertices.size(); ++i)
|
|
fprintf(fp, "v %f %f %f %f %f %f\n", its.vertices[i](0),
|
|
its.vertices[i](1), its.vertices[i](2), color[i](0),
|
|
color[i](1), color[i](2));
|
|
for (size_t i = 0; i < its.indices.size(); ++i)
|
|
fprintf(fp, "f %d %d %d\n", its.indices[i][0] + 1,
|
|
its.indices[i][1] + 1, its.indices[i][2] + 1);
|
|
fclose(fp);
|
|
return true;
|
|
}
|
|
|
|
TEST_CASE("Emboss extrude cut", "[Emboss-Cut]")
|
|
{
|
|
std::string font_path = get_font_filepath();
|
|
char letter = '%';
|
|
float flatness = 2.;
|
|
|
|
auto font = Emboss::create_font(font_path.c_str());
|
|
REQUIRE(font != nullptr);
|
|
|
|
std::optional<Emboss::Glyph> glyph = Emboss::letter2glyph(*font, letter,
|
|
flatness);
|
|
REQUIRE(glyph.has_value());
|
|
|
|
ExPolygons shape = glyph->shape;
|
|
REQUIRE(!shape.empty());
|
|
|
|
float z_depth = 50.f;
|
|
Emboss::ProjectZ projection(z_depth);
|
|
|
|
#if 0
|
|
indexed_triangle_set text = Emboss::polygons2model(shape, projection);
|
|
BoundingBoxf3 bbox = bounding_box(text);
|
|
|
|
CHECK(!text.indices.empty());
|
|
#endif
|
|
|
|
auto cube = its_make_cube(782 - 49 + 50, 724 + 10 + 50, 5);
|
|
its_translate(cube, Vec3f(49 - 25, -10 - 25, 2.5));
|
|
auto cube2 = cube;
|
|
// its_translate(cube2, Vec3f(0, 0, 40));
|
|
its_translate(cube2, Vec3f(0, -40, 40));
|
|
for (auto &face : cube2.indices)
|
|
for (int i = 0; i < 3; ++i) face(i) += int(cube.vertices.size());
|
|
append(cube.vertices, cube2.vertices);
|
|
append(cube.indices, cube2.indices);
|
|
|
|
MeshBoolean::cgal2::CGALMesh cgalcube, cgaltext;
|
|
auto object_face_source_id =
|
|
cgalcube
|
|
.add_property_map<MeshBoolean::cgal2::CGALMesh::Face_index,
|
|
int32_t>("f:object_face_source_id")
|
|
.first;
|
|
MeshBoolean::cgal2::triangle_mesh_to_cgal(cube.vertices, cube.indices,
|
|
cgalcube,
|
|
object_face_source_id);
|
|
|
|
auto edge_glyph_id =
|
|
cgaltext
|
|
.add_property_map<MeshBoolean::cgal2::CGALMesh::Edge_index,
|
|
GlyphID>("e:glyph_id")
|
|
.first;
|
|
auto face_glyph_id =
|
|
cgaltext
|
|
.add_property_map<MeshBoolean::cgal2::CGALMesh::Face_index,
|
|
GlyphID>("f:glyph_id")
|
|
.first;
|
|
auto vertex_glyph_id =
|
|
cgalcube
|
|
.add_property_map<MeshBoolean::cgal2::CGALMesh::Vertex_index,
|
|
GlyphID>("v:glyph_id")
|
|
.first;
|
|
std::vector<GlyphContour> glyph_contours;
|
|
|
|
MeshBoolean::cgal2::glyph2model(shape, 0, projection, cgaltext,
|
|
glyph_contours, edge_glyph_id,
|
|
face_glyph_id);
|
|
|
|
struct Visitor
|
|
{
|
|
using TriangleMesh = Slic3r::MeshBoolean::cgal2::CGALMesh;
|
|
|
|
const TriangleMesh &object;
|
|
const TriangleMesh &glyphs;
|
|
// const std::vector<GlyphContour> &glyph_contours;
|
|
// Properties of the glyphs mesh:
|
|
TriangleMesh::Property_map<CGAL::SM_Edge_index, GlyphID> glyph_id_edge;
|
|
TriangleMesh::Property_map<CGAL::SM_Face_index, GlyphID> glyph_id_face;
|
|
// Properties of the object mesh.
|
|
TriangleMesh::Property_map<CGAL::SM_Face_index, int32_t>
|
|
object_face_source_id;
|
|
TriangleMesh::Property_map<CGAL::SM_Vertex_index, GlyphID>
|
|
object_vertex_glyph_id;
|
|
|
|
typedef boost::graph_traits<TriangleMesh> GT;
|
|
typedef typename GT::face_descriptor face_descriptor;
|
|
typedef typename GT::halfedge_descriptor halfedge_descriptor;
|
|
typedef typename GT::vertex_descriptor vertex_descriptor;
|
|
|
|
int32_t source_face_id;
|
|
|
|
void before_subface_creations(face_descriptor f_old,
|
|
TriangleMesh &mesh)
|
|
{
|
|
assert(&mesh == &object);
|
|
source_face_id = object_face_source_id[f_old];
|
|
}
|
|
void after_subface_created(face_descriptor f_new, TriangleMesh &mesh)
|
|
{
|
|
assert(&mesh == &object);
|
|
object_face_source_id[f_new] = source_face_id;
|
|
}
|
|
|
|
std::vector<const GlyphID *> intersection_point_glyph;
|
|
|
|
// Intersecting an edge hh_edge from tm_edge with a face hh_face of tm_face.
|
|
void intersection_point_detected(
|
|
// ID of the intersection point, starting at 0. Ids are consecutive.
|
|
std::size_t i_id,
|
|
// Dimension of a simplex part of face(hh_face) that is
|
|
// intersected by hh_edge: 0 for vertex: target(hh_face) 1 for
|
|
// edge: hh_face 2 for the interior of face: face(hh_face)
|
|
int simplex_dimension,
|
|
// Edge of tm_edge, see edge_source_coplanar_with_face &
|
|
// edge_target_coplanar_with_face whether any vertex of hh_edge is
|
|
// coplanar with face(hh_face).
|
|
halfedge_descriptor hh_edge,
|
|
// Vertex, halfedge or face of tm_face intersected by hh_edge, see
|
|
// comment at simplex_dimension.
|
|
halfedge_descriptor hh_face,
|
|
// Mesh containing hh_edge
|
|
const TriangleMesh &tm_edge,
|
|
// Mesh containing hh_face
|
|
const TriangleMesh &tm_face,
|
|
// source(hh_edge) is coplanar with face(hh_face).
|
|
bool edge_source_coplanar_with_face,
|
|
// target(hh_edge) is coplanar with face(hh_face).
|
|
bool edge_target_coplanar_with_face)
|
|
{
|
|
if (i_id <= intersection_point_glyph.size()) {
|
|
intersection_point_glyph.reserve(
|
|
Slic3r::next_highest_power_of_2(i_id + 1));
|
|
intersection_point_glyph.resize(i_id + 1);
|
|
}
|
|
|
|
const GlyphID *glyph = nullptr;
|
|
if (&tm_face == &glyphs) {
|
|
assert(&tm_edge == &object);
|
|
switch (simplex_dimension) {
|
|
case 1:
|
|
// edge x edge intersection
|
|
glyph = &glyph_id_edge[glyphs.edge(hh_face)];
|
|
break;
|
|
case 2:
|
|
// edge x face intersection
|
|
glyph = &glyph_id_face[glyphs.face(hh_face)];
|
|
break;
|
|
default: assert(false);
|
|
}
|
|
if (edge_source_coplanar_with_face)
|
|
object_vertex_glyph_id[object.source(hh_edge)] = *glyph;
|
|
if (edge_target_coplanar_with_face)
|
|
object_vertex_glyph_id[object.target(hh_edge)] = *glyph;
|
|
} else {
|
|
assert(&tm_edge == &glyphs && &tm_face == &object);
|
|
assert(!edge_source_coplanar_with_face);
|
|
assert(!edge_target_coplanar_with_face);
|
|
glyph = &glyph_id_edge[glyphs.edge(hh_edge)];
|
|
if (simplex_dimension == 0)
|
|
object_vertex_glyph_id[object.target(hh_face)] = *glyph;
|
|
}
|
|
intersection_point_glyph[i_id] = glyph;
|
|
}
|
|
|
|
void new_vertex_added(std::size_t node_id,
|
|
vertex_descriptor vh,
|
|
const TriangleMesh &tm)
|
|
{
|
|
assert(&tm == &object);
|
|
assert(node_id < intersection_point_glyph.size());
|
|
const GlyphID *glyph = intersection_point_glyph[node_id];
|
|
assert(glyph != nullptr);
|
|
assert(glyph->glyph_contour != -1);
|
|
assert(glyph->idx != -1);
|
|
object_vertex_glyph_id[vh] = glyph ? *glyph : GlyphID{};
|
|
}
|
|
|
|
void after_subface_creations(TriangleMesh &) {}
|
|
void before_subface_created(TriangleMesh &) {}
|
|
void before_edge_split(halfedge_descriptor /* h */,
|
|
TriangleMesh & /* tm */)
|
|
{}
|
|
void edge_split(halfedge_descriptor /* hnew */,
|
|
TriangleMesh & /* tm */)
|
|
{}
|
|
void after_edge_split() {}
|
|
void add_retriangulation_edge(halfedge_descriptor /* h */,
|
|
TriangleMesh & /* tm */)
|
|
{}
|
|
} visitor{cgalcube,
|
|
cgaltext,
|
|
/* glyph_contours, */ edge_glyph_id,
|
|
face_glyph_id,
|
|
object_face_source_id,
|
|
vertex_glyph_id};
|
|
|
|
auto ecm = get(CGAL::dynamic_edge_property_t<bool>(), cgalcube);
|
|
const auto &p =
|
|
CGAL::Polygon_mesh_processing::parameters::throw_on_self_intersection(
|
|
false)
|
|
.visitor(visitor)
|
|
.edge_is_constrained_map(ecm);
|
|
const auto &q = CGAL::Polygon_mesh_processing::parameters::visitor(visitor)
|
|
.do_not_modify(true);
|
|
// CGAL::Polygon_mesh_processing::corefine(cgalcube, cgalcube2, p, p);
|
|
|
|
CGAL::Polygon_mesh_processing::corefine(cgalcube, cgaltext, p, q);
|
|
|
|
auto vertex_colors =
|
|
cgalcube
|
|
.add_property_map<MeshBoolean::cgal2::CGALMesh::Vertex_index,
|
|
CGAL::Color>("v:color")
|
|
.first;
|
|
auto face_colors =
|
|
cgalcube
|
|
.add_property_map<MeshBoolean::cgal2::CGALMesh::Face_index,
|
|
CGAL::Color>("f:color")
|
|
.first;
|
|
|
|
const CGAL::Color marked{255, 0, 0};
|
|
for (auto fi : cgalcube.faces()) {
|
|
CGAL::Color color(0, 255, 0);
|
|
auto hi_end = cgalcube.halfedge(fi);
|
|
auto hi = hi_end;
|
|
do {
|
|
if (get(ecm, cgalcube.edge(hi))) {
|
|
// This face has a constrained edge.
|
|
GlyphID g1 = vertex_glyph_id[cgalcube.source(hi)];
|
|
GlyphID g2 = vertex_glyph_id[cgalcube.target(hi)];
|
|
assert(g1.glyph_contour != -1 &&
|
|
g1.glyph_contour == g2.glyph_contour);
|
|
assert(g1.idx != -1);
|
|
assert(g2.idx != -1);
|
|
const GlyphContour &glyph_contour =
|
|
glyph_contours[g1.glyph_contour];
|
|
const auto &expoly = glyph->shape[glyph_contour.expoly];
|
|
const auto &contour =
|
|
glyph_contour.contour == 0 ?
|
|
expoly.contour :
|
|
expoly.holes[glyph_contour.contour - 1];
|
|
bool inside = false;
|
|
int32_t i1 = g1.idx / 4;
|
|
int32_t i2 = g2.idx / 4;
|
|
if (g1.idx == g2.idx) {
|
|
// Crossing both object vertices with the same glyph face.
|
|
int type = g1.idx % 4;
|
|
assert(type == 1 || type == 3);
|
|
const auto &p = cgalcube.point(
|
|
cgalcube.target(cgalcube.next(hi)));
|
|
int i = i1 * 2;
|
|
int j = (i1 + 1 == int(contour.size())) ? 0 : i + 2;
|
|
i += glyph_contour.vertex_base;
|
|
j += glyph_contour.vertex_base;
|
|
auto abcp =
|
|
type == 1 ?
|
|
CGAL::orientation(
|
|
cgaltext.point(CGAL::SM_Vertex_index(i)),
|
|
cgaltext.point(CGAL::SM_Vertex_index(i + 1)),
|
|
cgaltext.point(CGAL::SM_Vertex_index(j)), p) :
|
|
CGAL::orientation(
|
|
cgaltext.point(CGAL::SM_Vertex_index(j)),
|
|
cgaltext.point(CGAL::SM_Vertex_index(i + 1)),
|
|
cgaltext.point(CGAL::SM_Vertex_index(j + 1)),
|
|
p);
|
|
inside = abcp == CGAL::POSITIVE;
|
|
} else if (g1.idx < g2.idx) {
|
|
if (i1 == 0 && i2 + 1 == contour.size()) {
|
|
// cw
|
|
} else {
|
|
inside = true;
|
|
}
|
|
} else {
|
|
if (i2 == 0 && i1 + 1 == contour.size()) {
|
|
inside = true;
|
|
std::swap(g1, g2);
|
|
std::swap(i1, i2);
|
|
}
|
|
}
|
|
if (inside) {
|
|
// Is this face oriented towards p or away from p?
|
|
const auto &a = cgalcube.point(cgalcube.source(hi));
|
|
const auto &b = cgalcube.point(cgalcube.target(hi));
|
|
const auto &c = cgalcube.point(
|
|
cgalcube.target(cgalcube.next(hi)));
|
|
// FIXME prosim nahrad skutecnou projekci.
|
|
// projection.project()
|
|
const auto p =
|
|
a +
|
|
MeshBoolean::cgal2::EpicKernel::Vector_3(0, 0, 10);
|
|
auto abcp = CGAL::orientation(a, b, c, p);
|
|
if (abcp == CGAL::POSITIVE) color = marked;
|
|
}
|
|
break;
|
|
}
|
|
hi = cgalcube.next(hi);
|
|
} while (hi != hi_end);
|
|
face_colors[fi] = color;
|
|
}
|
|
|
|
CGAL::IO::write_OFF("c:\\data\\temp\\corefined-0.off", cgalcube);
|
|
|
|
// Seed fill the other faces inside the region.
|
|
std::vector<MeshBoolean::cgal2::CGALMesh::Face_index> queue;
|
|
for (auto fi_seed : cgalcube.faces())
|
|
if (face_colors[fi_seed] != marked) {
|
|
// Is this face completely unconstrained?
|
|
auto hi = cgalcube.halfedge(fi_seed);
|
|
auto hi_prev = cgalcube.prev(hi);
|
|
auto hi_next = cgalcube.next(hi);
|
|
if (!get(ecm, cgalcube.edge(hi)) &&
|
|
!get(ecm, cgalcube.edge(hi_prev)) &&
|
|
!get(ecm, cgalcube.edge(hi_next))) {
|
|
queue.emplace_back(fi_seed);
|
|
do {
|
|
auto fi = queue.back();
|
|
queue.pop_back();
|
|
auto hi = cgalcube.halfedge(fi);
|
|
auto hi_prev = cgalcube.prev(hi);
|
|
auto hi_next = cgalcube.next(hi);
|
|
// The following condition may not apply if crossing a
|
|
// silhouette wrt. the glyph projection direction.
|
|
// assert(! get(ecm, cgalcube.edge(hi))
|
|
// && ! get(ecm, cgalcube.edge(hi_prev))
|
|
// && ! get(ecm, cgalcube.edge(hi_next)));
|
|
auto this_opposite = cgalcube.face(cgalcube.opposite(hi));
|
|
bool this_marked = face_colors[this_opposite] == marked;
|
|
auto prev_opposite = cgalcube.face(
|
|
cgalcube.opposite(hi_prev));
|
|
bool prev_marked = face_colors[prev_opposite] == marked;
|
|
auto next_opposite = cgalcube.face(
|
|
cgalcube.opposite(hi_next));
|
|
bool next_marked = face_colors[next_opposite] == marked;
|
|
int num_marked = this_marked + prev_marked + next_marked;
|
|
if (num_marked >= 2) {
|
|
face_colors[fi] = marked;
|
|
if (num_marked == 2)
|
|
queue.emplace_back(!this_marked ? this_opposite :
|
|
!prev_marked ? prev_opposite :
|
|
next_opposite);
|
|
}
|
|
} while (!queue.empty());
|
|
}
|
|
}
|
|
|
|
CGAL::IO::write_OFF("c:\\data\\temp\\corefined.off", cgalcube);
|
|
|
|
// Mapping of its_extruded faces to source faces.
|
|
enum class FaceState : int8_t {
|
|
Unknown = -1,
|
|
Unmarked = -2,
|
|
UnmarkedSplit = -3,
|
|
Marked = -4,
|
|
MarkedSplit = -5,
|
|
UnmarkedEmitted = -6,
|
|
};
|
|
std::vector<FaceState> face_states(cube.indices.size(),
|
|
FaceState::Unknown);
|
|
for (auto fi_seed : cgalcube.faces()) {
|
|
FaceState &state = face_states[object_face_source_id[fi_seed]];
|
|
bool m = face_colors[fi_seed] == marked;
|
|
switch (state) {
|
|
case FaceState::Unknown:
|
|
state = m ? FaceState::Marked : FaceState::Unmarked;
|
|
break;
|
|
case FaceState::Unmarked:
|
|
case FaceState::UnmarkedSplit:
|
|
state = m ? FaceState::MarkedSplit : FaceState::UnmarkedSplit;
|
|
break;
|
|
case FaceState::Marked:
|
|
case FaceState::MarkedSplit: state = FaceState::MarkedSplit; break;
|
|
default: assert(false);
|
|
}
|
|
}
|
|
|
|
indexed_triangle_set its_extruded;
|
|
its_extruded.indices.reserve(cgalcube.number_of_faces());
|
|
its_extruded.vertices.reserve(cgalcube.number_of_vertices());
|
|
// Mapping of its_extruded vertices (original and offsetted) to
|
|
// cgalcuble's vertices.
|
|
std::vector<std::pair<int32_t, int32_t>>
|
|
map_vertices(cgalcube.number_of_vertices(),
|
|
std::pair<int32_t, int32_t>{-1, -1});
|
|
|
|
Vec3f extrude_dir{0, 0, 5.f};
|
|
for (auto fi : cgalcube.faces()) {
|
|
const int32_t source_face_id = object_face_source_id[fi];
|
|
const FaceState state = face_states[source_face_id];
|
|
assert(state == FaceState::Unmarked ||
|
|
state == FaceState::UnmarkedSplit ||
|
|
state == FaceState::UnmarkedEmitted ||
|
|
state == FaceState::Marked || state == FaceState::MarkedSplit);
|
|
if (state == FaceState::UnmarkedEmitted) {
|
|
// Already emitted.
|
|
} else if (state == FaceState::Unmarked ||
|
|
state == FaceState::UnmarkedSplit) {
|
|
// Just copy the unsplit source face.
|
|
const Vec3i source_vertices = cube.indices[source_face_id];
|
|
Vec3i target_vertices;
|
|
for (int i = 0; i < 3; ++i) {
|
|
target_vertices(i) = map_vertices[source_vertices(i)].first;
|
|
if (target_vertices(i) == -1) {
|
|
map_vertices[source_vertices(i)].first = target_vertices(
|
|
i) = int(its_extruded.vertices.size());
|
|
its_extruded.vertices.emplace_back(
|
|
cube.vertices[source_vertices(i)]);
|
|
}
|
|
}
|
|
its_extruded.indices.emplace_back(target_vertices);
|
|
face_states[source_face_id] = FaceState::UnmarkedEmitted;
|
|
} else {
|
|
auto hi = cgalcube.halfedge(fi);
|
|
auto hi_prev = cgalcube.prev(hi);
|
|
auto hi_next = cgalcube.next(hi);
|
|
const Vec3i
|
|
source_vertices{int((std::size_t) cgalcube.target(hi)),
|
|
int((std::size_t) cgalcube.target(hi_next)),
|
|
int((std::size_t) cgalcube.target(hi_prev))};
|
|
Vec3i target_vertices;
|
|
if (face_colors[fi] == marked) {
|
|
// Extrude the face. Neighbor edges separating extruded face
|
|
// from non-extruded face will be extruded.
|
|
bool boundary_vertex[3] = {false, false, false};
|
|
Vec3i target_vertices_extruded{-1, -1, -1};
|
|
for (int i = 0; i < 3; ++i) {
|
|
if (face_colors[cgalcube.face(cgalcube.opposite(hi))] !=
|
|
marked)
|
|
// Edge separating extruded / non-extruded region.
|
|
boundary_vertex[i] = boundary_vertex[(i + 2) % 3] =
|
|
true;
|
|
hi = cgalcube.next(hi);
|
|
}
|
|
for (int i = 0; i < 3; ++i) {
|
|
target_vertices_extruded(
|
|
i) = map_vertices[source_vertices(i)].second;
|
|
if (target_vertices_extruded(i) == -1) {
|
|
map_vertices[source_vertices(i)].second =
|
|
target_vertices_extruded(i) = int(
|
|
its_extruded.vertices.size());
|
|
const auto &p = cgalcube.point(cgalcube.target(hi));
|
|
its_extruded.vertices.emplace_back(
|
|
Vec3f{float(p.x()), float(p.y()), float(p.z())} +
|
|
extrude_dir);
|
|
}
|
|
if (boundary_vertex[i]) {
|
|
target_vertices(
|
|
i) = map_vertices[source_vertices(i)].first;
|
|
if (target_vertices(i) == -1) {
|
|
map_vertices[source_vertices(i)].first =
|
|
target_vertices(i) = int(
|
|
its_extruded.vertices.size());
|
|
const auto &p = cgalcube.point(
|
|
cgalcube.target(hi));
|
|
its_extruded.vertices.emplace_back(p.x(), p.y(),
|
|
p.z());
|
|
}
|
|
}
|
|
hi = cgalcube.next(hi);
|
|
}
|
|
its_extruded.indices.emplace_back(target_vertices_extruded);
|
|
// Add the sides.
|
|
for (int i = 0; i < 3; ++i) {
|
|
int j = (i + 1) % 3;
|
|
assert(target_vertices_extruded[i] != -1 &&
|
|
target_vertices_extruded[j] != -1);
|
|
if (boundary_vertex[i] && boundary_vertex[j]) {
|
|
assert(target_vertices[i] != -1 &&
|
|
target_vertices[j] != -1);
|
|
its_extruded.indices.emplace_back(
|
|
Vec3i{target_vertices[i], target_vertices[j],
|
|
target_vertices_extruded[i]});
|
|
its_extruded.indices.emplace_back(
|
|
Vec3i{target_vertices_extruded[i],
|
|
target_vertices[j],
|
|
target_vertices_extruded[j]});
|
|
}
|
|
}
|
|
} else {
|
|
// Copy the face.
|
|
Vec3i target_vertices;
|
|
for (int i = 0; i < 3; ++i) {
|
|
target_vertices(
|
|
i) = map_vertices[source_vertices(i)].first;
|
|
if (target_vertices(i) == -1) {
|
|
map_vertices[source_vertices(i)].first =
|
|
target_vertices(i) = int(
|
|
its_extruded.vertices.size());
|
|
const auto &p = cgalcube.point(cgalcube.target(hi));
|
|
its_extruded.vertices.emplace_back(p.x(), p.y(),
|
|
p.z());
|
|
}
|
|
hi = cgalcube.next(hi);
|
|
}
|
|
its_extruded.indices.emplace_back(target_vertices);
|
|
}
|
|
}
|
|
}
|
|
|
|
its_write_obj(its_extruded, "c:\\data\\temp\\text-extruded.obj");
|
|
|
|
indexed_triangle_set edges_its;
|
|
std::vector<Vec3f> edges_its_colors;
|
|
for (auto ei : cgalcube.edges())
|
|
if (cgalcube.is_valid(ei)) {
|
|
const auto &p1 = cgalcube.point(cgalcube.vertex(ei, 0));
|
|
const auto &p2 = cgalcube.point(cgalcube.vertex(ei, 1));
|
|
bool constrained = get(ecm, ei);
|
|
Vec3f color = constrained ? Vec3f{1.f, 0, 0} : Vec3f{0, 1., 0};
|
|
edges_its.indices.emplace_back(
|
|
Vec3i(edges_its.vertices.size(), edges_its.vertices.size() + 1,
|
|
edges_its.vertices.size() + 2));
|
|
edges_its.vertices.emplace_back(Vec3f(p1.x(), p1.y(), p1.z()));
|
|
edges_its.vertices.emplace_back(Vec3f(p2.x(), p2.y(), p2.z()));
|
|
edges_its.vertices.emplace_back(
|
|
Vec3f(p2.x(), p2.y(), p2.z() + 0.001));
|
|
edges_its_colors.emplace_back(color);
|
|
edges_its_colors.emplace_back(color);
|
|
edges_its_colors.emplace_back(color);
|
|
}
|
|
its_write_obj(edges_its, edges_its_colors,
|
|
"c:\\data\\temp\\corefined-edges.obj");
|
|
|
|
// MeshBoolean::cgal::minus(cube, cube2);
|
|
|
|
// REQUIRE(!MeshBoolean::cgal::does_self_intersect(cube));
|
|
}
|