
On little-endian hosts, stl_internal_reverse_quads will be called before it is declared. Move the declaration up to the beginning of the file to fix build breakage seen on an s390x host.
278 lines
11 KiB
C++
278 lines
11 KiB
C++
/* ADMesh -- process triangulated solid meshes
|
|
* Copyright (C) 1995, 1996 Anthony D. Martin <amartin@engr.csulb.edu>
|
|
* Copyright (C) 2013, 2014 several contributors, see AUTHORS
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Questions, comments, suggestions, etc to
|
|
* https://github.com/admesh/admesh/issues
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <math.h>
|
|
#include <assert.h>
|
|
|
|
#include <boost/log/trivial.hpp>
|
|
#include <boost/nowide/cstdio.hpp>
|
|
#include <boost/detail/endian.hpp>
|
|
|
|
#include "stl.h"
|
|
|
|
#ifndef SEEK_SET
|
|
#error "SEEK_SET not defined"
|
|
#endif
|
|
|
|
#ifndef BOOST_LITTLE_ENDIAN
|
|
extern void stl_internal_reverse_quads(char *buf, size_t cnt);
|
|
#endif /* BOOST_LITTLE_ENDIAN */
|
|
|
|
static FILE* stl_open_count_facets(stl_file *stl, const char *file)
|
|
{
|
|
// Open the file in binary mode first.
|
|
FILE *fp = boost::nowide::fopen(file, "rb");
|
|
if (fp == nullptr) {
|
|
BOOST_LOG_TRIVIAL(error) << "stl_open_count_facets: Couldn't open " << file << " for reading";
|
|
return nullptr;
|
|
}
|
|
// Find size of file.
|
|
fseek(fp, 0, SEEK_END);
|
|
long file_size = ftell(fp);
|
|
|
|
// Check for binary or ASCII file.
|
|
fseek(fp, HEADER_SIZE, SEEK_SET);
|
|
unsigned char chtest[128];
|
|
if (! fread(chtest, sizeof(chtest), 1, fp)) {
|
|
BOOST_LOG_TRIVIAL(error) << "stl_open_count_facets: The input is an empty file: " << file;
|
|
fclose(fp);
|
|
return nullptr;
|
|
}
|
|
stl->stats.type = ascii;
|
|
for (size_t s = 0; s < sizeof(chtest); s++) {
|
|
if (chtest[s] > 127) {
|
|
stl->stats.type = binary;
|
|
break;
|
|
}
|
|
}
|
|
rewind(fp);
|
|
|
|
uint32_t num_facets = 0;
|
|
|
|
// Get the header and the number of facets in the .STL file.
|
|
// If the .STL file is binary, then do the following:
|
|
if (stl->stats.type == binary) {
|
|
// Test if the STL file has the right size.
|
|
if (((file_size - HEADER_SIZE) % SIZEOF_STL_FACET != 0) || (file_size < STL_MIN_FILE_SIZE)) {
|
|
BOOST_LOG_TRIVIAL(error) << "stl_open_count_facets: The file " << file << " has the wrong size.";
|
|
fclose(fp);
|
|
return nullptr;
|
|
}
|
|
num_facets = (file_size - HEADER_SIZE) / SIZEOF_STL_FACET;
|
|
|
|
// Read the header.
|
|
if (fread(stl->stats.header, LABEL_SIZE, 1, fp) > 79)
|
|
stl->stats.header[80] = '\0';
|
|
|
|
// Read the int following the header. This should contain # of facets.
|
|
uint32_t header_num_facets;
|
|
bool header_num_faces_read = fread(&header_num_facets, sizeof(uint32_t), 1, fp) != 0;
|
|
#ifndef BOOST_LITTLE_ENDIAN
|
|
// Convert from little endian to big endian.
|
|
stl_internal_reverse_quads((char*)&header_num_facets, 4);
|
|
#endif /* BOOST_LITTLE_ENDIAN */
|
|
if (! header_num_faces_read || num_facets != header_num_facets)
|
|
BOOST_LOG_TRIVIAL(info) << "stl_open_count_facets: Warning: File size doesn't match number of facets in the header: " << file;
|
|
}
|
|
// Otherwise, if the .STL file is ASCII, then do the following:
|
|
else
|
|
{
|
|
// Reopen the file in text mode (for getting correct newlines on Windows)
|
|
// fix to silence a warning about unused return value.
|
|
// obviously if it fails we have problems....
|
|
fp = boost::nowide::freopen(file, "r", fp);
|
|
|
|
// do another null check to be safe
|
|
if (fp == nullptr) {
|
|
BOOST_LOG_TRIVIAL(error) << "stl_open_count_facets: Couldn't open " << file << " for reading";
|
|
fclose(fp);
|
|
return nullptr;
|
|
}
|
|
|
|
// Find the number of facets.
|
|
char linebuf[100];
|
|
int num_lines = 1;
|
|
while (fgets(linebuf, 100, fp) != nullptr) {
|
|
// Don't count short lines.
|
|
if (strlen(linebuf) <= 4)
|
|
continue;
|
|
// Skip solid/endsolid lines as broken STL file generators may put several of them.
|
|
if (strncmp(linebuf, "solid", 5) == 0 || strncmp(linebuf, "endsolid", 8) == 0)
|
|
continue;
|
|
++ num_lines;
|
|
}
|
|
|
|
rewind(fp);
|
|
|
|
// Get the header.
|
|
int i = 0;
|
|
for (; i < 80 && (stl->stats.header[i] = getc(fp)) != '\n'; ++ i) ;
|
|
stl->stats.header[i] = '\0'; // Lose the '\n'
|
|
stl->stats.header[80] = '\0';
|
|
|
|
num_facets = num_lines / ASCII_LINES_PER_FACET;
|
|
}
|
|
|
|
stl->stats.number_of_facets += num_facets;
|
|
stl->stats.original_num_facets = stl->stats.number_of_facets;
|
|
return fp;
|
|
}
|
|
|
|
/* Reads the contents of the file pointed to by fp into the stl structure,
|
|
starting at facet first_facet. The second argument says if it's our first
|
|
time running this for the stl and therefore we should reset our max and min stats. */
|
|
static bool stl_read(stl_file *stl, FILE *fp, int first_facet, bool first)
|
|
{
|
|
if (stl->stats.type == binary)
|
|
fseek(fp, HEADER_SIZE, SEEK_SET);
|
|
else
|
|
rewind(fp);
|
|
|
|
char normal_buf[3][32];
|
|
for (uint32_t i = first_facet; i < stl->stats.number_of_facets; ++ i) {
|
|
stl_facet facet;
|
|
|
|
if (stl->stats.type == binary) {
|
|
// Read a single facet from a binary .STL file. We assume little-endian architecture!
|
|
if (fread(&facet, 1, SIZEOF_STL_FACET, fp) != SIZEOF_STL_FACET)
|
|
return false;
|
|
#ifndef BOOST_LITTLE_ENDIAN
|
|
// Convert the loaded little endian data to big endian.
|
|
stl_internal_reverse_quads((char*)&facet, 48);
|
|
#endif /* BOOST_LITTLE_ENDIAN */
|
|
} else {
|
|
// Read a single facet from an ASCII .STL file
|
|
// skip solid/endsolid
|
|
// (in this order, otherwise it won't work when they are paired in the middle of a file)
|
|
fscanf(fp, " endsolid%*[^\n]\n");
|
|
fscanf(fp, " solid%*[^\n]\n"); // name might contain spaces so %*s doesn't work and it also can be empty (just "solid")
|
|
// Leading space in the fscanf format skips all leading white spaces including numerous new lines and tabs.
|
|
int res_normal = fscanf(fp, " facet normal %31s %31s %31s", normal_buf[0], normal_buf[1], normal_buf[2]);
|
|
assert(res_normal == 3);
|
|
int res_outer_loop = fscanf(fp, " outer loop");
|
|
assert(res_outer_loop == 0);
|
|
int res_vertex1 = fscanf(fp, " vertex %f %f %f", &facet.vertex[0](0), &facet.vertex[0](1), &facet.vertex[0](2));
|
|
assert(res_vertex1 == 3);
|
|
int res_vertex2 = fscanf(fp, " vertex %f %f %f", &facet.vertex[1](0), &facet.vertex[1](1), &facet.vertex[1](2));
|
|
assert(res_vertex2 == 3);
|
|
// Trailing whitespace is there to eat all whitespaces and empty lines up to the next non-whitespace.
|
|
int res_vertex3 = fscanf(fp, " vertex %f %f %f ", &facet.vertex[2](0), &facet.vertex[2](1), &facet.vertex[2](2));
|
|
assert(res_vertex3 == 3);
|
|
// Some G-code generators tend to produce text after "endloop" and "endfacet". Just ignore it.
|
|
char buf[2048];
|
|
fgets(buf, 2047, fp);
|
|
bool endloop_ok = strncmp(buf, "endloop", 7) == 0 && (buf[7] == '\r' || buf[7] == '\n' || buf[7] == ' ' || buf[7] == '\t');
|
|
assert(endloop_ok);
|
|
// Skip the trailing whitespaces and empty lines.
|
|
fscanf(fp, " ");
|
|
fgets(buf, 2047, fp);
|
|
bool endfacet_ok = strncmp(buf, "endfacet", 8) == 0 && (buf[8] == '\r' || buf[8] == '\n' || buf[8] == ' ' || buf[8] == '\t');
|
|
assert(endfacet_ok);
|
|
if (res_normal != 3 || res_outer_loop != 0 || res_vertex1 != 3 || res_vertex2 != 3 || res_vertex3 != 3 || ! endloop_ok || ! endfacet_ok) {
|
|
BOOST_LOG_TRIVIAL(error) << "Something is syntactically very wrong with this ASCII STL! ";
|
|
return false;
|
|
}
|
|
|
|
// The facet normal has been parsed as a single string as to workaround for not a numbers in the normal definition.
|
|
if (sscanf(normal_buf[0], "%f", &facet.normal(0)) != 1 ||
|
|
sscanf(normal_buf[1], "%f", &facet.normal(1)) != 1 ||
|
|
sscanf(normal_buf[2], "%f", &facet.normal(2)) != 1) {
|
|
// Normal was mangled. Maybe denormals or "not a number" were stored?
|
|
// Just reset the normal and silently ignore it.
|
|
memset(&facet.normal, 0, sizeof(facet.normal));
|
|
}
|
|
}
|
|
|
|
#if 0
|
|
// Report close to zero vertex coordinates. Due to the nature of the floating point numbers,
|
|
// close to zero values may be represented with singificantly higher precision than the rest of the vertices.
|
|
// It may be worth to round these numbers to zero during loading to reduce the number of errors reported
|
|
// during the STL import.
|
|
for (size_t j = 0; j < 3; ++ j) {
|
|
if (facet.vertex[j](0) > -1e-12f && facet.vertex[j](0) < 1e-12f)
|
|
printf("stl_read: facet %d(0) = %e\r\n", j, facet.vertex[j](0));
|
|
if (facet.vertex[j](1) > -1e-12f && facet.vertex[j](1) < 1e-12f)
|
|
printf("stl_read: facet %d(1) = %e\r\n", j, facet.vertex[j](1));
|
|
if (facet.vertex[j](2) > -1e-12f && facet.vertex[j](2) < 1e-12f)
|
|
printf("stl_read: facet %d(2) = %e\r\n", j, facet.vertex[j](2));
|
|
}
|
|
#endif
|
|
|
|
// Write the facet into memory.
|
|
stl->facet_start[i] = facet;
|
|
stl_facet_stats(stl, facet, first);
|
|
}
|
|
|
|
stl->stats.size = stl->stats.max - stl->stats.min;
|
|
stl->stats.bounding_diameter = stl->stats.size.norm();
|
|
return true;
|
|
}
|
|
|
|
bool stl_open(stl_file *stl, const char *file)
|
|
{
|
|
stl->clear();
|
|
FILE *fp = stl_open_count_facets(stl, file);
|
|
if (fp == nullptr)
|
|
return false;
|
|
stl_allocate(stl);
|
|
bool result = stl_read(stl, fp, 0, true);
|
|
fclose(fp);
|
|
return result;
|
|
}
|
|
|
|
void stl_allocate(stl_file *stl)
|
|
{
|
|
// Allocate memory for the entire .STL file.
|
|
stl->facet_start.assign(stl->stats.number_of_facets, stl_facet());
|
|
// Allocate memory for the neighbors list.
|
|
stl->neighbors_start.assign(stl->stats.number_of_facets, stl_neighbors());
|
|
}
|
|
|
|
void stl_reallocate(stl_file *stl)
|
|
{
|
|
stl->facet_start.resize(stl->stats.number_of_facets);
|
|
stl->neighbors_start.resize(stl->stats.number_of_facets);
|
|
}
|
|
|
|
void stl_facet_stats(stl_file *stl, stl_facet facet, bool &first)
|
|
{
|
|
// While we are going through all of the facets, let's find the
|
|
// maximum and minimum values for x, y, and z
|
|
|
|
if (first) {
|
|
// Initialize the max and min values the first time through
|
|
stl->stats.min = facet.vertex[0];
|
|
stl->stats.max = facet.vertex[0];
|
|
stl_vertex diff = (facet.vertex[1] - facet.vertex[0]).cwiseAbs();
|
|
stl->stats.shortest_edge = std::max(diff(0), std::max(diff(1), diff(2)));
|
|
first = false;
|
|
}
|
|
|
|
// Now find the max and min values.
|
|
for (size_t i = 0; i < 3; ++ i) {
|
|
stl->stats.min = stl->stats.min.cwiseMin(facet.vertex[i]);
|
|
stl->stats.max = stl->stats.max.cwiseMax(facet.vertex[i]);
|
|
}
|
|
}
|