PrusaSlicer-NonPlainar/xs/src/libslic3r/Fill/FillRectilinear2.cpp
bubnikv 4e90ae9a28 FillRectilinear2:
Fix of a degenerate case, where there is a vertical segment on this vertical line and the contour
follows from left to right or vice versa, leading to low,low or high,high intersections.
2017-01-29 00:20:09 +01:00

1650 lines
80 KiB
C++

#include <stdlib.h>
#include <stdint.h>
#include <algorithm>
#include <cmath>
#include <limits>
#include <boost/static_assert.hpp>
#include "../ClipperUtils.hpp"
#include "../ExPolygon.hpp"
#include "../Surface.hpp"
#include "FillRectilinear2.hpp"
// #define SLIC3R_DEBUG
// Make assert active if SLIC3R_DEBUG
#ifdef SLIC3R_DEBUG
#undef NDEBUG
#include "SVG.hpp"
#endif
#include <cassert>
// We want our version of assert.
#include "../libslic3r.h"
#ifndef myassert
#define myassert assert
#endif
namespace Slic3r {
#ifndef clamp
template<typename T>
static inline T clamp(T low, T high, T x)
{
return std::max<T>(low, std::min<T>(high, x));
}
#endif /* clamp */
#ifndef sqr
template<typename T>
static inline T sqr(T x)
{
return x * x;
}
#endif /* sqr */
#ifndef mag2
static inline coordf_t mag2(const Point &p)
{
return sqr(coordf_t(p.x)) + sqr(coordf_t(p.y));
}
#endif /* mag2 */
#ifndef mag
static inline coordf_t mag(const Point &p)
{
return std::sqrt(mag2(p));
}
#endif /* mag */
enum Orientation
{
ORIENTATION_CCW = 1,
ORIENTATION_CW = -1,
ORIENTATION_COLINEAR = 0
};
// Return orientation of the three points (clockwise, counter-clockwise, colinear)
// The predicate is exact for the coord_t type, using 64bit signed integers for the temporaries.
//FIXME Make sure the temporaries do not overflow,
// which means, the coord_t types must not have some of the topmost bits utilized.
static inline Orientation orient(const Point &a, const Point &b, const Point &c)
{
// BOOST_STATIC_ASSERT(sizeof(coord_t) * 2 == sizeof(int64_t));
int64_t u = int64_t(b.x) * int64_t(c.y) - int64_t(b.y) * int64_t(c.x);
int64_t v = int64_t(a.x) * int64_t(c.y) - int64_t(a.y) * int64_t(c.x);
int64_t w = int64_t(a.x) * int64_t(b.y) - int64_t(a.y) * int64_t(b.x);
int64_t d = u - v + w;
return (d > 0) ? ORIENTATION_CCW : ((d == 0) ? ORIENTATION_COLINEAR : ORIENTATION_CW);
}
// Return orientation of the polygon.
// The input polygon must not contain duplicate points.
static inline bool is_ccw(const Polygon &poly)
{
// The polygon shall be at least a triangle.
myassert(poly.points.size() >= 3);
if (poly.points.size() < 3)
return true;
// 1) Find the lowest lexicographical point.
int imin = 0;
for (size_t i = 1; i < poly.points.size(); ++ i) {
const Point &pmin = poly.points[imin];
const Point &p = poly.points[i];
if (p.x < pmin.x || (p.x == pmin.x && p.y < pmin.y))
imin = i;
}
// 2) Detect the orientation of the corner imin.
size_t iPrev = ((imin == 0) ? poly.points.size() : imin) - 1;
size_t iNext = ((imin + 1 == poly.points.size()) ? 0 : imin + 1);
Orientation o = orient(poly.points[iPrev], poly.points[imin], poly.points[iNext]);
// The lowest bottom point must not be collinear if the polygon does not contain duplicate points
// or overlapping segments.
myassert(o != ORIENTATION_COLINEAR);
return o == ORIENTATION_CCW;
}
// Having a segment of a closed polygon, calculate its Euclidian length.
// The segment indices seg1 and seg2 signify an end point of an edge in the forward direction of the loop,
// therefore the point p1 lies on poly.points[seg1-1], poly.points[seg1] etc.
static inline coordf_t segment_length(const Polygon &poly, size_t seg1, const Point &p1, size_t seg2, const Point &p2)
{
#ifdef SLIC3R_DEBUG
// Verify that p1 lies on seg1. This is difficult to verify precisely,
// but at least verify, that p1 lies in the bounding box of seg1.
for (size_t i = 0; i < 2; ++ i) {
size_t seg = (i == 0) ? seg1 : seg2;
Point px = (i == 0) ? p1 : p2;
Point pa = poly.points[((seg == 0) ? poly.points.size() : seg) - 1];
Point pb = poly.points[seg];
if (pa.x > pb.x)
std::swap(pa.x, pb.x);
if (pa.y > pb.y)
std::swap(pa.y, pb.y);
myassert(px.x >= pa.x && px.x <= pb.x);
myassert(px.y >= pa.y && px.y <= pb.y);
}
#endif /* SLIC3R_DEBUG */
const Point *pPrev = &p1;
const Point *pThis = NULL;
coordf_t len = 0;
if (seg1 <= seg2) {
for (size_t i = seg1; i < seg2; ++ i, pPrev = pThis)
len += pPrev->distance_to(*(pThis = &poly.points[i]));
} else {
for (size_t i = seg1; i < poly.points.size(); ++ i, pPrev = pThis)
len += pPrev->distance_to(*(pThis = &poly.points[i]));
for (size_t i = 0; i < seg2; ++ i, pPrev = pThis)
len += pPrev->distance_to(*(pThis = &poly.points[i]));
}
len += pPrev->distance_to(p2);
return len;
}
// Append a segment of a closed polygon to a polyline.
// The segment indices seg1 and seg2 signify an end point of an edge in the forward direction of the loop.
// Only insert intermediate points between seg1 and seg2.
static inline void polygon_segment_append(Points &out, const Polygon &polygon, size_t seg1, size_t seg2)
{
if (seg1 == seg2) {
// Nothing to append from this segment.
} else if (seg1 < seg2) {
// Do not append a point pointed to by seg2.
out.insert(out.end(), polygon.points.begin() + seg1, polygon.points.begin() + seg2);
} else {
out.reserve(out.size() + seg2 + polygon.points.size() - seg1);
out.insert(out.end(), polygon.points.begin() + seg1, polygon.points.end());
// Do not append a point pointed to by seg2.
out.insert(out.end(), polygon.points.begin(), polygon.points.begin() + seg2);
}
}
// Append a segment of a closed polygon to a polyline.
// The segment indices seg1 and seg2 signify an end point of an edge in the forward direction of the loop,
// but this time the segment is traversed backward.
// Only insert intermediate points between seg1 and seg2.
static inline void polygon_segment_append_reversed(Points &out, const Polygon &polygon, size_t seg1, size_t seg2)
{
if (seg1 >= seg2) {
out.reserve(seg1 - seg2);
for (size_t i = seg1; i > seg2; -- i)
out.push_back(polygon.points[i - 1]);
} else {
// it could be, that seg1 == seg2. In that case, append the complete loop.
out.reserve(out.size() + seg2 + polygon.points.size() - seg1);
for (size_t i = seg1; i > 0; -- i)
out.push_back(polygon.points[i - 1]);
for (size_t i = polygon.points.size(); i > seg2; -- i)
out.push_back(polygon.points[i - 1]);
}
}
// Intersection point of a vertical line with a polygon segment.
class SegmentIntersection
{
public:
SegmentIntersection() :
iContour(0),
iSegment(0),
pos_p(0),
pos_q(1),
type(UNKNOWN),
consumed_vertical_up(false),
consumed_perimeter_right(false)
{}
// Index of a contour in ExPolygonWithOffset, with which this vertical line intersects.
size_t iContour;
// Index of a segment in iContour, with which this vertical line intersects.
size_t iSegment;
// y position of the intersection, ratinal number.
int64_t pos_p;
uint32_t pos_q;
coord_t pos() const {
// Division rounds both positive and negative down to zero.
// Add half of q for an arithmetic rounding effect.
int64_t p = pos_p;
if (p < 0)
p -= int64_t(pos_q>>1);
else
p += int64_t(pos_q>>1);
return coord_t(p / int64_t(pos_q));
}
// Kind of intersection. With the original contour, or with the inner offestted contour?
// A vertical segment will be at least intersected by OUTER_LOW, OUTER_HIGH,
// but it could be intersected with OUTER_LOW, INNER_LOW, INNER_HIGH, OUTER_HIGH,
// and there may be more than one pair of INNER_LOW, INNER_HIGH between OUTER_LOW, OUTER_HIGH.
enum SegmentIntersectionType {
OUTER_LOW = 0,
OUTER_HIGH = 1,
INNER_LOW = 2,
INNER_HIGH = 3,
UNKNOWN = -1
};
SegmentIntersectionType type;
// Was this segment along the y axis consumed?
// Up means up along the vertical segment.
bool consumed_vertical_up;
// Was a segment of the inner perimeter contour consumed?
// Right means right from the vertical segment.
bool consumed_perimeter_right;
// For the INNER_LOW type, this point may be connected to another INNER_LOW point following a perimeter contour.
// For the INNER_HIGH type, this point may be connected to another INNER_HIGH point following a perimeter contour.
// If INNER_LOW is connected to INNER_HIGH or vice versa,
// one has to make sure the vertical infill line does not overlap with the connecting perimeter line.
bool is_inner() const { return type == INNER_LOW || type == INNER_HIGH; }
bool is_outer() const { return type == OUTER_LOW || type == OUTER_HIGH; }
bool is_low () const { return type == INNER_LOW || type == OUTER_LOW; }
bool is_high () const { return type == INNER_HIGH || type == OUTER_HIGH; }
// Compare two y intersection points given by rational numbers.
// Note that the rational number is given as pos_p/pos_q, where pos_p is int64 and pos_q is uint32.
// This function calculates pos_p * other.pos_q < other.pos_p * pos_q as a 48bit number.
// We don't use 128bit intrinsic data types as these are usually not supported by 32bit compilers and
// we don't need the full 128bit precision anyway.
bool operator<(const SegmentIntersection &other) const
{
assert(pos_q > 0);
assert(other.pos_q > 0);
if (pos_p == 0 || other.pos_p == 0) {
// Because the denominators are positive and one of the nominators is zero,
// following simple statement holds.
return pos_p < other.pos_p;
} else {
// None of the nominators is zero.
int sign1 = (pos_p > 0) ? 1 : -1;
int sign2 = (other.pos_p > 0) ? 1 : -1;
int signs = sign1 * sign2;
assert(signs == 1 || signs == -1);
if (signs < 0) {
// The nominators have different signs.
return sign1 < 0;
} else {
// The nominators have the same sign.
// Absolute values
uint64_t p1, p2;
if (sign1 > 0) {
p1 = uint64_t(pos_p);
p2 = uint64_t(other.pos_p);
} else {
p1 = uint64_t(- pos_p);
p2 = uint64_t(- other.pos_p);
};
// Multiply low and high 32bit words of p1 by other_pos.q
// 32bit x 32bit => 64bit
// l_hi and l_lo overlap by 32 bits.
uint64_t l_hi = (p1 >> 32) * uint64_t(other.pos_q);
uint64_t l_lo = (p1 & 0xffffffffll) * uint64_t(other.pos_q);
l_hi += (l_lo >> 32);
uint64_t r_hi = (p2 >> 32) * uint64_t(pos_q);
uint64_t r_lo = (p2 & 0xffffffffll) * uint64_t(pos_q);
r_hi += (r_lo >> 32);
// Compare the high 64 bits.
if (l_hi == r_hi) {
// Compare the low 32 bits.
l_lo &= 0xffffffffll;
r_lo &= 0xffffffffll;
return (sign1 < 0) ? (l_lo > r_lo) : (l_lo < r_lo);
}
return (sign1 < 0) ? (l_hi > r_hi) : (l_hi < r_hi);
}
}
}
bool operator==(const SegmentIntersection &other) const
{
assert(pos_q > 0);
assert(other.pos_q > 0);
if (pos_p == 0 || other.pos_p == 0) {
// Because the denominators are positive and one of the nominators is zero,
// following simple statement holds.
return pos_p == other.pos_p;
}
// None of the nominators is zero, none of the denominators is zero.
bool positive = pos_p > 0;
if (positive != (other.pos_p > 0))
return false;
// The nominators have the same sign.
// Absolute values
uint64_t p1 = positive ? uint64_t(pos_p) : uint64_t(- pos_p);
uint64_t p2 = positive ? uint64_t(other.pos_p) : uint64_t(- other.pos_p);
// Multiply low and high 32bit words of p1 by other_pos.q
// 32bit x 32bit => 64bit
// l_hi and l_lo overlap by 32 bits.
uint64_t l_lo = (p1 & 0xffffffffll) * uint64_t(other.pos_q);
uint64_t r_lo = (p2 & 0xffffffffll) * uint64_t(pos_q);
if (l_lo != r_lo)
return false;
uint64_t l_hi = (p1 >> 32) * uint64_t(other.pos_q);
uint64_t r_hi = (p2 >> 32) * uint64_t(pos_q);
return l_hi + (l_lo >> 32) == r_hi + (r_lo >> 32);
}
};
// A vertical line with intersection points with polygons.
class SegmentedIntersectionLine
{
public:
// Index of this vertical intersection line.
size_t idx;
// x position of this vertical intersection line.
coord_t pos;
// List of intersection points with polygons, sorted increasingly by the y axis.
std::vector<SegmentIntersection> intersections;
};
// A container maintaining an expolygon with its inner offsetted polygon.
// The purpose of the inner offsetted polygon is to provide segments to connect the infill lines.
struct ExPolygonWithOffset
{
public:
ExPolygonWithOffset(
const ExPolygon &expolygon,
float angle,
coord_t aoffset1,
coord_t aoffset2)
{
// Copy and rotate the source polygons.
polygons_src = expolygon;
polygons_src.contour.rotate(angle);
for (Polygons::iterator it = polygons_src.holes.begin(); it != polygons_src.holes.end(); ++ it)
it->rotate(angle);
double mitterLimit = 3.;
// for the infill pattern, don't cut the corners.
// default miterLimt = 3
//double mitterLimit = 10.;
myassert(aoffset1 < 0);
myassert(aoffset2 < 0);
myassert(aoffset2 < aoffset1);
bool sticks_removed = remove_sticks(polygons_src);
// if (sticks_removed) printf("Sticks removed!\n");
polygons_outer = offset(polygons_src, aoffset1,
ClipperLib::jtMiter,
mitterLimit);
polygons_inner = offset(polygons_outer, aoffset2 - aoffset1,
ClipperLib::jtMiter,
mitterLimit);
// Filter out contours with zero area or small area, contours with 2 points only.
const double min_area_threshold = 0.01 * aoffset2 * aoffset2;
remove_small(polygons_outer, min_area_threshold);
remove_small(polygons_inner, min_area_threshold);
remove_sticks(polygons_outer);
remove_sticks(polygons_inner);
n_contours_outer = polygons_outer.size();
n_contours_inner = polygons_inner.size();
n_contours = n_contours_outer + n_contours_inner;
polygons_ccw.assign(n_contours, false);
for (size_t i = 0; i < n_contours; ++ i) {
contour(i).remove_duplicate_points();
myassert(! contour(i).has_duplicate_points());
polygons_ccw[i] = is_ccw(contour(i));
}
}
// Any contour with offset1
bool is_contour_outer(size_t idx) const { return idx < n_contours_outer; }
// Any contour with offset2
bool is_contour_inner(size_t idx) const { return idx >= n_contours_outer; }
const Polygon& contour(size_t idx) const
{ return is_contour_outer(idx) ? polygons_outer[idx] : polygons_inner[idx - n_contours_outer]; }
Polygon& contour(size_t idx)
{ return is_contour_outer(idx) ? polygons_outer[idx] : polygons_inner[idx - n_contours_outer]; }
bool is_contour_ccw(size_t idx) const { return polygons_ccw[idx]; }
BoundingBox bounding_box_src() const
{ return get_extents(polygons_src); }
BoundingBox bounding_box_outer() const
{ return get_extents(polygons_outer); }
BoundingBox bounding_box_inner() const
{ return get_extents(polygons_inner); }
#ifdef SLIC3R_DEBUG
void export_to_svg(Slic3r::SVG &svg) {
svg.draw_outline(polygons_src, "black");
svg.draw_outline(polygons_outer, "green");
svg.draw_outline(polygons_inner, "brown");
}
#endif /* SLIC3R_DEBUG */
ExPolygon polygons_src;
Polygons polygons_outer;
Polygons polygons_inner;
size_t n_contours_outer;
size_t n_contours_inner;
size_t n_contours;
protected:
// For each polygon of polygons_inner, remember its orientation.
std::vector<unsigned char> polygons_ccw;
};
static inline int distance_of_segmens(const Polygon &poly, size_t seg1, size_t seg2, bool forward)
{
int d = int(seg2) - int(seg1);
if (! forward)
d = - d;
if (d < 0)
d += int(poly.points.size());
return d;
}
// For a vertical line, an inner contour and an intersection point,
// find an intersection point on the previous resp. next vertical line.
// The intersection point is connected with the prev resp. next intersection point with iInnerContour.
// Return -1 if there is no such point on the previous resp. next vertical line.
static inline int intersection_on_prev_next_vertical_line(
const ExPolygonWithOffset &poly_with_offset,
const std::vector<SegmentedIntersectionLine> &segs,
size_t iVerticalLine,
size_t iInnerContour,
size_t iIntersection,
bool dir_is_next)
{
size_t iVerticalLineOther = iVerticalLine;
if (dir_is_next) {
if (++ iVerticalLineOther == segs.size())
// No successive vertical line.
return -1;
} else if (iVerticalLineOther -- == 0) {
// No preceding vertical line.
return -1;
}
const SegmentedIntersectionLine &il = segs[iVerticalLine];
const SegmentIntersection &itsct = il.intersections[iIntersection];
const SegmentedIntersectionLine &il2 = segs[iVerticalLineOther];
const Polygon &poly = poly_with_offset.contour(iInnerContour);
// const bool ccw = poly_with_offset.is_contour_ccw(iInnerContour);
const bool forward = itsct.is_low() == dir_is_next;
// Resulting index of an intersection point on il2.
int out = -1;
// Find an intersection point on iVerticalLineOther, intersecting iInnerContour
// at the same orientation as iIntersection, and being closest to iIntersection
// in the number of contour segments, when following the direction of the contour.
int dmin = std::numeric_limits<int>::max();
for (size_t i = 0; i < il2.intersections.size(); ++ i) {
const SegmentIntersection &itsct2 = il2.intersections[i];
if (itsct.iContour == itsct2.iContour && itsct.type == itsct2.type) {
/*
if (itsct.is_low()) {
myassert(itsct.type == SegmentIntersection::INNER_LOW);
myassert(iIntersection > 0);
myassert(il.intersections[iIntersection-1].type == SegmentIntersection::OUTER_LOW);
myassert(i > 0);
if (il2.intersections[i-1].is_inner())
// Take only the lowest inner intersection point.
continue;
myassert(il2.intersections[i-1].type == SegmentIntersection::OUTER_LOW);
} else {
myassert(itsct.type == SegmentIntersection::INNER_HIGH);
myassert(iIntersection+1 < il.intersections.size());
myassert(il.intersections[iIntersection+1].type == SegmentIntersection::OUTER_HIGH);
myassert(i+1 < il2.intersections.size());
if (il2.intersections[i+1].is_inner())
// Take only the highest inner intersection point.
continue;
myassert(il2.intersections[i+1].type == SegmentIntersection::OUTER_HIGH);
}
*/
// The intersection points lie on the same contour and have the same orientation.
// Find the intersection point with a shortest path in the direction of the contour.
int d = distance_of_segmens(poly, itsct.iSegment, itsct2.iSegment, forward);
if (d < dmin) {
out = i;
dmin = d;
}
}
}
//FIXME this routine is not asymptotic optimal, it will be slow if there are many intersection points along the line.
return out;
}
static inline int intersection_on_prev_vertical_line(
const ExPolygonWithOffset &poly_with_offset,
const std::vector<SegmentedIntersectionLine> &segs,
size_t iVerticalLine,
size_t iInnerContour,
size_t iIntersection)
{
return intersection_on_prev_next_vertical_line(poly_with_offset, segs, iVerticalLine, iInnerContour, iIntersection, false);
}
static inline int intersection_on_next_vertical_line(
const ExPolygonWithOffset &poly_with_offset,
const std::vector<SegmentedIntersectionLine> &segs,
size_t iVerticalLine,
size_t iInnerContour,
size_t iIntersection)
{
return intersection_on_prev_next_vertical_line(poly_with_offset, segs, iVerticalLine, iInnerContour, iIntersection, true);
}
enum IntersectionTypeOtherVLine {
// There is no connection point on the other vertical line.
INTERSECTION_TYPE_OTHER_VLINE_UNDEFINED = -1,
// Connection point on the other vertical segment was found
// and it could be followed.
INTERSECTION_TYPE_OTHER_VLINE_OK = 0,
// The connection segment connects to a middle of a vertical segment.
// Cannot follow.
INTERSECTION_TYPE_OTHER_VLINE_INNER,
// Cannot extend the contor to this intersection point as either the connection segment
// or the succeeding vertical segment were already consumed.
INTERSECTION_TYPE_OTHER_VLINE_CONSUMED,
// Not the first intersection along the contor. This intersection point
// has been preceded by an intersection point along the vertical line.
INTERSECTION_TYPE_OTHER_VLINE_NOT_FIRST,
};
// Find an intersection on a previous line, but return -1, if the connecting segment of a perimeter was already extruded.
static inline IntersectionTypeOtherVLine intersection_type_on_prev_next_vertical_line(
const std::vector<SegmentedIntersectionLine> &segs,
size_t iVerticalLine,
size_t iIntersection,
size_t iIntersectionOther,
bool dir_is_next)
{
// This routine will propose a connecting line even if the connecting perimeter segment intersects
// iVertical line multiple times before reaching iIntersectionOther.
if (iIntersectionOther == -1)
return INTERSECTION_TYPE_OTHER_VLINE_UNDEFINED;
myassert(dir_is_next ? (iVerticalLine + 1 < segs.size()) : (iVerticalLine > 0));
const SegmentedIntersectionLine &il_this = segs[iVerticalLine];
const SegmentIntersection &itsct_this = il_this.intersections[iIntersection];
const SegmentedIntersectionLine &il_other = segs[dir_is_next ? (iVerticalLine+1) : (iVerticalLine-1)];
const SegmentIntersection &itsct_other = il_other.intersections[iIntersectionOther];
myassert(itsct_other.is_inner());
myassert(iIntersectionOther > 0);
myassert(iIntersectionOther + 1 < il_other.intersections.size());
// Is iIntersectionOther at the boundary of a vertical segment?
const SegmentIntersection &itsct_other2 = il_other.intersections[itsct_other.is_low() ? iIntersectionOther - 1 : iIntersectionOther + 1];
if (itsct_other2.is_inner())
// Cannot follow a perimeter segment into the middle of another vertical segment.
// Only perimeter segments connecting to the end of a vertical segment are followed.
return INTERSECTION_TYPE_OTHER_VLINE_INNER;
myassert(itsct_other.is_low() == itsct_other2.is_low());
if (dir_is_next ? itsct_this.consumed_perimeter_right : itsct_other.consumed_perimeter_right)
// This perimeter segment was already consumed.
return INTERSECTION_TYPE_OTHER_VLINE_CONSUMED;
if (itsct_other.is_low() ? itsct_other.consumed_vertical_up : il_other.intersections[iIntersectionOther-1].consumed_vertical_up)
// This vertical segment was already consumed.
return INTERSECTION_TYPE_OTHER_VLINE_CONSUMED;
return INTERSECTION_TYPE_OTHER_VLINE_OK;
}
static inline IntersectionTypeOtherVLine intersection_type_on_prev_vertical_line(
const std::vector<SegmentedIntersectionLine> &segs,
size_t iVerticalLine,
size_t iIntersection,
size_t iIntersectionPrev)
{
return intersection_type_on_prev_next_vertical_line(segs, iVerticalLine, iIntersection, iIntersectionPrev, false);
}
static inline IntersectionTypeOtherVLine intersection_type_on_next_vertical_line(
const std::vector<SegmentedIntersectionLine> &segs,
size_t iVerticalLine,
size_t iIntersection,
size_t iIntersectionNext)
{
return intersection_type_on_prev_next_vertical_line(segs, iVerticalLine, iIntersection, iIntersectionNext, true);
}
// Measure an Euclidian length of a perimeter segment when going from iIntersection to iIntersection2.
static inline coordf_t measure_perimeter_prev_next_segment_length(
const ExPolygonWithOffset &poly_with_offset,
const std::vector<SegmentedIntersectionLine> &segs,
size_t iVerticalLine,
size_t iInnerContour,
size_t iIntersection,
size_t iIntersection2,
bool dir_is_next)
{
size_t iVerticalLineOther = iVerticalLine;
if (dir_is_next) {
if (++ iVerticalLineOther == segs.size())
// No successive vertical line.
return coordf_t(-1);
} else if (iVerticalLineOther -- == 0) {
// No preceding vertical line.
return coordf_t(-1);
}
const SegmentedIntersectionLine &il = segs[iVerticalLine];
const SegmentIntersection &itsct = il.intersections[iIntersection];
const SegmentedIntersectionLine &il2 = segs[iVerticalLineOther];
const SegmentIntersection &itsct2 = il2.intersections[iIntersection2];
const Polygon &poly = poly_with_offset.contour(iInnerContour);
// const bool ccw = poly_with_offset.is_contour_ccw(iInnerContour);
myassert(itsct.type == itsct2.type);
myassert(itsct.iContour == itsct2.iContour);
myassert(itsct.is_inner());
const bool forward = itsct.is_low() == dir_is_next;
Point p1(il.pos, itsct.pos());
Point p2(il2.pos, itsct2.pos());
return forward ?
segment_length(poly, itsct .iSegment, p1, itsct2.iSegment, p2) :
segment_length(poly, itsct2.iSegment, p2, itsct .iSegment, p1);
}
static inline coordf_t measure_perimeter_prev_segment_length(
const ExPolygonWithOffset &poly_with_offset,
const std::vector<SegmentedIntersectionLine> &segs,
size_t iVerticalLine,
size_t iInnerContour,
size_t iIntersection,
size_t iIntersection2)
{
return measure_perimeter_prev_next_segment_length(poly_with_offset, segs, iVerticalLine, iInnerContour, iIntersection, iIntersection2, false);
}
static inline coordf_t measure_perimeter_next_segment_length(
const ExPolygonWithOffset &poly_with_offset,
const std::vector<SegmentedIntersectionLine> &segs,
size_t iVerticalLine,
size_t iInnerContour,
size_t iIntersection,
size_t iIntersection2)
{
return measure_perimeter_prev_next_segment_length(poly_with_offset, segs, iVerticalLine, iInnerContour, iIntersection, iIntersection2, true);
}
// Append the points of a perimeter segment when going from iIntersection to iIntersection2.
// The first point (the point of iIntersection) will not be inserted,
// the last point will be inserted.
static inline void emit_perimeter_prev_next_segment(
const ExPolygonWithOffset &poly_with_offset,
const std::vector<SegmentedIntersectionLine> &segs,
size_t iVerticalLine,
size_t iInnerContour,
size_t iIntersection,
size_t iIntersection2,
Polyline &out,
bool dir_is_next)
{
size_t iVerticalLineOther = iVerticalLine;
if (dir_is_next) {
++ iVerticalLineOther;
myassert(iVerticalLineOther < segs.size());
} else {
myassert(iVerticalLineOther > 0);
-- iVerticalLineOther;
}
const SegmentedIntersectionLine &il = segs[iVerticalLine];
const SegmentIntersection &itsct = il.intersections[iIntersection];
const SegmentedIntersectionLine &il2 = segs[iVerticalLineOther];
const SegmentIntersection &itsct2 = il2.intersections[iIntersection2];
const Polygon &poly = poly_with_offset.contour(iInnerContour);
// const bool ccw = poly_with_offset.is_contour_ccw(iInnerContour);
myassert(itsct.type == itsct2.type);
myassert(itsct.iContour == itsct2.iContour);
myassert(itsct.is_inner());
const bool forward = itsct.is_low() == dir_is_next;
// Do not append the first point.
// out.points.push_back(Point(il.pos, itsct.pos));
if (forward)
polygon_segment_append(out.points, poly, itsct.iSegment, itsct2.iSegment);
else
polygon_segment_append_reversed(out.points, poly, itsct.iSegment, itsct2.iSegment);
// Append the last point.
out.points.push_back(Point(il2.pos, itsct2.pos()));
}
static inline coordf_t measure_perimeter_segment_on_vertical_line_length(
const ExPolygonWithOffset &poly_with_offset,
const std::vector<SegmentedIntersectionLine> &segs,
size_t iVerticalLine,
size_t iInnerContour,
size_t iIntersection,
size_t iIntersection2,
bool forward)
{
const SegmentedIntersectionLine &il = segs[iVerticalLine];
const SegmentIntersection &itsct = il.intersections[iIntersection];
const SegmentIntersection &itsct2 = il.intersections[iIntersection2];
const Polygon &poly = poly_with_offset.contour(iInnerContour);
myassert(itsct.is_inner());
myassert(itsct2.is_inner());
myassert(itsct.type != itsct2.type);
myassert(itsct.iContour == iInnerContour);
myassert(itsct.iContour == itsct2.iContour);
Point p1(il.pos, itsct.pos());
Point p2(il.pos, itsct2.pos());
return forward ?
segment_length(poly, itsct .iSegment, p1, itsct2.iSegment, p2) :
segment_length(poly, itsct2.iSegment, p2, itsct .iSegment, p1);
}
// Append the points of a perimeter segment when going from iIntersection to iIntersection2.
// The first point (the point of iIntersection) will not be inserted,
// the last point will be inserted.
static inline void emit_perimeter_segment_on_vertical_line(
const ExPolygonWithOffset &poly_with_offset,
const std::vector<SegmentedIntersectionLine> &segs,
size_t iVerticalLine,
size_t iInnerContour,
size_t iIntersection,
size_t iIntersection2,
Polyline &out,
bool forward)
{
const SegmentedIntersectionLine &il = segs[iVerticalLine];
const SegmentIntersection &itsct = il.intersections[iIntersection];
const SegmentIntersection &itsct2 = il.intersections[iIntersection2];
const Polygon &poly = poly_with_offset.contour(iInnerContour);
myassert(itsct.is_inner());
myassert(itsct2.is_inner());
myassert(itsct.type != itsct2.type);
myassert(itsct.iContour == iInnerContour);
myassert(itsct.iContour == itsct2.iContour);
// Do not append the first point.
// out.points.push_back(Point(il.pos, itsct.pos));
if (forward)
polygon_segment_append(out.points, poly, itsct.iSegment, itsct2.iSegment);
else
polygon_segment_append_reversed(out.points, poly, itsct.iSegment, itsct2.iSegment);
// Append the last point.
out.points.push_back(Point(il.pos, itsct2.pos()));
}
//TBD: For precise infill, measure the area of a slab spanned by an infill line.
/*
static inline float measure_outer_contour_slab(
const ExPolygonWithOffset &poly_with_offset,
const std::vector<SegmentedIntersectionLine> &segs,
size_t i_vline,
size_t iIntersection)
{
const SegmentedIntersectionLine &il = segs[i_vline];
const SegmentIntersection &itsct = il.intersections[i_vline];
const SegmentIntersection &itsct2 = il.intersections[iIntersection2];
const Polygon &poly = poly_with_offset.contour((itsct.iContour);
myassert(itsct.is_outer());
myassert(itsct2.is_outer());
myassert(itsct.type != itsct2.type);
myassert(itsct.iContour == itsct2.iContour);
if (! itsct.is_outer() || ! itsct2.is_outer() || itsct.type == itsct2.type || itsct.iContour != itsct2.iContour)
// Error, return zero area.
return 0.f;
// Find possible connection points on the previous / next vertical line.
int iPrev = intersection_on_prev_vertical_line(poly_with_offset, segs, i_vline, itsct.iContour, i_intersection);
int iNext = intersection_on_next_vertical_line(poly_with_offset, segs, i_vline, itsct.iContour, i_intersection);
// Find possible connection points on the same vertical line.
int iAbove = iBelow = -1;
// Does the perimeter intersect the current vertical line above intrsctn?
for (size_t i = i_intersection + 1; i + 1 < seg.intersections.size(); ++ i)
if (seg.intersections[i].iContour == itsct.iContour)
{ iAbove = i; break; }
// Does the perimeter intersect the current vertical line below intrsctn?
for (int i = int(i_intersection) - 1; i > 0; -- i)
if (seg.intersections[i].iContour == itsct.iContour)
{ iBelow = i; break; }
if (iSegAbove != -1 && seg.intersections[iAbove].type == SegmentIntersection::OUTER_HIGH) {
// Invalidate iPrev resp. iNext, if the perimeter crosses the current vertical line earlier than iPrev resp. iNext.
// The perimeter contour orientation.
const Polygon &poly = poly_with_offset.contour(itsct.iContour);
{
int d_horiz = (iPrev == -1) ? std::numeric_limits<int>::max() :
distance_of_segmens(poly, segs[i_vline-1].intersections[iPrev].iSegment, itsct.iSegment, true);
int d_down = (iBelow == -1) ? std::numeric_limits<int>::max() :
distance_of_segmens(poly, iSegBelow, itsct.iSegment, true);
int d_up = (iAbove == -1) ? std::numeric_limits<int>::max() :
distance_of_segmens(poly, iSegAbove, itsct.iSegment, true);
if (intrsctn_type_prev == INTERSECTION_TYPE_OTHER_VLINE_OK && d_horiz > std::min(d_down, d_up))
// The vertical crossing comes eralier than the prev crossing.
// Disable the perimeter going back.
intrsctn_type_prev = INTERSECTION_TYPE_OTHER_VLINE_NOT_FIRST;
if (d_up > std::min(d_horiz, d_down))
// The horizontal crossing comes earlier than the vertical crossing.
vert_seg_dir_valid_mask &= ~DIR_BACKWARD;
}
{
int d_horiz = (iNext == -1) ? std::numeric_limits<int>::max() :
distance_of_segmens(poly, itsct.iSegment, segs[i_vline+1].intersections[iNext].iSegment, true);
int d_down = (iSegBelow == -1) ? std::numeric_limits<int>::max() :
distance_of_segmens(poly, itsct.iSegment, iSegBelow, true);
int d_up = (iSegAbove == -1) ? std::numeric_limits<int>::max() :
distance_of_segmens(poly, itsct.iSegment, iSegAbove, true);
if (d_up > std::min(d_horiz, d_down))
// The horizontal crossing comes earlier than the vertical crossing.
vert_seg_dir_valid_mask &= ~DIR_FORWARD;
}
}
}
*/
enum DirectionMask
{
DIR_FORWARD = 1,
DIR_BACKWARD = 2
};
bool FillRectilinear2::fill_surface_by_lines(const Surface *surface, const FillParams &params, float angleBase, float pattern_shift, Polylines &polylines_out)
{
// At the end, only the new polylines will be rotated back.
size_t n_polylines_out_initial = polylines_out.size();
// Shrink the input polygon a bit first to not push the infill lines out of the perimeters.
// const float INFILL_OVERLAP_OVER_SPACING = 0.3f;
const float INFILL_OVERLAP_OVER_SPACING = 0.45f;
myassert(INFILL_OVERLAP_OVER_SPACING > 0 && INFILL_OVERLAP_OVER_SPACING < 0.5f);
// Rotate polygons so that we can work with vertical lines here
std::pair<float, Point> rotate_vector = this->_infill_direction(surface);
rotate_vector.first += angleBase;
myassert(params.density > 0.0001f && params.density <= 1.f);
coord_t line_spacing = coord_t(scale_(this->spacing) / params.density);
// On the polygons of poly_with_offset, the infill lines will be connected.
ExPolygonWithOffset poly_with_offset(
surface->expolygon,
- rotate_vector.first,
scale_(- (0.5 - INFILL_OVERLAP_OVER_SPACING) * this->spacing),
scale_(- 0.5 * this->spacing));
if (poly_with_offset.n_contours_inner == 0) {
// Not a single infill line fits.
//FIXME maybe one shall trigger the gap fill here?
return true;
}
BoundingBox bounding_box = poly_with_offset.bounding_box_src();
// define flow spacing according to requested density
bool full_infill = params.density > 0.9999f;
if (full_infill && !params.dont_adjust) {
line_spacing = this->_adjust_solid_spacing(bounding_box.size().x, line_spacing);
this->spacing = unscale(line_spacing);
} else {
// extend bounding box so that our pattern will be aligned with other layers
// Transform the reference point to the rotated coordinate system.
Point refpt = rotate_vector.second.rotated(- rotate_vector.first);
// _align_to_grid will not work correctly with positive pattern_shift.
coord_t pattern_shift_scaled = coord_t(scale_(pattern_shift)) % line_spacing;
refpt.x -= (pattern_shift_scaled >= 0) ? pattern_shift_scaled : (line_spacing + pattern_shift_scaled);
bounding_box.merge(_align_to_grid(
bounding_box.min,
Point(line_spacing, line_spacing),
refpt));
}
// Intersect a set of euqally spaced vertical lines wiht expolygon.
// n_vlines = ceil(bbox_width / line_spacing)
size_t n_vlines = (bounding_box.max.x - bounding_box.min.x + line_spacing - 1) / line_spacing;
coord_t x0 = bounding_box.min.x;
if (full_infill)
x0 += (line_spacing + SCALED_EPSILON) / 2;
#ifdef SLIC3R_DEBUG
static int iRun = 0;
BoundingBox bbox_svg = poly_with_offset.bounding_box_outer();
::Slic3r::SVG svg(debug_out_path("FillRectilinear2-%d.svg", iRun), bbox_svg); // , scale_(1.));
poly_with_offset.export_to_svg(svg);
{
::Slic3r::SVG svg(debug_out_path("FillRectilinear2-initial-%d.svg", iRun), bbox_svg); // , scale_(1.));
poly_with_offset.export_to_svg(svg);
}
iRun ++;
#endif /* SLIC3R_DEBUG */
// For each contour
// Allocate storage for the segments.
std::vector<SegmentedIntersectionLine> segs(n_vlines, SegmentedIntersectionLine());
for (size_t i = 0; i < n_vlines; ++ i) {
segs[i].idx = i;
segs[i].pos = x0 + i * line_spacing;
}
for (size_t iContour = 0; iContour < poly_with_offset.n_contours; ++ iContour) {
const Points &contour = poly_with_offset.contour(iContour).points;
if (contour.size() < 2)
continue;
// For each segment
for (size_t iSegment = 0; iSegment < contour.size(); ++ iSegment) {
size_t iPrev = ((iSegment == 0) ? contour.size() : iSegment) - 1;
const Point &p1 = contour[iPrev];
const Point &p2 = contour[iSegment];
// Which of the equally spaced vertical lines is intersected by this segment?
coord_t l = p1.x;
coord_t r = p2.x;
if (l > r)
std::swap(l, r);
// il, ir are the left / right indices of vertical lines intersecting a segment
int il = (l - x0) / line_spacing;
while (il * line_spacing + x0 < l)
++ il;
il = std::max(int(0), il);
int ir = (r - x0 + line_spacing) / line_spacing;
while (ir * line_spacing + x0 > r)
-- ir;
ir = std::min(int(segs.size()) - 1, ir);
if (il > ir)
// No vertical line intersects this segment.
continue;
myassert(il >= 0 && il < segs.size());
myassert(ir >= 0 && ir < segs.size());
for (int i = il; i <= ir; ++ i) {
coord_t this_x = segs[i].pos;
assert(this_x == i * line_spacing + x0);
SegmentIntersection is;
is.iContour = iContour;
is.iSegment = iSegment;
myassert(l <= this_x);
myassert(r >= this_x);
// Calculate the intersection position in y axis. x is known.
if (p1.x == this_x) {
if (p2.x == this_x) {
// Ignore strictly vertical segments.
continue;
}
is.pos_p = p1.y;
is.pos_q = 1;
} else if (p2.x == this_x) {
is.pos_p = p2.y;
is.pos_q = 1;
} else {
// First calculate the intersection parameter 't' as a rational number with non negative denominator.
if (p2.x > p1.x) {
is.pos_p = this_x - p1.x;
is.pos_q = p2.x - p1.x;
} else {
is.pos_p = p1.x - this_x;
is.pos_q = p1.x - p2.x;
}
myassert(is.pos_p >= 0 && is.pos_p <= is.pos_q);
// Make an intersection point from the 't'.
is.pos_p *= int64_t(p2.y - p1.y);
is.pos_p += p1.y * int64_t(is.pos_q);
}
// +-1 to take rounding into account.
myassert(is.pos() + 1 >= std::min(p1.y, p2.y));
myassert(is.pos() <= std::max(p1.y, p2.y) + 1);
segs[i].intersections.push_back(is);
}
}
}
// Sort the intersections along their segments, specify the intersection types.
for (size_t i_seg = 0; i_seg < segs.size(); ++ i_seg) {
SegmentedIntersectionLine &sil = segs[i_seg];
// Sort the intersection points using exact rational arithmetic.
std::sort(sil.intersections.begin(), sil.intersections.end());
#if 0
// Verify the order, bubble sort the intersections until sorted.
bool modified = false;
do {
modified = false;
for (size_t i = 1; i < sil.intersections.size(); ++ i) {
size_t iContour1 = sil.intersections[i-1].iContour;
size_t iContour2 = sil.intersections[i].iContour;
const Points &contour1 = poly_with_offset.contour(iContour1).points;
const Points &contour2 = poly_with_offset.contour(iContour2).points;
size_t iSegment1 = sil.intersections[i-1].iSegment;
size_t iPrev1 = ((iSegment1 == 0) ? contour1.size() : iSegment1) - 1;
size_t iSegment2 = sil.intersections[i].iSegment;
size_t iPrev2 = ((iSegment2 == 0) ? contour2.size() : iSegment2) - 1;
bool swap = false;
if (iContour1 == iContour2 && iSegment1 == iSegment2) {
// The same segment, it has to be vertical.
myassert(iPrev1 == iPrev2);
swap = contour1[iPrev1].y > contour1[iContour1].y;
#ifdef SLIC3R_DEBUG
if (swap)
printf("Swapping when single vertical segment\n");
#endif
} else {
// Segments are in a general position. Here an exact airthmetics may come into play.
coord_t y1max = std::max(contour1[iPrev1].y, contour1[iSegment1].y);
coord_t y2min = std::min(contour2[iPrev2].y, contour2[iSegment2].y);
if (y1max < y2min) {
// The segments are separated, nothing to do.
} else {
// Use an exact predicate to verify, that segment1 is below segment2.
const Point *a = &contour1[iPrev1];
const Point *b = &contour1[iSegment1];
const Point *c = &contour2[iPrev2];
const Point *d = &contour2[iSegment2];
#ifdef SLIC3R_DEBUG
const Point x1(sil.pos, sil.intersections[i-1].pos);
const Point x2(sil.pos, sil.intersections[i ].pos);
bool successive = false;
#endif /* SLIC3R_DEBUG */
// Sort the points in the two segments by x.
if (a->x > b->x)
std::swap(a, b);
if (c->x > d->x)
std::swap(c, d);
myassert(a->x <= sil.pos);
myassert(c->x <= sil.pos);
myassert(b->x >= sil.pos);
myassert(d->x >= sil.pos);
// Sort the two segments, so the segment <a,b> will be on the left of <c,d>.
bool upper_more_left = false;
if (a->x > c->x) {
upper_more_left = true;
std::swap(a, c);
std::swap(b, d);
}
if (a == c) {
// The segments iSegment1 and iSegment2 are directly connected.
myassert(iContour1 == iContour2);
myassert(iSegment1 == iPrev2 || iPrev1 == iSegment2);
std::swap(c, d);
myassert(a != c && b != c);
#ifdef SLIC3R_DEBUG
successive = true;
#endif /* SLIC3R_DEBUG */
}
#ifdef SLIC3R_DEBUG
else if (b == d) {
// The segments iSegment1 and iSegment2 are directly connected.
myassert(iContour1 == iContour2);
myassert(iSegment1 == iPrev2 || iPrev1 == iSegment2);
myassert(a != c && b != c);
successive = true;
}
#endif /* SLIC3R_DEBUG */
Orientation o = orient(*a, *b, *c);
myassert(o != ORIENTATION_COLINEAR);
swap = upper_more_left != (o == ORIENTATION_CW);
#ifdef SLIC3R_DEBUG
if (swap)
printf(successive ?
"Swapping when iContour1 == iContour2 and successive segments\n" :
"Swapping when exact predicate\n");
#endif
}
}
if (swap) {
// Swap the intersection points, but keep the original positions, so they stay sorted by the y axis.
std::swap(sil.intersections[i-1], sil.intersections[i]);
std::swap(sil.intersections[i-1].pos_p, sil.intersections[i].pos_p);
std::swap(sil.intersections[i-1].pos_q, sil.intersections[i].pos_q);
modified = true;
}
}
} while (modified);
#endif
// Assign the intersection types, remove duplicate or overlapping intersection points.
// When a loop vertex touches a vertical line, intersection point is generated for both segments.
// If such two segments are oriented equally, then one of them is removed.
// Otherwise the vertex is tangential to the vertical line and both segments are removed.
// The same rule applies, if the loop is pinched into a single point and this point touches the vertical line:
// The loop has a zero vertical size at the vertical line, therefore the intersection point is removed.
size_t j = 0;
for (size_t i = 0; i < sil.intersections.size(); ++ i) {
// What is the orientation of the segment at the intersection point?
size_t iContour = sil.intersections[i].iContour;
const Points &contour = poly_with_offset.contour(iContour).points;
size_t iSegment = sil.intersections[i].iSegment;
size_t iPrev = ((iSegment == 0) ? contour.size() : iSegment) - 1;
coord_t dir = contour[iSegment].x - contour[iPrev].x;
bool low = dir > 0;
sil.intersections[i].type = poly_with_offset.is_contour_outer(iContour) ?
(low ? SegmentIntersection::OUTER_LOW : SegmentIntersection::OUTER_HIGH) :
(low ? SegmentIntersection::INNER_LOW : SegmentIntersection::INNER_HIGH);
if (j > 0 && sil.intersections[i].iContour == sil.intersections[j-1].iContour) {
// Two successive intersection points on a vertical line with the same contour. This may be a special case.
if (sil.intersections[i].pos() == sil.intersections[j-1].pos()) {
// Two successive segments meet exactly at the vertical line.
#ifdef SLIC3R_DEBUG
// Verify that the segments of sil.intersections[i] and sil.intersections[j-1] are adjoint.
size_t iSegment2 = sil.intersections[j-1].iSegment;
size_t iPrev2 = ((iSegment2 == 0) ? contour.size() : iSegment2) - 1;
myassert(iSegment == iPrev2 || iSegment2 == iPrev);
#endif /* SLIC3R_DEBUG */
if (sil.intersections[i].type == sil.intersections[j-1].type) {
// Two successive segments of the same direction (both to the right or both to the left)
// meet exactly at the vertical line.
// Remove the second intersection point.
} else {
// This is a loop returning to the same point.
// It may as well be a vertex of a loop touching this vertical line.
// Remove both the lines.
-- j;
}
} else if (sil.intersections[i].type == sil.intersections[j-1].type) {
// Two non successive segments of the same direction (both to the right or both to the left)
// meet exactly at the vertical line. That means there is a Z shaped path, where the center segment
// of the Z shaped path is aligned with this vertical line.
// Remove one of the intersection points while maximizing the vertical segment length.
if (low) {
// Remove the second intersection point, keep the first intersection point.
} else {
// Remove the first intersection point, keep the second intersection point.
sil.intersections[j-1] = sil.intersections[i];
}
} else {
// Vertical line intersects a contour segment at a general position (not at one of its end points).
// or the contour just touches this vertical line with a vertical segment or a sequence of vertical segments.
// Keep both intersection points.
if (j < i)
sil.intersections[j] = sil.intersections[i];
++ j;
}
} else {
// Vertical line intersects a contour segment at a general position (not at one of its end points).
if (j < i)
sil.intersections[j] = sil.intersections[i];
++ j;
}
}
// Shrink the list of intersections, if any of the intersection was removed during the classification.
if (j < sil.intersections.size())
sil.intersections.erase(sil.intersections.begin() + j, sil.intersections.end());
}
// Verify the segments. If something is wrong, give up.
#define ASSERT_OR_RETURN(CONDITION) do { assert(CONDITION); if (! (CONDITION)) return false; } while (0)
for (size_t i_seg = 0; i_seg < segs.size(); ++ i_seg) {
SegmentedIntersectionLine &sil = segs[i_seg];
// The intersection points have to be even.
ASSERT_OR_RETURN((sil.intersections.size() & 1) == 0);
for (size_t i = 0; i < sil.intersections.size();) {
// An intersection segment crossing the bigger contour may cross the inner offsetted contour even number of times.
ASSERT_OR_RETURN(sil.intersections[i].type == SegmentIntersection::OUTER_LOW);
size_t j = i + 1;
ASSERT_OR_RETURN(j < sil.intersections.size());
ASSERT_OR_RETURN(sil.intersections[j].type == SegmentIntersection::INNER_LOW || sil.intersections[j].type == SegmentIntersection::OUTER_HIGH);
for (; j < sil.intersections.size() && sil.intersections[j].is_inner(); ++ j) ;
ASSERT_OR_RETURN(j < sil.intersections.size());
ASSERT_OR_RETURN((j & 1) == 1);
ASSERT_OR_RETURN(sil.intersections[j].type == SegmentIntersection::OUTER_HIGH);
ASSERT_OR_RETURN(i + 1 == j || sil.intersections[j - 1].type == SegmentIntersection::INNER_HIGH);
i = j + 1;
}
}
#undef ASSERT_OR_RETURN
#ifdef SLIC3R_DEBUG
// Paint the segments and finalize the SVG file.
for (size_t i_seg = 0; i_seg < segs.size(); ++ i_seg) {
SegmentedIntersectionLine &sil = segs[i_seg];
for (size_t i = 0; i < sil.intersections.size();) {
size_t j = i + 1;
for (; j < sil.intersections.size() && sil.intersections[j].is_inner(); ++ j) ;
if (i + 1 == j) {
svg.draw(Line(Point(sil.pos, sil.intersections[i].pos()), Point(sil.pos, sil.intersections[j].pos())), "blue");
} else {
svg.draw(Line(Point(sil.pos, sil.intersections[i].pos()), Point(sil.pos, sil.intersections[i+1].pos())), "green");
svg.draw(Line(Point(sil.pos, sil.intersections[i+1].pos()), Point(sil.pos, sil.intersections[j-1].pos())), (j - i + 1 > 4) ? "yellow" : "magenta");
svg.draw(Line(Point(sil.pos, sil.intersections[j-1].pos()), Point(sil.pos, sil.intersections[j].pos())), "green");
}
i = j + 1;
}
}
svg.Close();
#endif /* SLIC3R_DEBUG */
// For each outer only chords, measure their maximum distance to the bow of the outer contour.
// Mark an outer only chord as consumed, if the distance is low.
for (size_t i_vline = 0; i_vline < segs.size(); ++ i_vline) {
SegmentedIntersectionLine &seg = segs[i_vline];
for (size_t i_intersection = 0; i_intersection + 1 < seg.intersections.size(); ++ i_intersection) {
if (seg.intersections[i_intersection].type == SegmentIntersection::OUTER_LOW &&
seg.intersections[i_intersection+1].type == SegmentIntersection::OUTER_HIGH) {
bool consumed = false;
// if (full_infill) {
// measure_outer_contour_slab(poly_with_offset, segs, i_vline, i_ntersection);
// } else
consumed = true;
seg.intersections[i_intersection].consumed_vertical_up = consumed;
}
}
}
// Now construct a graph.
// Find the first point.
// Naively one would expect to achieve best results by chaining the paths by the shortest distance,
// but that procedure does not create the longest continuous paths.
// A simple "sweep left to right" procedure achieves better results.
size_t i_vline = 0;
size_t i_intersection = size_t(-1);
// Follow the line, connect the lines into a graph.
// Until no new line could be added to the output path:
Point pointLast;
Polyline *polyline_current = NULL;
if (! polylines_out.empty())
pointLast = polylines_out.back().points.back();
for (;;) {
if (i_intersection == size_t(-1)) {
// The path has been interrupted. Find a next starting point, closest to the previous extruder position.
coordf_t dist2min = std::numeric_limits<coordf_t>().max();
for (size_t i_vline2 = 0; i_vline2 < segs.size(); ++ i_vline2) {
const SegmentedIntersectionLine &seg = segs[i_vline2];
if (! seg.intersections.empty()) {
myassert(seg.intersections.size() > 1);
// Even number of intersections with the loops.
myassert((seg.intersections.size() & 1) == 0);
myassert(seg.intersections.front().type == SegmentIntersection::OUTER_LOW);
for (size_t i = 0; i < seg.intersections.size(); ++ i) {
const SegmentIntersection &intrsctn = seg.intersections[i];
if (intrsctn.is_outer()) {
myassert(intrsctn.is_low() || i > 0);
bool consumed = intrsctn.is_low() ?
intrsctn.consumed_vertical_up :
seg.intersections[i-1].consumed_vertical_up;
if (! consumed) {
coordf_t dist2 = sqr(coordf_t(pointLast.x - seg.pos)) + sqr(coordf_t(pointLast.y - intrsctn.pos()));
if (dist2 < dist2min) {
dist2min = dist2;
i_vline = i_vline2;
i_intersection = i;
//FIXME We are taking the first left point always. Verify, that the caller chains the paths
// by a shortest distance, while reversing the paths if needed.
//if (polylines_out.empty())
// Initial state, take the first line, which is the first from the left.
goto found;
}
}
}
}
}
}
if (i_intersection == size_t(-1))
// We are finished.
break;
found:
// Start a new path.
polylines_out.push_back(Polyline());
polyline_current = &polylines_out.back();
// Emit the first point of a path.
pointLast = Point(segs[i_vline].pos, segs[i_vline].intersections[i_intersection].pos());
polyline_current->points.push_back(pointLast);
}
// From the initial point (i_vline, i_intersection), follow a path.
SegmentedIntersectionLine &seg = segs[i_vline];
SegmentIntersection *intrsctn = &seg.intersections[i_intersection];
bool going_up = intrsctn->is_low();
bool try_connect = false;
if (going_up) {
myassert(! intrsctn->consumed_vertical_up);
myassert(i_intersection + 1 < seg.intersections.size());
// Step back to the beginning of the vertical segment to mark it as consumed.
if (intrsctn->is_inner()) {
myassert(i_intersection > 0);
-- intrsctn;
-- i_intersection;
}
// Consume the complete vertical segment up to the outer contour.
do {
intrsctn->consumed_vertical_up = true;
++ intrsctn;
++ i_intersection;
myassert(i_intersection < seg.intersections.size());
} while (intrsctn->type != SegmentIntersection::OUTER_HIGH);
if ((intrsctn - 1)->is_inner()) {
// Step back.
-- intrsctn;
-- i_intersection;
myassert(intrsctn->type == SegmentIntersection::INNER_HIGH);
try_connect = true;
}
} else {
// Going down.
myassert(intrsctn->is_high());
myassert(i_intersection > 0);
myassert(! (intrsctn - 1)->consumed_vertical_up);
// Consume the complete vertical segment up to the outer contour.
if (intrsctn->is_inner())
intrsctn->consumed_vertical_up = true;
do {
myassert(i_intersection > 0);
-- intrsctn;
-- i_intersection;
intrsctn->consumed_vertical_up = true;
} while (intrsctn->type != SegmentIntersection::OUTER_LOW);
if ((intrsctn + 1)->is_inner()) {
// Step back.
++ intrsctn;
++ i_intersection;
myassert(intrsctn->type == SegmentIntersection::INNER_LOW);
try_connect = true;
}
}
if (try_connect) {
// Decide, whether to finish the segment, or whether to follow the perimeter.
// 1) Find possible connection points on the previous / next vertical line.
int iPrev = intersection_on_prev_vertical_line(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection);
int iNext = intersection_on_next_vertical_line(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection);
IntersectionTypeOtherVLine intrsctn_type_prev = intersection_type_on_prev_vertical_line(segs, i_vline, i_intersection, iPrev);
IntersectionTypeOtherVLine intrsctn_type_next = intersection_type_on_next_vertical_line(segs, i_vline, i_intersection, iNext);
// 2) Find possible connection points on the same vertical line.
int iAbove = -1;
int iBelow = -1;
int iSegAbove = -1;
int iSegBelow = -1;
{
SegmentIntersection::SegmentIntersectionType type_crossing = (intrsctn->type == SegmentIntersection::INNER_LOW) ?
SegmentIntersection::INNER_HIGH : SegmentIntersection::INNER_LOW;
// Does the perimeter intersect the current vertical line above intrsctn?
for (size_t i = i_intersection + 1; i + 1 < seg.intersections.size(); ++ i)
// if (seg.intersections[i].iContour == intrsctn->iContour && seg.intersections[i].type == type_crossing) {
if (seg.intersections[i].iContour == intrsctn->iContour) {
iAbove = i;
iSegAbove = seg.intersections[i].iSegment;
break;
}
// Does the perimeter intersect the current vertical line below intrsctn?
for (size_t i = i_intersection - 1; i > 0; -- i)
// if (seg.intersections[i].iContour == intrsctn->iContour && seg.intersections[i].type == type_crossing) {
if (seg.intersections[i].iContour == intrsctn->iContour) {
iBelow = i;
iSegBelow = seg.intersections[i].iSegment;
break;
}
}
// 3) Sort the intersection points, clear iPrev / iNext / iSegBelow / iSegAbove,
// if it is preceded by any other intersection point along the contour.
unsigned int vert_seg_dir_valid_mask =
(going_up ?
(iSegAbove != -1 && seg.intersections[iAbove].type == SegmentIntersection::INNER_LOW) :
(iSegBelow != -1 && seg.intersections[iBelow].type == SegmentIntersection::INNER_HIGH)) ?
(DIR_FORWARD | DIR_BACKWARD) :
0;
{
// Invalidate iPrev resp. iNext, if the perimeter crosses the current vertical line earlier than iPrev resp. iNext.
// The perimeter contour orientation.
const bool forward = intrsctn->is_low(); // == poly_with_offset.is_contour_ccw(intrsctn->iContour);
const Polygon &poly = poly_with_offset.contour(intrsctn->iContour);
{
int d_horiz = (iPrev == -1) ? std::numeric_limits<int>::max() :
distance_of_segmens(poly, segs[i_vline-1].intersections[iPrev].iSegment, intrsctn->iSegment, forward);
int d_down = (iSegBelow == -1) ? std::numeric_limits<int>::max() :
distance_of_segmens(poly, iSegBelow, intrsctn->iSegment, forward);
int d_up = (iSegAbove == -1) ? std::numeric_limits<int>::max() :
distance_of_segmens(poly, iSegAbove, intrsctn->iSegment, forward);
if (intrsctn_type_prev == INTERSECTION_TYPE_OTHER_VLINE_OK && d_horiz > std::min(d_down, d_up))
// The vertical crossing comes eralier than the prev crossing.
// Disable the perimeter going back.
intrsctn_type_prev = INTERSECTION_TYPE_OTHER_VLINE_NOT_FIRST;
if (going_up ? (d_up > std::min(d_horiz, d_down)) : (d_down > std::min(d_horiz, d_up)))
// The horizontal crossing comes earlier than the vertical crossing.
vert_seg_dir_valid_mask &= ~(forward ? DIR_BACKWARD : DIR_FORWARD);
}
{
int d_horiz = (iNext == -1) ? std::numeric_limits<int>::max() :
distance_of_segmens(poly, intrsctn->iSegment, segs[i_vline+1].intersections[iNext].iSegment, forward);
int d_down = (iSegBelow == -1) ? std::numeric_limits<int>::max() :
distance_of_segmens(poly, intrsctn->iSegment, iSegBelow, forward);
int d_up = (iSegAbove == -1) ? std::numeric_limits<int>::max() :
distance_of_segmens(poly, intrsctn->iSegment, iSegAbove, forward);
if (intrsctn_type_next == INTERSECTION_TYPE_OTHER_VLINE_OK && d_horiz > std::min(d_down, d_up))
// The vertical crossing comes eralier than the prev crossing.
// Disable the perimeter going forward.
intrsctn_type_next = INTERSECTION_TYPE_OTHER_VLINE_NOT_FIRST;
if (going_up ? (d_up > std::min(d_horiz, d_down)) : (d_down > std::min(d_horiz, d_up)))
// The horizontal crossing comes earlier than the vertical crossing.
vert_seg_dir_valid_mask &= ~(forward ? DIR_FORWARD : DIR_BACKWARD);
}
}
// 4) Try to connect to a previous or next vertical line, making a zig-zag pattern.
if (intrsctn_type_prev == INTERSECTION_TYPE_OTHER_VLINE_OK || intrsctn_type_next == INTERSECTION_TYPE_OTHER_VLINE_OK) {
coordf_t distPrev = (intrsctn_type_prev != INTERSECTION_TYPE_OTHER_VLINE_OK) ? std::numeric_limits<coord_t>::max() :
measure_perimeter_prev_segment_length(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, iPrev);
coordf_t distNext = (intrsctn_type_next != INTERSECTION_TYPE_OTHER_VLINE_OK) ? std::numeric_limits<coord_t>::max() :
measure_perimeter_next_segment_length(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, iNext);
// Take the shorter path.
//FIXME this may not be always the best strategy to take the shortest connection line now.
bool take_next = (intrsctn_type_prev == INTERSECTION_TYPE_OTHER_VLINE_OK && intrsctn_type_next == INTERSECTION_TYPE_OTHER_VLINE_OK) ?
(distNext < distPrev) :
intrsctn_type_next == INTERSECTION_TYPE_OTHER_VLINE_OK;
myassert(intrsctn->is_inner());
bool skip = params.dont_connect || (link_max_length > 0 && (take_next ? distNext : distPrev) > link_max_length);
if (skip) {
// Just skip the connecting contour and start a new path.
goto dont_connect;
polyline_current->points.push_back(Point(seg.pos, intrsctn->pos()));
polylines_out.push_back(Polyline());
polyline_current = &polylines_out.back();
const SegmentedIntersectionLine &il2 = segs[take_next ? (i_vline + 1) : (i_vline - 1)];
polyline_current->points.push_back(Point(il2.pos, il2.intersections[take_next ? iNext : iPrev].pos()));
} else {
polyline_current->points.push_back(Point(seg.pos, intrsctn->pos()));
emit_perimeter_prev_next_segment(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, take_next ? iNext : iPrev, *polyline_current, take_next);
}
// Mark both the left and right connecting segment as consumed, because one cannot go to this intersection point as it has been consumed.
if (iPrev != -1)
segs[i_vline-1].intersections[iPrev].consumed_perimeter_right = true;
if (iNext != -1)
intrsctn->consumed_perimeter_right = true;
//FIXME consume the left / right connecting segments at the other end of this line? Currently it is not critical because a perimeter segment is not followed if the vertical segment at the other side has already been consumed.
// Advance to the neighbor line.
if (take_next) {
++ i_vline;
i_intersection = iNext;
} else {
-- i_vline;
i_intersection = iPrev;
}
continue;
}
// 5) Try to connect to a previous or next point on the same vertical line.
if (vert_seg_dir_valid_mask) {
bool valid = true;
// Verify, that there is no intersection with the inner contour up to the end of the contour segment.
// Verify, that the successive segment has not been consumed yet.
if (going_up) {
if (seg.intersections[iAbove].consumed_vertical_up) {
valid = false;
} else {
for (int i = (int)i_intersection + 1; i < iAbove && valid; ++i)
if (seg.intersections[i].is_inner())
valid = false;
}
} else {
if (seg.intersections[iBelow-1].consumed_vertical_up) {
valid = false;
} else {
for (int i = iBelow + 1; i < (int)i_intersection && valid; ++i)
if (seg.intersections[i].is_inner())
valid = false;
}
}
if (valid) {
const Polygon &poly = poly_with_offset.contour(intrsctn->iContour);
int iNext = going_up ? iAbove : iBelow;
int iSegNext = going_up ? iSegAbove : iSegBelow;
bool dir_forward = (vert_seg_dir_valid_mask == (DIR_FORWARD | DIR_BACKWARD)) ?
// Take the shorter length between the current and the next intersection point.
(distance_of_segmens(poly, intrsctn->iSegment, iSegNext, true) <
distance_of_segmens(poly, intrsctn->iSegment, iSegNext, false)) :
(vert_seg_dir_valid_mask == DIR_FORWARD);
// Skip this perimeter line?
bool skip = params.dont_connect;
if (! skip && link_max_length > 0) {
coordf_t link_length = measure_perimeter_segment_on_vertical_line_length(
poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, iNext, dir_forward);
skip = link_length > link_max_length;
}
polyline_current->points.push_back(Point(seg.pos, intrsctn->pos()));
if (skip) {
// Just skip the connecting contour and start a new path.
polylines_out.push_back(Polyline());
polyline_current = &polylines_out.back();
polyline_current->points.push_back(Point(seg.pos, seg.intersections[iNext].pos()));
} else {
// Consume the connecting contour and the next segment.
emit_perimeter_segment_on_vertical_line(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, iNext, *polyline_current, dir_forward);
}
// Mark both the left and right connecting segment as consumed, because one cannot go to this intersection point as it has been consumed.
// If there are any outer intersection points skipped (bypassed) by the contour,
// mark them as processed.
if (going_up) {
for (int i = (int)i_intersection; i < iAbove; ++ i)
seg.intersections[i].consumed_vertical_up = true;
} else {
for (int i = iBelow; i < (int)i_intersection; ++ i)
seg.intersections[i].consumed_vertical_up = true;
}
// seg.intersections[going_up ? i_intersection : i_intersection - 1].consumed_vertical_up = true;
intrsctn->consumed_perimeter_right = true;
i_intersection = iNext;
if (going_up)
++ intrsctn;
else
-- intrsctn;
intrsctn->consumed_perimeter_right = true;
continue;
}
}
dont_connect:
// No way to continue the current polyline. Take the rest of the line up to the outer contour.
// This will finish the polyline, starting another polyline at a new point.
if (going_up)
++ intrsctn;
else
-- intrsctn;
}
// Finish the current vertical line,
// reset the current vertical line to pick a new starting point in the next round.
myassert(intrsctn->is_outer());
myassert(intrsctn->is_high() == going_up);
pointLast = Point(seg.pos, intrsctn->pos());
polyline_current->points.push_back(pointLast);
// Handle duplicate points and zero length segments.
polyline_current->remove_duplicate_points();
myassert(! polyline_current->has_duplicate_points());
// Handle nearly zero length edges.
if (polyline_current->points.size() <= 1 ||
(polyline_current->points.size() == 2 &&
std::abs(polyline_current->points.front().x - polyline_current->points.back().x) < SCALED_EPSILON &&
std::abs(polyline_current->points.front().y - polyline_current->points.back().y) < SCALED_EPSILON))
polylines_out.pop_back();
intrsctn = NULL;
i_intersection = -1;
polyline_current = NULL;
}
#ifdef SLIC3R_DEBUG
{
{
::Slic3r::SVG svg(debug_out_path("FillRectilinear2-final-%03d.svg", iRun), bbox_svg); // , scale_(1.));
poly_with_offset.export_to_svg(svg);
for (size_t i = n_polylines_out_initial; i < polylines_out.size(); ++ i)
svg.draw(polylines_out[i].lines(), "black");
}
// Paint a picture per polyline. This makes it easier to discover the order of the polylines and their overlap.
for (size_t i_polyline = n_polylines_out_initial; i_polyline < polylines_out.size(); ++ i_polyline) {
::Slic3r::SVG svg(debug_out_path("FillRectilinear2-final-%03d-%03d.svg", iRun, i_polyline), bbox_svg); // , scale_(1.));
svg.draw(polylines_out[i_polyline].lines(), "black");
}
}
#endif /* SLIC3R_DEBUG */
// paths must be rotated back
for (Polylines::iterator it = polylines_out.begin() + n_polylines_out_initial; it != polylines_out.end(); ++ it) {
// No need to translate, the absolute position is irrelevant.
// it->translate(- rotate_vector.second.x, - rotate_vector.second.y);
myassert(! it->has_duplicate_points());
it->rotate(rotate_vector.first);
//FIXME rather simplify the paths to avoid very short edges?
//myassert(! it->has_duplicate_points());
it->remove_duplicate_points();
}
#ifdef SLIC3R_DEBUG
// Verify, that there are no duplicate points in the sequence.
for (Polylines::iterator it = polylines_out.begin(); it != polylines_out.end(); ++ it)
myassert(! it->has_duplicate_points());
#endif /* SLIC3R_DEBUG */
return true;
}
Polylines FillRectilinear2::fill_surface(const Surface *surface, const FillParams &params)
{
Polylines polylines_out;
if (! fill_surface_by_lines(surface, params, 0.f, 0.f, polylines_out)) {
printf("FillRectilinear2::fill_surface() failed to fill a region.\n");
}
return polylines_out;
}
Polylines FillGrid2::fill_surface(const Surface *surface, const FillParams &params)
{
// Each linear fill covers half of the target coverage.
FillParams params2 = params;
params2.density *= 0.5f;
Polylines polylines_out;
if (! fill_surface_by_lines(surface, params2, 0.f, 0.f, polylines_out) ||
! fill_surface_by_lines(surface, params2, float(M_PI / 2.), 0.f, polylines_out)) {
printf("FillGrid2::fill_surface() failed to fill a region.\n");
}
return polylines_out;
}
Polylines FillTriangles::fill_surface(const Surface *surface, const FillParams &params)
{
// Each linear fill covers 1/3 of the target coverage.
FillParams params2 = params;
params2.density *= 0.333333333f;
Polylines polylines_out;
if (! fill_surface_by_lines(surface, params2, 0.f, 0., polylines_out) ||
! fill_surface_by_lines(surface, params2, float(M_PI / 3.), 0., polylines_out) ||
! fill_surface_by_lines(surface, params2, float(2. * M_PI / 3.), 0.5 * this->spacing / params2.density, polylines_out)) {
printf("FillTriangles::fill_surface() failed to fill a region.\n");
}
return polylines_out;
}
Polylines FillStars::fill_surface(const Surface *surface, const FillParams &params)
{
// Each linear fill covers 1/3 of the target coverage.
FillParams params2 = params;
params2.density *= 0.333333333f;
Polylines polylines_out;
if (! fill_surface_by_lines(surface, params2, 0.f, 0., polylines_out) ||
! fill_surface_by_lines(surface, params2, float(M_PI / 3.), 0., polylines_out) ||
! fill_surface_by_lines(surface, params2, float(2. * M_PI / 3.), 0., polylines_out)) {
printf("FillStars::fill_surface() failed to fill a region.\n");
}
return polylines_out;
}
Polylines FillCubic::fill_surface(const Surface *surface, const FillParams &params)
{
// Each linear fill covers 1/3 of the target coverage.
FillParams params2 = params;
params2.density *= 0.333333333f;
Polylines polylines_out;
if (! fill_surface_by_lines(surface, params2, 0.f, z, polylines_out) ||
! fill_surface_by_lines(surface, params2, float(M_PI / 3.), -z, polylines_out) ||
// Rotated by PI*2/3 + PI to achieve reverse sloping wall.
! fill_surface_by_lines(surface, params2, float(M_PI * 2. / 3.), z, polylines_out)) {
printf("FillCubic::fill_surface() failed to fill a region.\n");
}
return polylines_out;
}
} // namespace Slic3r