4e90ae9a28
Fix of a degenerate case, where there is a vertical segment on this vertical line and the contour follows from left to right or vice versa, leading to low,low or high,high intersections.
1650 lines
80 KiB
C++
1650 lines
80 KiB
C++
#include <stdlib.h>
|
|
#include <stdint.h>
|
|
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
#include <limits>
|
|
|
|
#include <boost/static_assert.hpp>
|
|
|
|
#include "../ClipperUtils.hpp"
|
|
#include "../ExPolygon.hpp"
|
|
#include "../Surface.hpp"
|
|
|
|
#include "FillRectilinear2.hpp"
|
|
|
|
// #define SLIC3R_DEBUG
|
|
|
|
// Make assert active if SLIC3R_DEBUG
|
|
#ifdef SLIC3R_DEBUG
|
|
#undef NDEBUG
|
|
#include "SVG.hpp"
|
|
#endif
|
|
|
|
#include <cassert>
|
|
|
|
// We want our version of assert.
|
|
#include "../libslic3r.h"
|
|
|
|
#ifndef myassert
|
|
#define myassert assert
|
|
#endif
|
|
|
|
namespace Slic3r {
|
|
|
|
#ifndef clamp
|
|
template<typename T>
|
|
static inline T clamp(T low, T high, T x)
|
|
{
|
|
return std::max<T>(low, std::min<T>(high, x));
|
|
}
|
|
#endif /* clamp */
|
|
|
|
#ifndef sqr
|
|
template<typename T>
|
|
static inline T sqr(T x)
|
|
{
|
|
return x * x;
|
|
}
|
|
#endif /* sqr */
|
|
|
|
#ifndef mag2
|
|
static inline coordf_t mag2(const Point &p)
|
|
{
|
|
return sqr(coordf_t(p.x)) + sqr(coordf_t(p.y));
|
|
}
|
|
#endif /* mag2 */
|
|
|
|
#ifndef mag
|
|
static inline coordf_t mag(const Point &p)
|
|
{
|
|
return std::sqrt(mag2(p));
|
|
}
|
|
#endif /* mag */
|
|
|
|
enum Orientation
|
|
{
|
|
ORIENTATION_CCW = 1,
|
|
ORIENTATION_CW = -1,
|
|
ORIENTATION_COLINEAR = 0
|
|
};
|
|
|
|
// Return orientation of the three points (clockwise, counter-clockwise, colinear)
|
|
// The predicate is exact for the coord_t type, using 64bit signed integers for the temporaries.
|
|
//FIXME Make sure the temporaries do not overflow,
|
|
// which means, the coord_t types must not have some of the topmost bits utilized.
|
|
static inline Orientation orient(const Point &a, const Point &b, const Point &c)
|
|
{
|
|
// BOOST_STATIC_ASSERT(sizeof(coord_t) * 2 == sizeof(int64_t));
|
|
int64_t u = int64_t(b.x) * int64_t(c.y) - int64_t(b.y) * int64_t(c.x);
|
|
int64_t v = int64_t(a.x) * int64_t(c.y) - int64_t(a.y) * int64_t(c.x);
|
|
int64_t w = int64_t(a.x) * int64_t(b.y) - int64_t(a.y) * int64_t(b.x);
|
|
int64_t d = u - v + w;
|
|
return (d > 0) ? ORIENTATION_CCW : ((d == 0) ? ORIENTATION_COLINEAR : ORIENTATION_CW);
|
|
}
|
|
|
|
// Return orientation of the polygon.
|
|
// The input polygon must not contain duplicate points.
|
|
static inline bool is_ccw(const Polygon &poly)
|
|
{
|
|
// The polygon shall be at least a triangle.
|
|
myassert(poly.points.size() >= 3);
|
|
if (poly.points.size() < 3)
|
|
return true;
|
|
|
|
// 1) Find the lowest lexicographical point.
|
|
int imin = 0;
|
|
for (size_t i = 1; i < poly.points.size(); ++ i) {
|
|
const Point &pmin = poly.points[imin];
|
|
const Point &p = poly.points[i];
|
|
if (p.x < pmin.x || (p.x == pmin.x && p.y < pmin.y))
|
|
imin = i;
|
|
}
|
|
|
|
// 2) Detect the orientation of the corner imin.
|
|
size_t iPrev = ((imin == 0) ? poly.points.size() : imin) - 1;
|
|
size_t iNext = ((imin + 1 == poly.points.size()) ? 0 : imin + 1);
|
|
Orientation o = orient(poly.points[iPrev], poly.points[imin], poly.points[iNext]);
|
|
// The lowest bottom point must not be collinear if the polygon does not contain duplicate points
|
|
// or overlapping segments.
|
|
myassert(o != ORIENTATION_COLINEAR);
|
|
return o == ORIENTATION_CCW;
|
|
}
|
|
|
|
// Having a segment of a closed polygon, calculate its Euclidian length.
|
|
// The segment indices seg1 and seg2 signify an end point of an edge in the forward direction of the loop,
|
|
// therefore the point p1 lies on poly.points[seg1-1], poly.points[seg1] etc.
|
|
static inline coordf_t segment_length(const Polygon &poly, size_t seg1, const Point &p1, size_t seg2, const Point &p2)
|
|
{
|
|
#ifdef SLIC3R_DEBUG
|
|
// Verify that p1 lies on seg1. This is difficult to verify precisely,
|
|
// but at least verify, that p1 lies in the bounding box of seg1.
|
|
for (size_t i = 0; i < 2; ++ i) {
|
|
size_t seg = (i == 0) ? seg1 : seg2;
|
|
Point px = (i == 0) ? p1 : p2;
|
|
Point pa = poly.points[((seg == 0) ? poly.points.size() : seg) - 1];
|
|
Point pb = poly.points[seg];
|
|
if (pa.x > pb.x)
|
|
std::swap(pa.x, pb.x);
|
|
if (pa.y > pb.y)
|
|
std::swap(pa.y, pb.y);
|
|
myassert(px.x >= pa.x && px.x <= pb.x);
|
|
myassert(px.y >= pa.y && px.y <= pb.y);
|
|
}
|
|
#endif /* SLIC3R_DEBUG */
|
|
const Point *pPrev = &p1;
|
|
const Point *pThis = NULL;
|
|
coordf_t len = 0;
|
|
if (seg1 <= seg2) {
|
|
for (size_t i = seg1; i < seg2; ++ i, pPrev = pThis)
|
|
len += pPrev->distance_to(*(pThis = &poly.points[i]));
|
|
} else {
|
|
for (size_t i = seg1; i < poly.points.size(); ++ i, pPrev = pThis)
|
|
len += pPrev->distance_to(*(pThis = &poly.points[i]));
|
|
for (size_t i = 0; i < seg2; ++ i, pPrev = pThis)
|
|
len += pPrev->distance_to(*(pThis = &poly.points[i]));
|
|
}
|
|
len += pPrev->distance_to(p2);
|
|
return len;
|
|
}
|
|
|
|
// Append a segment of a closed polygon to a polyline.
|
|
// The segment indices seg1 and seg2 signify an end point of an edge in the forward direction of the loop.
|
|
// Only insert intermediate points between seg1 and seg2.
|
|
static inline void polygon_segment_append(Points &out, const Polygon &polygon, size_t seg1, size_t seg2)
|
|
{
|
|
if (seg1 == seg2) {
|
|
// Nothing to append from this segment.
|
|
} else if (seg1 < seg2) {
|
|
// Do not append a point pointed to by seg2.
|
|
out.insert(out.end(), polygon.points.begin() + seg1, polygon.points.begin() + seg2);
|
|
} else {
|
|
out.reserve(out.size() + seg2 + polygon.points.size() - seg1);
|
|
out.insert(out.end(), polygon.points.begin() + seg1, polygon.points.end());
|
|
// Do not append a point pointed to by seg2.
|
|
out.insert(out.end(), polygon.points.begin(), polygon.points.begin() + seg2);
|
|
}
|
|
}
|
|
|
|
// Append a segment of a closed polygon to a polyline.
|
|
// The segment indices seg1 and seg2 signify an end point of an edge in the forward direction of the loop,
|
|
// but this time the segment is traversed backward.
|
|
// Only insert intermediate points between seg1 and seg2.
|
|
static inline void polygon_segment_append_reversed(Points &out, const Polygon &polygon, size_t seg1, size_t seg2)
|
|
{
|
|
if (seg1 >= seg2) {
|
|
out.reserve(seg1 - seg2);
|
|
for (size_t i = seg1; i > seg2; -- i)
|
|
out.push_back(polygon.points[i - 1]);
|
|
} else {
|
|
// it could be, that seg1 == seg2. In that case, append the complete loop.
|
|
out.reserve(out.size() + seg2 + polygon.points.size() - seg1);
|
|
for (size_t i = seg1; i > 0; -- i)
|
|
out.push_back(polygon.points[i - 1]);
|
|
for (size_t i = polygon.points.size(); i > seg2; -- i)
|
|
out.push_back(polygon.points[i - 1]);
|
|
}
|
|
}
|
|
|
|
// Intersection point of a vertical line with a polygon segment.
|
|
class SegmentIntersection
|
|
{
|
|
public:
|
|
SegmentIntersection() :
|
|
iContour(0),
|
|
iSegment(0),
|
|
pos_p(0),
|
|
pos_q(1),
|
|
type(UNKNOWN),
|
|
consumed_vertical_up(false),
|
|
consumed_perimeter_right(false)
|
|
{}
|
|
|
|
// Index of a contour in ExPolygonWithOffset, with which this vertical line intersects.
|
|
size_t iContour;
|
|
// Index of a segment in iContour, with which this vertical line intersects.
|
|
size_t iSegment;
|
|
// y position of the intersection, ratinal number.
|
|
int64_t pos_p;
|
|
uint32_t pos_q;
|
|
|
|
coord_t pos() const {
|
|
// Division rounds both positive and negative down to zero.
|
|
// Add half of q for an arithmetic rounding effect.
|
|
int64_t p = pos_p;
|
|
if (p < 0)
|
|
p -= int64_t(pos_q>>1);
|
|
else
|
|
p += int64_t(pos_q>>1);
|
|
return coord_t(p / int64_t(pos_q));
|
|
}
|
|
|
|
// Kind of intersection. With the original contour, or with the inner offestted contour?
|
|
// A vertical segment will be at least intersected by OUTER_LOW, OUTER_HIGH,
|
|
// but it could be intersected with OUTER_LOW, INNER_LOW, INNER_HIGH, OUTER_HIGH,
|
|
// and there may be more than one pair of INNER_LOW, INNER_HIGH between OUTER_LOW, OUTER_HIGH.
|
|
enum SegmentIntersectionType {
|
|
OUTER_LOW = 0,
|
|
OUTER_HIGH = 1,
|
|
INNER_LOW = 2,
|
|
INNER_HIGH = 3,
|
|
UNKNOWN = -1
|
|
};
|
|
SegmentIntersectionType type;
|
|
|
|
// Was this segment along the y axis consumed?
|
|
// Up means up along the vertical segment.
|
|
bool consumed_vertical_up;
|
|
// Was a segment of the inner perimeter contour consumed?
|
|
// Right means right from the vertical segment.
|
|
bool consumed_perimeter_right;
|
|
|
|
// For the INNER_LOW type, this point may be connected to another INNER_LOW point following a perimeter contour.
|
|
// For the INNER_HIGH type, this point may be connected to another INNER_HIGH point following a perimeter contour.
|
|
// If INNER_LOW is connected to INNER_HIGH or vice versa,
|
|
// one has to make sure the vertical infill line does not overlap with the connecting perimeter line.
|
|
bool is_inner() const { return type == INNER_LOW || type == INNER_HIGH; }
|
|
bool is_outer() const { return type == OUTER_LOW || type == OUTER_HIGH; }
|
|
bool is_low () const { return type == INNER_LOW || type == OUTER_LOW; }
|
|
bool is_high () const { return type == INNER_HIGH || type == OUTER_HIGH; }
|
|
|
|
// Compare two y intersection points given by rational numbers.
|
|
// Note that the rational number is given as pos_p/pos_q, where pos_p is int64 and pos_q is uint32.
|
|
// This function calculates pos_p * other.pos_q < other.pos_p * pos_q as a 48bit number.
|
|
// We don't use 128bit intrinsic data types as these are usually not supported by 32bit compilers and
|
|
// we don't need the full 128bit precision anyway.
|
|
bool operator<(const SegmentIntersection &other) const
|
|
{
|
|
assert(pos_q > 0);
|
|
assert(other.pos_q > 0);
|
|
if (pos_p == 0 || other.pos_p == 0) {
|
|
// Because the denominators are positive and one of the nominators is zero,
|
|
// following simple statement holds.
|
|
return pos_p < other.pos_p;
|
|
} else {
|
|
// None of the nominators is zero.
|
|
int sign1 = (pos_p > 0) ? 1 : -1;
|
|
int sign2 = (other.pos_p > 0) ? 1 : -1;
|
|
int signs = sign1 * sign2;
|
|
assert(signs == 1 || signs == -1);
|
|
if (signs < 0) {
|
|
// The nominators have different signs.
|
|
return sign1 < 0;
|
|
} else {
|
|
// The nominators have the same sign.
|
|
// Absolute values
|
|
uint64_t p1, p2;
|
|
if (sign1 > 0) {
|
|
p1 = uint64_t(pos_p);
|
|
p2 = uint64_t(other.pos_p);
|
|
} else {
|
|
p1 = uint64_t(- pos_p);
|
|
p2 = uint64_t(- other.pos_p);
|
|
};
|
|
// Multiply low and high 32bit words of p1 by other_pos.q
|
|
// 32bit x 32bit => 64bit
|
|
// l_hi and l_lo overlap by 32 bits.
|
|
uint64_t l_hi = (p1 >> 32) * uint64_t(other.pos_q);
|
|
uint64_t l_lo = (p1 & 0xffffffffll) * uint64_t(other.pos_q);
|
|
l_hi += (l_lo >> 32);
|
|
uint64_t r_hi = (p2 >> 32) * uint64_t(pos_q);
|
|
uint64_t r_lo = (p2 & 0xffffffffll) * uint64_t(pos_q);
|
|
r_hi += (r_lo >> 32);
|
|
// Compare the high 64 bits.
|
|
if (l_hi == r_hi) {
|
|
// Compare the low 32 bits.
|
|
l_lo &= 0xffffffffll;
|
|
r_lo &= 0xffffffffll;
|
|
return (sign1 < 0) ? (l_lo > r_lo) : (l_lo < r_lo);
|
|
}
|
|
return (sign1 < 0) ? (l_hi > r_hi) : (l_hi < r_hi);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool operator==(const SegmentIntersection &other) const
|
|
{
|
|
assert(pos_q > 0);
|
|
assert(other.pos_q > 0);
|
|
if (pos_p == 0 || other.pos_p == 0) {
|
|
// Because the denominators are positive and one of the nominators is zero,
|
|
// following simple statement holds.
|
|
return pos_p == other.pos_p;
|
|
}
|
|
|
|
// None of the nominators is zero, none of the denominators is zero.
|
|
bool positive = pos_p > 0;
|
|
if (positive != (other.pos_p > 0))
|
|
return false;
|
|
// The nominators have the same sign.
|
|
// Absolute values
|
|
uint64_t p1 = positive ? uint64_t(pos_p) : uint64_t(- pos_p);
|
|
uint64_t p2 = positive ? uint64_t(other.pos_p) : uint64_t(- other.pos_p);
|
|
// Multiply low and high 32bit words of p1 by other_pos.q
|
|
// 32bit x 32bit => 64bit
|
|
// l_hi and l_lo overlap by 32 bits.
|
|
uint64_t l_lo = (p1 & 0xffffffffll) * uint64_t(other.pos_q);
|
|
uint64_t r_lo = (p2 & 0xffffffffll) * uint64_t(pos_q);
|
|
if (l_lo != r_lo)
|
|
return false;
|
|
uint64_t l_hi = (p1 >> 32) * uint64_t(other.pos_q);
|
|
uint64_t r_hi = (p2 >> 32) * uint64_t(pos_q);
|
|
return l_hi + (l_lo >> 32) == r_hi + (r_lo >> 32);
|
|
}
|
|
};
|
|
|
|
// A vertical line with intersection points with polygons.
|
|
class SegmentedIntersectionLine
|
|
{
|
|
public:
|
|
// Index of this vertical intersection line.
|
|
size_t idx;
|
|
// x position of this vertical intersection line.
|
|
coord_t pos;
|
|
// List of intersection points with polygons, sorted increasingly by the y axis.
|
|
std::vector<SegmentIntersection> intersections;
|
|
};
|
|
|
|
// A container maintaining an expolygon with its inner offsetted polygon.
|
|
// The purpose of the inner offsetted polygon is to provide segments to connect the infill lines.
|
|
struct ExPolygonWithOffset
|
|
{
|
|
public:
|
|
ExPolygonWithOffset(
|
|
const ExPolygon &expolygon,
|
|
float angle,
|
|
coord_t aoffset1,
|
|
coord_t aoffset2)
|
|
{
|
|
// Copy and rotate the source polygons.
|
|
polygons_src = expolygon;
|
|
polygons_src.contour.rotate(angle);
|
|
for (Polygons::iterator it = polygons_src.holes.begin(); it != polygons_src.holes.end(); ++ it)
|
|
it->rotate(angle);
|
|
|
|
double mitterLimit = 3.;
|
|
// for the infill pattern, don't cut the corners.
|
|
// default miterLimt = 3
|
|
//double mitterLimit = 10.;
|
|
myassert(aoffset1 < 0);
|
|
myassert(aoffset2 < 0);
|
|
myassert(aoffset2 < aoffset1);
|
|
bool sticks_removed = remove_sticks(polygons_src);
|
|
// if (sticks_removed) printf("Sticks removed!\n");
|
|
polygons_outer = offset(polygons_src, aoffset1,
|
|
ClipperLib::jtMiter,
|
|
mitterLimit);
|
|
polygons_inner = offset(polygons_outer, aoffset2 - aoffset1,
|
|
ClipperLib::jtMiter,
|
|
mitterLimit);
|
|
// Filter out contours with zero area or small area, contours with 2 points only.
|
|
const double min_area_threshold = 0.01 * aoffset2 * aoffset2;
|
|
remove_small(polygons_outer, min_area_threshold);
|
|
remove_small(polygons_inner, min_area_threshold);
|
|
remove_sticks(polygons_outer);
|
|
remove_sticks(polygons_inner);
|
|
n_contours_outer = polygons_outer.size();
|
|
n_contours_inner = polygons_inner.size();
|
|
n_contours = n_contours_outer + n_contours_inner;
|
|
polygons_ccw.assign(n_contours, false);
|
|
for (size_t i = 0; i < n_contours; ++ i) {
|
|
contour(i).remove_duplicate_points();
|
|
myassert(! contour(i).has_duplicate_points());
|
|
polygons_ccw[i] = is_ccw(contour(i));
|
|
}
|
|
}
|
|
|
|
// Any contour with offset1
|
|
bool is_contour_outer(size_t idx) const { return idx < n_contours_outer; }
|
|
// Any contour with offset2
|
|
bool is_contour_inner(size_t idx) const { return idx >= n_contours_outer; }
|
|
|
|
const Polygon& contour(size_t idx) const
|
|
{ return is_contour_outer(idx) ? polygons_outer[idx] : polygons_inner[idx - n_contours_outer]; }
|
|
|
|
Polygon& contour(size_t idx)
|
|
{ return is_contour_outer(idx) ? polygons_outer[idx] : polygons_inner[idx - n_contours_outer]; }
|
|
|
|
bool is_contour_ccw(size_t idx) const { return polygons_ccw[idx]; }
|
|
|
|
BoundingBox bounding_box_src() const
|
|
{ return get_extents(polygons_src); }
|
|
BoundingBox bounding_box_outer() const
|
|
{ return get_extents(polygons_outer); }
|
|
BoundingBox bounding_box_inner() const
|
|
{ return get_extents(polygons_inner); }
|
|
|
|
#ifdef SLIC3R_DEBUG
|
|
void export_to_svg(Slic3r::SVG &svg) {
|
|
svg.draw_outline(polygons_src, "black");
|
|
svg.draw_outline(polygons_outer, "green");
|
|
svg.draw_outline(polygons_inner, "brown");
|
|
}
|
|
#endif /* SLIC3R_DEBUG */
|
|
|
|
ExPolygon polygons_src;
|
|
Polygons polygons_outer;
|
|
Polygons polygons_inner;
|
|
|
|
size_t n_contours_outer;
|
|
size_t n_contours_inner;
|
|
size_t n_contours;
|
|
|
|
protected:
|
|
// For each polygon of polygons_inner, remember its orientation.
|
|
std::vector<unsigned char> polygons_ccw;
|
|
};
|
|
|
|
static inline int distance_of_segmens(const Polygon &poly, size_t seg1, size_t seg2, bool forward)
|
|
{
|
|
int d = int(seg2) - int(seg1);
|
|
if (! forward)
|
|
d = - d;
|
|
if (d < 0)
|
|
d += int(poly.points.size());
|
|
return d;
|
|
}
|
|
|
|
// For a vertical line, an inner contour and an intersection point,
|
|
// find an intersection point on the previous resp. next vertical line.
|
|
// The intersection point is connected with the prev resp. next intersection point with iInnerContour.
|
|
// Return -1 if there is no such point on the previous resp. next vertical line.
|
|
static inline int intersection_on_prev_next_vertical_line(
|
|
const ExPolygonWithOffset &poly_with_offset,
|
|
const std::vector<SegmentedIntersectionLine> &segs,
|
|
size_t iVerticalLine,
|
|
size_t iInnerContour,
|
|
size_t iIntersection,
|
|
bool dir_is_next)
|
|
{
|
|
size_t iVerticalLineOther = iVerticalLine;
|
|
if (dir_is_next) {
|
|
if (++ iVerticalLineOther == segs.size())
|
|
// No successive vertical line.
|
|
return -1;
|
|
} else if (iVerticalLineOther -- == 0) {
|
|
// No preceding vertical line.
|
|
return -1;
|
|
}
|
|
|
|
const SegmentedIntersectionLine &il = segs[iVerticalLine];
|
|
const SegmentIntersection &itsct = il.intersections[iIntersection];
|
|
const SegmentedIntersectionLine &il2 = segs[iVerticalLineOther];
|
|
const Polygon &poly = poly_with_offset.contour(iInnerContour);
|
|
// const bool ccw = poly_with_offset.is_contour_ccw(iInnerContour);
|
|
const bool forward = itsct.is_low() == dir_is_next;
|
|
// Resulting index of an intersection point on il2.
|
|
int out = -1;
|
|
// Find an intersection point on iVerticalLineOther, intersecting iInnerContour
|
|
// at the same orientation as iIntersection, and being closest to iIntersection
|
|
// in the number of contour segments, when following the direction of the contour.
|
|
int dmin = std::numeric_limits<int>::max();
|
|
for (size_t i = 0; i < il2.intersections.size(); ++ i) {
|
|
const SegmentIntersection &itsct2 = il2.intersections[i];
|
|
if (itsct.iContour == itsct2.iContour && itsct.type == itsct2.type) {
|
|
/*
|
|
if (itsct.is_low()) {
|
|
myassert(itsct.type == SegmentIntersection::INNER_LOW);
|
|
myassert(iIntersection > 0);
|
|
myassert(il.intersections[iIntersection-1].type == SegmentIntersection::OUTER_LOW);
|
|
myassert(i > 0);
|
|
if (il2.intersections[i-1].is_inner())
|
|
// Take only the lowest inner intersection point.
|
|
continue;
|
|
myassert(il2.intersections[i-1].type == SegmentIntersection::OUTER_LOW);
|
|
} else {
|
|
myassert(itsct.type == SegmentIntersection::INNER_HIGH);
|
|
myassert(iIntersection+1 < il.intersections.size());
|
|
myassert(il.intersections[iIntersection+1].type == SegmentIntersection::OUTER_HIGH);
|
|
myassert(i+1 < il2.intersections.size());
|
|
if (il2.intersections[i+1].is_inner())
|
|
// Take only the highest inner intersection point.
|
|
continue;
|
|
myassert(il2.intersections[i+1].type == SegmentIntersection::OUTER_HIGH);
|
|
}
|
|
*/
|
|
// The intersection points lie on the same contour and have the same orientation.
|
|
// Find the intersection point with a shortest path in the direction of the contour.
|
|
int d = distance_of_segmens(poly, itsct.iSegment, itsct2.iSegment, forward);
|
|
if (d < dmin) {
|
|
out = i;
|
|
dmin = d;
|
|
}
|
|
}
|
|
}
|
|
//FIXME this routine is not asymptotic optimal, it will be slow if there are many intersection points along the line.
|
|
return out;
|
|
}
|
|
|
|
static inline int intersection_on_prev_vertical_line(
|
|
const ExPolygonWithOffset &poly_with_offset,
|
|
const std::vector<SegmentedIntersectionLine> &segs,
|
|
size_t iVerticalLine,
|
|
size_t iInnerContour,
|
|
size_t iIntersection)
|
|
{
|
|
return intersection_on_prev_next_vertical_line(poly_with_offset, segs, iVerticalLine, iInnerContour, iIntersection, false);
|
|
}
|
|
|
|
static inline int intersection_on_next_vertical_line(
|
|
const ExPolygonWithOffset &poly_with_offset,
|
|
const std::vector<SegmentedIntersectionLine> &segs,
|
|
size_t iVerticalLine,
|
|
size_t iInnerContour,
|
|
size_t iIntersection)
|
|
{
|
|
return intersection_on_prev_next_vertical_line(poly_with_offset, segs, iVerticalLine, iInnerContour, iIntersection, true);
|
|
}
|
|
|
|
enum IntersectionTypeOtherVLine {
|
|
// There is no connection point on the other vertical line.
|
|
INTERSECTION_TYPE_OTHER_VLINE_UNDEFINED = -1,
|
|
// Connection point on the other vertical segment was found
|
|
// and it could be followed.
|
|
INTERSECTION_TYPE_OTHER_VLINE_OK = 0,
|
|
// The connection segment connects to a middle of a vertical segment.
|
|
// Cannot follow.
|
|
INTERSECTION_TYPE_OTHER_VLINE_INNER,
|
|
// Cannot extend the contor to this intersection point as either the connection segment
|
|
// or the succeeding vertical segment were already consumed.
|
|
INTERSECTION_TYPE_OTHER_VLINE_CONSUMED,
|
|
// Not the first intersection along the contor. This intersection point
|
|
// has been preceded by an intersection point along the vertical line.
|
|
INTERSECTION_TYPE_OTHER_VLINE_NOT_FIRST,
|
|
};
|
|
|
|
// Find an intersection on a previous line, but return -1, if the connecting segment of a perimeter was already extruded.
|
|
static inline IntersectionTypeOtherVLine intersection_type_on_prev_next_vertical_line(
|
|
const std::vector<SegmentedIntersectionLine> &segs,
|
|
size_t iVerticalLine,
|
|
size_t iIntersection,
|
|
size_t iIntersectionOther,
|
|
bool dir_is_next)
|
|
{
|
|
// This routine will propose a connecting line even if the connecting perimeter segment intersects
|
|
// iVertical line multiple times before reaching iIntersectionOther.
|
|
if (iIntersectionOther == -1)
|
|
return INTERSECTION_TYPE_OTHER_VLINE_UNDEFINED;
|
|
myassert(dir_is_next ? (iVerticalLine + 1 < segs.size()) : (iVerticalLine > 0));
|
|
const SegmentedIntersectionLine &il_this = segs[iVerticalLine];
|
|
const SegmentIntersection &itsct_this = il_this.intersections[iIntersection];
|
|
const SegmentedIntersectionLine &il_other = segs[dir_is_next ? (iVerticalLine+1) : (iVerticalLine-1)];
|
|
const SegmentIntersection &itsct_other = il_other.intersections[iIntersectionOther];
|
|
myassert(itsct_other.is_inner());
|
|
myassert(iIntersectionOther > 0);
|
|
myassert(iIntersectionOther + 1 < il_other.intersections.size());
|
|
// Is iIntersectionOther at the boundary of a vertical segment?
|
|
const SegmentIntersection &itsct_other2 = il_other.intersections[itsct_other.is_low() ? iIntersectionOther - 1 : iIntersectionOther + 1];
|
|
if (itsct_other2.is_inner())
|
|
// Cannot follow a perimeter segment into the middle of another vertical segment.
|
|
// Only perimeter segments connecting to the end of a vertical segment are followed.
|
|
return INTERSECTION_TYPE_OTHER_VLINE_INNER;
|
|
myassert(itsct_other.is_low() == itsct_other2.is_low());
|
|
if (dir_is_next ? itsct_this.consumed_perimeter_right : itsct_other.consumed_perimeter_right)
|
|
// This perimeter segment was already consumed.
|
|
return INTERSECTION_TYPE_OTHER_VLINE_CONSUMED;
|
|
if (itsct_other.is_low() ? itsct_other.consumed_vertical_up : il_other.intersections[iIntersectionOther-1].consumed_vertical_up)
|
|
// This vertical segment was already consumed.
|
|
return INTERSECTION_TYPE_OTHER_VLINE_CONSUMED;
|
|
return INTERSECTION_TYPE_OTHER_VLINE_OK;
|
|
}
|
|
|
|
static inline IntersectionTypeOtherVLine intersection_type_on_prev_vertical_line(
|
|
const std::vector<SegmentedIntersectionLine> &segs,
|
|
size_t iVerticalLine,
|
|
size_t iIntersection,
|
|
size_t iIntersectionPrev)
|
|
{
|
|
return intersection_type_on_prev_next_vertical_line(segs, iVerticalLine, iIntersection, iIntersectionPrev, false);
|
|
}
|
|
|
|
static inline IntersectionTypeOtherVLine intersection_type_on_next_vertical_line(
|
|
const std::vector<SegmentedIntersectionLine> &segs,
|
|
size_t iVerticalLine,
|
|
size_t iIntersection,
|
|
size_t iIntersectionNext)
|
|
{
|
|
return intersection_type_on_prev_next_vertical_line(segs, iVerticalLine, iIntersection, iIntersectionNext, true);
|
|
}
|
|
|
|
// Measure an Euclidian length of a perimeter segment when going from iIntersection to iIntersection2.
|
|
static inline coordf_t measure_perimeter_prev_next_segment_length(
|
|
const ExPolygonWithOffset &poly_with_offset,
|
|
const std::vector<SegmentedIntersectionLine> &segs,
|
|
size_t iVerticalLine,
|
|
size_t iInnerContour,
|
|
size_t iIntersection,
|
|
size_t iIntersection2,
|
|
bool dir_is_next)
|
|
{
|
|
size_t iVerticalLineOther = iVerticalLine;
|
|
if (dir_is_next) {
|
|
if (++ iVerticalLineOther == segs.size())
|
|
// No successive vertical line.
|
|
return coordf_t(-1);
|
|
} else if (iVerticalLineOther -- == 0) {
|
|
// No preceding vertical line.
|
|
return coordf_t(-1);
|
|
}
|
|
|
|
const SegmentedIntersectionLine &il = segs[iVerticalLine];
|
|
const SegmentIntersection &itsct = il.intersections[iIntersection];
|
|
const SegmentedIntersectionLine &il2 = segs[iVerticalLineOther];
|
|
const SegmentIntersection &itsct2 = il2.intersections[iIntersection2];
|
|
const Polygon &poly = poly_with_offset.contour(iInnerContour);
|
|
// const bool ccw = poly_with_offset.is_contour_ccw(iInnerContour);
|
|
myassert(itsct.type == itsct2.type);
|
|
myassert(itsct.iContour == itsct2.iContour);
|
|
myassert(itsct.is_inner());
|
|
const bool forward = itsct.is_low() == dir_is_next;
|
|
|
|
Point p1(il.pos, itsct.pos());
|
|
Point p2(il2.pos, itsct2.pos());
|
|
return forward ?
|
|
segment_length(poly, itsct .iSegment, p1, itsct2.iSegment, p2) :
|
|
segment_length(poly, itsct2.iSegment, p2, itsct .iSegment, p1);
|
|
}
|
|
|
|
static inline coordf_t measure_perimeter_prev_segment_length(
|
|
const ExPolygonWithOffset &poly_with_offset,
|
|
const std::vector<SegmentedIntersectionLine> &segs,
|
|
size_t iVerticalLine,
|
|
size_t iInnerContour,
|
|
size_t iIntersection,
|
|
size_t iIntersection2)
|
|
{
|
|
return measure_perimeter_prev_next_segment_length(poly_with_offset, segs, iVerticalLine, iInnerContour, iIntersection, iIntersection2, false);
|
|
}
|
|
|
|
static inline coordf_t measure_perimeter_next_segment_length(
|
|
const ExPolygonWithOffset &poly_with_offset,
|
|
const std::vector<SegmentedIntersectionLine> &segs,
|
|
size_t iVerticalLine,
|
|
size_t iInnerContour,
|
|
size_t iIntersection,
|
|
size_t iIntersection2)
|
|
{
|
|
return measure_perimeter_prev_next_segment_length(poly_with_offset, segs, iVerticalLine, iInnerContour, iIntersection, iIntersection2, true);
|
|
}
|
|
|
|
// Append the points of a perimeter segment when going from iIntersection to iIntersection2.
|
|
// The first point (the point of iIntersection) will not be inserted,
|
|
// the last point will be inserted.
|
|
static inline void emit_perimeter_prev_next_segment(
|
|
const ExPolygonWithOffset &poly_with_offset,
|
|
const std::vector<SegmentedIntersectionLine> &segs,
|
|
size_t iVerticalLine,
|
|
size_t iInnerContour,
|
|
size_t iIntersection,
|
|
size_t iIntersection2,
|
|
Polyline &out,
|
|
bool dir_is_next)
|
|
{
|
|
size_t iVerticalLineOther = iVerticalLine;
|
|
if (dir_is_next) {
|
|
++ iVerticalLineOther;
|
|
myassert(iVerticalLineOther < segs.size());
|
|
} else {
|
|
myassert(iVerticalLineOther > 0);
|
|
-- iVerticalLineOther;
|
|
}
|
|
|
|
const SegmentedIntersectionLine &il = segs[iVerticalLine];
|
|
const SegmentIntersection &itsct = il.intersections[iIntersection];
|
|
const SegmentedIntersectionLine &il2 = segs[iVerticalLineOther];
|
|
const SegmentIntersection &itsct2 = il2.intersections[iIntersection2];
|
|
const Polygon &poly = poly_with_offset.contour(iInnerContour);
|
|
// const bool ccw = poly_with_offset.is_contour_ccw(iInnerContour);
|
|
myassert(itsct.type == itsct2.type);
|
|
myassert(itsct.iContour == itsct2.iContour);
|
|
myassert(itsct.is_inner());
|
|
const bool forward = itsct.is_low() == dir_is_next;
|
|
// Do not append the first point.
|
|
// out.points.push_back(Point(il.pos, itsct.pos));
|
|
if (forward)
|
|
polygon_segment_append(out.points, poly, itsct.iSegment, itsct2.iSegment);
|
|
else
|
|
polygon_segment_append_reversed(out.points, poly, itsct.iSegment, itsct2.iSegment);
|
|
// Append the last point.
|
|
out.points.push_back(Point(il2.pos, itsct2.pos()));
|
|
}
|
|
|
|
static inline coordf_t measure_perimeter_segment_on_vertical_line_length(
|
|
const ExPolygonWithOffset &poly_with_offset,
|
|
const std::vector<SegmentedIntersectionLine> &segs,
|
|
size_t iVerticalLine,
|
|
size_t iInnerContour,
|
|
size_t iIntersection,
|
|
size_t iIntersection2,
|
|
bool forward)
|
|
{
|
|
const SegmentedIntersectionLine &il = segs[iVerticalLine];
|
|
const SegmentIntersection &itsct = il.intersections[iIntersection];
|
|
const SegmentIntersection &itsct2 = il.intersections[iIntersection2];
|
|
const Polygon &poly = poly_with_offset.contour(iInnerContour);
|
|
myassert(itsct.is_inner());
|
|
myassert(itsct2.is_inner());
|
|
myassert(itsct.type != itsct2.type);
|
|
myassert(itsct.iContour == iInnerContour);
|
|
myassert(itsct.iContour == itsct2.iContour);
|
|
Point p1(il.pos, itsct.pos());
|
|
Point p2(il.pos, itsct2.pos());
|
|
return forward ?
|
|
segment_length(poly, itsct .iSegment, p1, itsct2.iSegment, p2) :
|
|
segment_length(poly, itsct2.iSegment, p2, itsct .iSegment, p1);
|
|
}
|
|
|
|
// Append the points of a perimeter segment when going from iIntersection to iIntersection2.
|
|
// The first point (the point of iIntersection) will not be inserted,
|
|
// the last point will be inserted.
|
|
static inline void emit_perimeter_segment_on_vertical_line(
|
|
const ExPolygonWithOffset &poly_with_offset,
|
|
const std::vector<SegmentedIntersectionLine> &segs,
|
|
size_t iVerticalLine,
|
|
size_t iInnerContour,
|
|
size_t iIntersection,
|
|
size_t iIntersection2,
|
|
Polyline &out,
|
|
bool forward)
|
|
{
|
|
const SegmentedIntersectionLine &il = segs[iVerticalLine];
|
|
const SegmentIntersection &itsct = il.intersections[iIntersection];
|
|
const SegmentIntersection &itsct2 = il.intersections[iIntersection2];
|
|
const Polygon &poly = poly_with_offset.contour(iInnerContour);
|
|
myassert(itsct.is_inner());
|
|
myassert(itsct2.is_inner());
|
|
myassert(itsct.type != itsct2.type);
|
|
myassert(itsct.iContour == iInnerContour);
|
|
myassert(itsct.iContour == itsct2.iContour);
|
|
// Do not append the first point.
|
|
// out.points.push_back(Point(il.pos, itsct.pos));
|
|
if (forward)
|
|
polygon_segment_append(out.points, poly, itsct.iSegment, itsct2.iSegment);
|
|
else
|
|
polygon_segment_append_reversed(out.points, poly, itsct.iSegment, itsct2.iSegment);
|
|
// Append the last point.
|
|
out.points.push_back(Point(il.pos, itsct2.pos()));
|
|
}
|
|
|
|
//TBD: For precise infill, measure the area of a slab spanned by an infill line.
|
|
/*
|
|
static inline float measure_outer_contour_slab(
|
|
const ExPolygonWithOffset &poly_with_offset,
|
|
const std::vector<SegmentedIntersectionLine> &segs,
|
|
size_t i_vline,
|
|
size_t iIntersection)
|
|
{
|
|
const SegmentedIntersectionLine &il = segs[i_vline];
|
|
const SegmentIntersection &itsct = il.intersections[i_vline];
|
|
const SegmentIntersection &itsct2 = il.intersections[iIntersection2];
|
|
const Polygon &poly = poly_with_offset.contour((itsct.iContour);
|
|
myassert(itsct.is_outer());
|
|
myassert(itsct2.is_outer());
|
|
myassert(itsct.type != itsct2.type);
|
|
myassert(itsct.iContour == itsct2.iContour);
|
|
if (! itsct.is_outer() || ! itsct2.is_outer() || itsct.type == itsct2.type || itsct.iContour != itsct2.iContour)
|
|
// Error, return zero area.
|
|
return 0.f;
|
|
|
|
// Find possible connection points on the previous / next vertical line.
|
|
int iPrev = intersection_on_prev_vertical_line(poly_with_offset, segs, i_vline, itsct.iContour, i_intersection);
|
|
int iNext = intersection_on_next_vertical_line(poly_with_offset, segs, i_vline, itsct.iContour, i_intersection);
|
|
// Find possible connection points on the same vertical line.
|
|
int iAbove = iBelow = -1;
|
|
// Does the perimeter intersect the current vertical line above intrsctn?
|
|
for (size_t i = i_intersection + 1; i + 1 < seg.intersections.size(); ++ i)
|
|
if (seg.intersections[i].iContour == itsct.iContour)
|
|
{ iAbove = i; break; }
|
|
// Does the perimeter intersect the current vertical line below intrsctn?
|
|
for (int i = int(i_intersection) - 1; i > 0; -- i)
|
|
if (seg.intersections[i].iContour == itsct.iContour)
|
|
{ iBelow = i; break; }
|
|
|
|
if (iSegAbove != -1 && seg.intersections[iAbove].type == SegmentIntersection::OUTER_HIGH) {
|
|
// Invalidate iPrev resp. iNext, if the perimeter crosses the current vertical line earlier than iPrev resp. iNext.
|
|
// The perimeter contour orientation.
|
|
const Polygon &poly = poly_with_offset.contour(itsct.iContour);
|
|
{
|
|
int d_horiz = (iPrev == -1) ? std::numeric_limits<int>::max() :
|
|
distance_of_segmens(poly, segs[i_vline-1].intersections[iPrev].iSegment, itsct.iSegment, true);
|
|
int d_down = (iBelow == -1) ? std::numeric_limits<int>::max() :
|
|
distance_of_segmens(poly, iSegBelow, itsct.iSegment, true);
|
|
int d_up = (iAbove == -1) ? std::numeric_limits<int>::max() :
|
|
distance_of_segmens(poly, iSegAbove, itsct.iSegment, true);
|
|
if (intrsctn_type_prev == INTERSECTION_TYPE_OTHER_VLINE_OK && d_horiz > std::min(d_down, d_up))
|
|
// The vertical crossing comes eralier than the prev crossing.
|
|
// Disable the perimeter going back.
|
|
intrsctn_type_prev = INTERSECTION_TYPE_OTHER_VLINE_NOT_FIRST;
|
|
if (d_up > std::min(d_horiz, d_down))
|
|
// The horizontal crossing comes earlier than the vertical crossing.
|
|
vert_seg_dir_valid_mask &= ~DIR_BACKWARD;
|
|
}
|
|
{
|
|
int d_horiz = (iNext == -1) ? std::numeric_limits<int>::max() :
|
|
distance_of_segmens(poly, itsct.iSegment, segs[i_vline+1].intersections[iNext].iSegment, true);
|
|
int d_down = (iSegBelow == -1) ? std::numeric_limits<int>::max() :
|
|
distance_of_segmens(poly, itsct.iSegment, iSegBelow, true);
|
|
int d_up = (iSegAbove == -1) ? std::numeric_limits<int>::max() :
|
|
distance_of_segmens(poly, itsct.iSegment, iSegAbove, true);
|
|
if (d_up > std::min(d_horiz, d_down))
|
|
// The horizontal crossing comes earlier than the vertical crossing.
|
|
vert_seg_dir_valid_mask &= ~DIR_FORWARD;
|
|
}
|
|
}
|
|
}
|
|
*/
|
|
|
|
enum DirectionMask
|
|
{
|
|
DIR_FORWARD = 1,
|
|
DIR_BACKWARD = 2
|
|
};
|
|
|
|
bool FillRectilinear2::fill_surface_by_lines(const Surface *surface, const FillParams ¶ms, float angleBase, float pattern_shift, Polylines &polylines_out)
|
|
{
|
|
// At the end, only the new polylines will be rotated back.
|
|
size_t n_polylines_out_initial = polylines_out.size();
|
|
|
|
// Shrink the input polygon a bit first to not push the infill lines out of the perimeters.
|
|
// const float INFILL_OVERLAP_OVER_SPACING = 0.3f;
|
|
const float INFILL_OVERLAP_OVER_SPACING = 0.45f;
|
|
myassert(INFILL_OVERLAP_OVER_SPACING > 0 && INFILL_OVERLAP_OVER_SPACING < 0.5f);
|
|
|
|
// Rotate polygons so that we can work with vertical lines here
|
|
std::pair<float, Point> rotate_vector = this->_infill_direction(surface);
|
|
rotate_vector.first += angleBase;
|
|
|
|
myassert(params.density > 0.0001f && params.density <= 1.f);
|
|
coord_t line_spacing = coord_t(scale_(this->spacing) / params.density);
|
|
|
|
// On the polygons of poly_with_offset, the infill lines will be connected.
|
|
ExPolygonWithOffset poly_with_offset(
|
|
surface->expolygon,
|
|
- rotate_vector.first,
|
|
scale_(- (0.5 - INFILL_OVERLAP_OVER_SPACING) * this->spacing),
|
|
scale_(- 0.5 * this->spacing));
|
|
if (poly_with_offset.n_contours_inner == 0) {
|
|
// Not a single infill line fits.
|
|
//FIXME maybe one shall trigger the gap fill here?
|
|
return true;
|
|
}
|
|
|
|
BoundingBox bounding_box = poly_with_offset.bounding_box_src();
|
|
|
|
// define flow spacing according to requested density
|
|
bool full_infill = params.density > 0.9999f;
|
|
if (full_infill && !params.dont_adjust) {
|
|
line_spacing = this->_adjust_solid_spacing(bounding_box.size().x, line_spacing);
|
|
this->spacing = unscale(line_spacing);
|
|
} else {
|
|
// extend bounding box so that our pattern will be aligned with other layers
|
|
// Transform the reference point to the rotated coordinate system.
|
|
Point refpt = rotate_vector.second.rotated(- rotate_vector.first);
|
|
// _align_to_grid will not work correctly with positive pattern_shift.
|
|
coord_t pattern_shift_scaled = coord_t(scale_(pattern_shift)) % line_spacing;
|
|
refpt.x -= (pattern_shift_scaled >= 0) ? pattern_shift_scaled : (line_spacing + pattern_shift_scaled);
|
|
bounding_box.merge(_align_to_grid(
|
|
bounding_box.min,
|
|
Point(line_spacing, line_spacing),
|
|
refpt));
|
|
}
|
|
|
|
// Intersect a set of euqally spaced vertical lines wiht expolygon.
|
|
// n_vlines = ceil(bbox_width / line_spacing)
|
|
size_t n_vlines = (bounding_box.max.x - bounding_box.min.x + line_spacing - 1) / line_spacing;
|
|
coord_t x0 = bounding_box.min.x;
|
|
if (full_infill)
|
|
x0 += (line_spacing + SCALED_EPSILON) / 2;
|
|
|
|
#ifdef SLIC3R_DEBUG
|
|
static int iRun = 0;
|
|
BoundingBox bbox_svg = poly_with_offset.bounding_box_outer();
|
|
::Slic3r::SVG svg(debug_out_path("FillRectilinear2-%d.svg", iRun), bbox_svg); // , scale_(1.));
|
|
poly_with_offset.export_to_svg(svg);
|
|
{
|
|
::Slic3r::SVG svg(debug_out_path("FillRectilinear2-initial-%d.svg", iRun), bbox_svg); // , scale_(1.));
|
|
poly_with_offset.export_to_svg(svg);
|
|
}
|
|
iRun ++;
|
|
#endif /* SLIC3R_DEBUG */
|
|
|
|
// For each contour
|
|
// Allocate storage for the segments.
|
|
std::vector<SegmentedIntersectionLine> segs(n_vlines, SegmentedIntersectionLine());
|
|
for (size_t i = 0; i < n_vlines; ++ i) {
|
|
segs[i].idx = i;
|
|
segs[i].pos = x0 + i * line_spacing;
|
|
}
|
|
for (size_t iContour = 0; iContour < poly_with_offset.n_contours; ++ iContour) {
|
|
const Points &contour = poly_with_offset.contour(iContour).points;
|
|
if (contour.size() < 2)
|
|
continue;
|
|
// For each segment
|
|
for (size_t iSegment = 0; iSegment < contour.size(); ++ iSegment) {
|
|
size_t iPrev = ((iSegment == 0) ? contour.size() : iSegment) - 1;
|
|
const Point &p1 = contour[iPrev];
|
|
const Point &p2 = contour[iSegment];
|
|
// Which of the equally spaced vertical lines is intersected by this segment?
|
|
coord_t l = p1.x;
|
|
coord_t r = p2.x;
|
|
if (l > r)
|
|
std::swap(l, r);
|
|
// il, ir are the left / right indices of vertical lines intersecting a segment
|
|
int il = (l - x0) / line_spacing;
|
|
while (il * line_spacing + x0 < l)
|
|
++ il;
|
|
il = std::max(int(0), il);
|
|
int ir = (r - x0 + line_spacing) / line_spacing;
|
|
while (ir * line_spacing + x0 > r)
|
|
-- ir;
|
|
ir = std::min(int(segs.size()) - 1, ir);
|
|
if (il > ir)
|
|
// No vertical line intersects this segment.
|
|
continue;
|
|
myassert(il >= 0 && il < segs.size());
|
|
myassert(ir >= 0 && ir < segs.size());
|
|
for (int i = il; i <= ir; ++ i) {
|
|
coord_t this_x = segs[i].pos;
|
|
assert(this_x == i * line_spacing + x0);
|
|
SegmentIntersection is;
|
|
is.iContour = iContour;
|
|
is.iSegment = iSegment;
|
|
myassert(l <= this_x);
|
|
myassert(r >= this_x);
|
|
// Calculate the intersection position in y axis. x is known.
|
|
if (p1.x == this_x) {
|
|
if (p2.x == this_x) {
|
|
// Ignore strictly vertical segments.
|
|
continue;
|
|
}
|
|
is.pos_p = p1.y;
|
|
is.pos_q = 1;
|
|
} else if (p2.x == this_x) {
|
|
is.pos_p = p2.y;
|
|
is.pos_q = 1;
|
|
} else {
|
|
// First calculate the intersection parameter 't' as a rational number with non negative denominator.
|
|
if (p2.x > p1.x) {
|
|
is.pos_p = this_x - p1.x;
|
|
is.pos_q = p2.x - p1.x;
|
|
} else {
|
|
is.pos_p = p1.x - this_x;
|
|
is.pos_q = p1.x - p2.x;
|
|
}
|
|
myassert(is.pos_p >= 0 && is.pos_p <= is.pos_q);
|
|
// Make an intersection point from the 't'.
|
|
is.pos_p *= int64_t(p2.y - p1.y);
|
|
is.pos_p += p1.y * int64_t(is.pos_q);
|
|
}
|
|
// +-1 to take rounding into account.
|
|
myassert(is.pos() + 1 >= std::min(p1.y, p2.y));
|
|
myassert(is.pos() <= std::max(p1.y, p2.y) + 1);
|
|
segs[i].intersections.push_back(is);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Sort the intersections along their segments, specify the intersection types.
|
|
for (size_t i_seg = 0; i_seg < segs.size(); ++ i_seg) {
|
|
SegmentedIntersectionLine &sil = segs[i_seg];
|
|
// Sort the intersection points using exact rational arithmetic.
|
|
std::sort(sil.intersections.begin(), sil.intersections.end());
|
|
|
|
#if 0
|
|
// Verify the order, bubble sort the intersections until sorted.
|
|
bool modified = false;
|
|
do {
|
|
modified = false;
|
|
for (size_t i = 1; i < sil.intersections.size(); ++ i) {
|
|
size_t iContour1 = sil.intersections[i-1].iContour;
|
|
size_t iContour2 = sil.intersections[i].iContour;
|
|
const Points &contour1 = poly_with_offset.contour(iContour1).points;
|
|
const Points &contour2 = poly_with_offset.contour(iContour2).points;
|
|
size_t iSegment1 = sil.intersections[i-1].iSegment;
|
|
size_t iPrev1 = ((iSegment1 == 0) ? contour1.size() : iSegment1) - 1;
|
|
size_t iSegment2 = sil.intersections[i].iSegment;
|
|
size_t iPrev2 = ((iSegment2 == 0) ? contour2.size() : iSegment2) - 1;
|
|
bool swap = false;
|
|
if (iContour1 == iContour2 && iSegment1 == iSegment2) {
|
|
// The same segment, it has to be vertical.
|
|
myassert(iPrev1 == iPrev2);
|
|
swap = contour1[iPrev1].y > contour1[iContour1].y;
|
|
#ifdef SLIC3R_DEBUG
|
|
if (swap)
|
|
printf("Swapping when single vertical segment\n");
|
|
#endif
|
|
} else {
|
|
// Segments are in a general position. Here an exact airthmetics may come into play.
|
|
coord_t y1max = std::max(contour1[iPrev1].y, contour1[iSegment1].y);
|
|
coord_t y2min = std::min(contour2[iPrev2].y, contour2[iSegment2].y);
|
|
if (y1max < y2min) {
|
|
// The segments are separated, nothing to do.
|
|
} else {
|
|
// Use an exact predicate to verify, that segment1 is below segment2.
|
|
const Point *a = &contour1[iPrev1];
|
|
const Point *b = &contour1[iSegment1];
|
|
const Point *c = &contour2[iPrev2];
|
|
const Point *d = &contour2[iSegment2];
|
|
#ifdef SLIC3R_DEBUG
|
|
const Point x1(sil.pos, sil.intersections[i-1].pos);
|
|
const Point x2(sil.pos, sil.intersections[i ].pos);
|
|
bool successive = false;
|
|
#endif /* SLIC3R_DEBUG */
|
|
// Sort the points in the two segments by x.
|
|
if (a->x > b->x)
|
|
std::swap(a, b);
|
|
if (c->x > d->x)
|
|
std::swap(c, d);
|
|
myassert(a->x <= sil.pos);
|
|
myassert(c->x <= sil.pos);
|
|
myassert(b->x >= sil.pos);
|
|
myassert(d->x >= sil.pos);
|
|
// Sort the two segments, so the segment <a,b> will be on the left of <c,d>.
|
|
bool upper_more_left = false;
|
|
if (a->x > c->x) {
|
|
upper_more_left = true;
|
|
std::swap(a, c);
|
|
std::swap(b, d);
|
|
}
|
|
if (a == c) {
|
|
// The segments iSegment1 and iSegment2 are directly connected.
|
|
myassert(iContour1 == iContour2);
|
|
myassert(iSegment1 == iPrev2 || iPrev1 == iSegment2);
|
|
std::swap(c, d);
|
|
myassert(a != c && b != c);
|
|
#ifdef SLIC3R_DEBUG
|
|
successive = true;
|
|
#endif /* SLIC3R_DEBUG */
|
|
}
|
|
#ifdef SLIC3R_DEBUG
|
|
else if (b == d) {
|
|
// The segments iSegment1 and iSegment2 are directly connected.
|
|
myassert(iContour1 == iContour2);
|
|
myassert(iSegment1 == iPrev2 || iPrev1 == iSegment2);
|
|
myassert(a != c && b != c);
|
|
successive = true;
|
|
}
|
|
#endif /* SLIC3R_DEBUG */
|
|
Orientation o = orient(*a, *b, *c);
|
|
myassert(o != ORIENTATION_COLINEAR);
|
|
swap = upper_more_left != (o == ORIENTATION_CW);
|
|
#ifdef SLIC3R_DEBUG
|
|
if (swap)
|
|
printf(successive ?
|
|
"Swapping when iContour1 == iContour2 and successive segments\n" :
|
|
"Swapping when exact predicate\n");
|
|
#endif
|
|
}
|
|
}
|
|
if (swap) {
|
|
// Swap the intersection points, but keep the original positions, so they stay sorted by the y axis.
|
|
std::swap(sil.intersections[i-1], sil.intersections[i]);
|
|
std::swap(sil.intersections[i-1].pos_p, sil.intersections[i].pos_p);
|
|
std::swap(sil.intersections[i-1].pos_q, sil.intersections[i].pos_q);
|
|
modified = true;
|
|
}
|
|
}
|
|
} while (modified);
|
|
#endif
|
|
|
|
// Assign the intersection types, remove duplicate or overlapping intersection points.
|
|
// When a loop vertex touches a vertical line, intersection point is generated for both segments.
|
|
// If such two segments are oriented equally, then one of them is removed.
|
|
// Otherwise the vertex is tangential to the vertical line and both segments are removed.
|
|
// The same rule applies, if the loop is pinched into a single point and this point touches the vertical line:
|
|
// The loop has a zero vertical size at the vertical line, therefore the intersection point is removed.
|
|
size_t j = 0;
|
|
for (size_t i = 0; i < sil.intersections.size(); ++ i) {
|
|
// What is the orientation of the segment at the intersection point?
|
|
size_t iContour = sil.intersections[i].iContour;
|
|
const Points &contour = poly_with_offset.contour(iContour).points;
|
|
size_t iSegment = sil.intersections[i].iSegment;
|
|
size_t iPrev = ((iSegment == 0) ? contour.size() : iSegment) - 1;
|
|
coord_t dir = contour[iSegment].x - contour[iPrev].x;
|
|
bool low = dir > 0;
|
|
sil.intersections[i].type = poly_with_offset.is_contour_outer(iContour) ?
|
|
(low ? SegmentIntersection::OUTER_LOW : SegmentIntersection::OUTER_HIGH) :
|
|
(low ? SegmentIntersection::INNER_LOW : SegmentIntersection::INNER_HIGH);
|
|
if (j > 0 && sil.intersections[i].iContour == sil.intersections[j-1].iContour) {
|
|
// Two successive intersection points on a vertical line with the same contour. This may be a special case.
|
|
if (sil.intersections[i].pos() == sil.intersections[j-1].pos()) {
|
|
// Two successive segments meet exactly at the vertical line.
|
|
#ifdef SLIC3R_DEBUG
|
|
// Verify that the segments of sil.intersections[i] and sil.intersections[j-1] are adjoint.
|
|
size_t iSegment2 = sil.intersections[j-1].iSegment;
|
|
size_t iPrev2 = ((iSegment2 == 0) ? contour.size() : iSegment2) - 1;
|
|
myassert(iSegment == iPrev2 || iSegment2 == iPrev);
|
|
#endif /* SLIC3R_DEBUG */
|
|
if (sil.intersections[i].type == sil.intersections[j-1].type) {
|
|
// Two successive segments of the same direction (both to the right or both to the left)
|
|
// meet exactly at the vertical line.
|
|
// Remove the second intersection point.
|
|
} else {
|
|
// This is a loop returning to the same point.
|
|
// It may as well be a vertex of a loop touching this vertical line.
|
|
// Remove both the lines.
|
|
-- j;
|
|
}
|
|
} else if (sil.intersections[i].type == sil.intersections[j-1].type) {
|
|
// Two non successive segments of the same direction (both to the right or both to the left)
|
|
// meet exactly at the vertical line. That means there is a Z shaped path, where the center segment
|
|
// of the Z shaped path is aligned with this vertical line.
|
|
// Remove one of the intersection points while maximizing the vertical segment length.
|
|
if (low) {
|
|
// Remove the second intersection point, keep the first intersection point.
|
|
} else {
|
|
// Remove the first intersection point, keep the second intersection point.
|
|
sil.intersections[j-1] = sil.intersections[i];
|
|
}
|
|
} else {
|
|
// Vertical line intersects a contour segment at a general position (not at one of its end points).
|
|
// or the contour just touches this vertical line with a vertical segment or a sequence of vertical segments.
|
|
// Keep both intersection points.
|
|
if (j < i)
|
|
sil.intersections[j] = sil.intersections[i];
|
|
++ j;
|
|
}
|
|
} else {
|
|
// Vertical line intersects a contour segment at a general position (not at one of its end points).
|
|
if (j < i)
|
|
sil.intersections[j] = sil.intersections[i];
|
|
++ j;
|
|
}
|
|
}
|
|
// Shrink the list of intersections, if any of the intersection was removed during the classification.
|
|
if (j < sil.intersections.size())
|
|
sil.intersections.erase(sil.intersections.begin() + j, sil.intersections.end());
|
|
}
|
|
|
|
// Verify the segments. If something is wrong, give up.
|
|
#define ASSERT_OR_RETURN(CONDITION) do { assert(CONDITION); if (! (CONDITION)) return false; } while (0)
|
|
for (size_t i_seg = 0; i_seg < segs.size(); ++ i_seg) {
|
|
SegmentedIntersectionLine &sil = segs[i_seg];
|
|
// The intersection points have to be even.
|
|
ASSERT_OR_RETURN((sil.intersections.size() & 1) == 0);
|
|
for (size_t i = 0; i < sil.intersections.size();) {
|
|
// An intersection segment crossing the bigger contour may cross the inner offsetted contour even number of times.
|
|
ASSERT_OR_RETURN(sil.intersections[i].type == SegmentIntersection::OUTER_LOW);
|
|
size_t j = i + 1;
|
|
ASSERT_OR_RETURN(j < sil.intersections.size());
|
|
ASSERT_OR_RETURN(sil.intersections[j].type == SegmentIntersection::INNER_LOW || sil.intersections[j].type == SegmentIntersection::OUTER_HIGH);
|
|
for (; j < sil.intersections.size() && sil.intersections[j].is_inner(); ++ j) ;
|
|
ASSERT_OR_RETURN(j < sil.intersections.size());
|
|
ASSERT_OR_RETURN((j & 1) == 1);
|
|
ASSERT_OR_RETURN(sil.intersections[j].type == SegmentIntersection::OUTER_HIGH);
|
|
ASSERT_OR_RETURN(i + 1 == j || sil.intersections[j - 1].type == SegmentIntersection::INNER_HIGH);
|
|
i = j + 1;
|
|
}
|
|
}
|
|
#undef ASSERT_OR_RETURN
|
|
|
|
#ifdef SLIC3R_DEBUG
|
|
// Paint the segments and finalize the SVG file.
|
|
for (size_t i_seg = 0; i_seg < segs.size(); ++ i_seg) {
|
|
SegmentedIntersectionLine &sil = segs[i_seg];
|
|
for (size_t i = 0; i < sil.intersections.size();) {
|
|
size_t j = i + 1;
|
|
for (; j < sil.intersections.size() && sil.intersections[j].is_inner(); ++ j) ;
|
|
if (i + 1 == j) {
|
|
svg.draw(Line(Point(sil.pos, sil.intersections[i].pos()), Point(sil.pos, sil.intersections[j].pos())), "blue");
|
|
} else {
|
|
svg.draw(Line(Point(sil.pos, sil.intersections[i].pos()), Point(sil.pos, sil.intersections[i+1].pos())), "green");
|
|
svg.draw(Line(Point(sil.pos, sil.intersections[i+1].pos()), Point(sil.pos, sil.intersections[j-1].pos())), (j - i + 1 > 4) ? "yellow" : "magenta");
|
|
svg.draw(Line(Point(sil.pos, sil.intersections[j-1].pos()), Point(sil.pos, sil.intersections[j].pos())), "green");
|
|
}
|
|
i = j + 1;
|
|
}
|
|
}
|
|
svg.Close();
|
|
#endif /* SLIC3R_DEBUG */
|
|
|
|
// For each outer only chords, measure their maximum distance to the bow of the outer contour.
|
|
// Mark an outer only chord as consumed, if the distance is low.
|
|
for (size_t i_vline = 0; i_vline < segs.size(); ++ i_vline) {
|
|
SegmentedIntersectionLine &seg = segs[i_vline];
|
|
for (size_t i_intersection = 0; i_intersection + 1 < seg.intersections.size(); ++ i_intersection) {
|
|
if (seg.intersections[i_intersection].type == SegmentIntersection::OUTER_LOW &&
|
|
seg.intersections[i_intersection+1].type == SegmentIntersection::OUTER_HIGH) {
|
|
bool consumed = false;
|
|
// if (full_infill) {
|
|
// measure_outer_contour_slab(poly_with_offset, segs, i_vline, i_ntersection);
|
|
// } else
|
|
consumed = true;
|
|
seg.intersections[i_intersection].consumed_vertical_up = consumed;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Now construct a graph.
|
|
// Find the first point.
|
|
// Naively one would expect to achieve best results by chaining the paths by the shortest distance,
|
|
// but that procedure does not create the longest continuous paths.
|
|
// A simple "sweep left to right" procedure achieves better results.
|
|
size_t i_vline = 0;
|
|
size_t i_intersection = size_t(-1);
|
|
// Follow the line, connect the lines into a graph.
|
|
// Until no new line could be added to the output path:
|
|
Point pointLast;
|
|
Polyline *polyline_current = NULL;
|
|
if (! polylines_out.empty())
|
|
pointLast = polylines_out.back().points.back();
|
|
for (;;) {
|
|
if (i_intersection == size_t(-1)) {
|
|
// The path has been interrupted. Find a next starting point, closest to the previous extruder position.
|
|
coordf_t dist2min = std::numeric_limits<coordf_t>().max();
|
|
for (size_t i_vline2 = 0; i_vline2 < segs.size(); ++ i_vline2) {
|
|
const SegmentedIntersectionLine &seg = segs[i_vline2];
|
|
if (! seg.intersections.empty()) {
|
|
myassert(seg.intersections.size() > 1);
|
|
// Even number of intersections with the loops.
|
|
myassert((seg.intersections.size() & 1) == 0);
|
|
myassert(seg.intersections.front().type == SegmentIntersection::OUTER_LOW);
|
|
for (size_t i = 0; i < seg.intersections.size(); ++ i) {
|
|
const SegmentIntersection &intrsctn = seg.intersections[i];
|
|
if (intrsctn.is_outer()) {
|
|
myassert(intrsctn.is_low() || i > 0);
|
|
bool consumed = intrsctn.is_low() ?
|
|
intrsctn.consumed_vertical_up :
|
|
seg.intersections[i-1].consumed_vertical_up;
|
|
if (! consumed) {
|
|
coordf_t dist2 = sqr(coordf_t(pointLast.x - seg.pos)) + sqr(coordf_t(pointLast.y - intrsctn.pos()));
|
|
if (dist2 < dist2min) {
|
|
dist2min = dist2;
|
|
i_vline = i_vline2;
|
|
i_intersection = i;
|
|
//FIXME We are taking the first left point always. Verify, that the caller chains the paths
|
|
// by a shortest distance, while reversing the paths if needed.
|
|
//if (polylines_out.empty())
|
|
// Initial state, take the first line, which is the first from the left.
|
|
goto found;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (i_intersection == size_t(-1))
|
|
// We are finished.
|
|
break;
|
|
found:
|
|
// Start a new path.
|
|
polylines_out.push_back(Polyline());
|
|
polyline_current = &polylines_out.back();
|
|
// Emit the first point of a path.
|
|
pointLast = Point(segs[i_vline].pos, segs[i_vline].intersections[i_intersection].pos());
|
|
polyline_current->points.push_back(pointLast);
|
|
}
|
|
|
|
// From the initial point (i_vline, i_intersection), follow a path.
|
|
SegmentedIntersectionLine &seg = segs[i_vline];
|
|
SegmentIntersection *intrsctn = &seg.intersections[i_intersection];
|
|
bool going_up = intrsctn->is_low();
|
|
bool try_connect = false;
|
|
if (going_up) {
|
|
myassert(! intrsctn->consumed_vertical_up);
|
|
myassert(i_intersection + 1 < seg.intersections.size());
|
|
// Step back to the beginning of the vertical segment to mark it as consumed.
|
|
if (intrsctn->is_inner()) {
|
|
myassert(i_intersection > 0);
|
|
-- intrsctn;
|
|
-- i_intersection;
|
|
}
|
|
// Consume the complete vertical segment up to the outer contour.
|
|
do {
|
|
intrsctn->consumed_vertical_up = true;
|
|
++ intrsctn;
|
|
++ i_intersection;
|
|
myassert(i_intersection < seg.intersections.size());
|
|
} while (intrsctn->type != SegmentIntersection::OUTER_HIGH);
|
|
if ((intrsctn - 1)->is_inner()) {
|
|
// Step back.
|
|
-- intrsctn;
|
|
-- i_intersection;
|
|
myassert(intrsctn->type == SegmentIntersection::INNER_HIGH);
|
|
try_connect = true;
|
|
}
|
|
} else {
|
|
// Going down.
|
|
myassert(intrsctn->is_high());
|
|
myassert(i_intersection > 0);
|
|
myassert(! (intrsctn - 1)->consumed_vertical_up);
|
|
// Consume the complete vertical segment up to the outer contour.
|
|
if (intrsctn->is_inner())
|
|
intrsctn->consumed_vertical_up = true;
|
|
do {
|
|
myassert(i_intersection > 0);
|
|
-- intrsctn;
|
|
-- i_intersection;
|
|
intrsctn->consumed_vertical_up = true;
|
|
} while (intrsctn->type != SegmentIntersection::OUTER_LOW);
|
|
if ((intrsctn + 1)->is_inner()) {
|
|
// Step back.
|
|
++ intrsctn;
|
|
++ i_intersection;
|
|
myassert(intrsctn->type == SegmentIntersection::INNER_LOW);
|
|
try_connect = true;
|
|
}
|
|
}
|
|
if (try_connect) {
|
|
// Decide, whether to finish the segment, or whether to follow the perimeter.
|
|
|
|
// 1) Find possible connection points on the previous / next vertical line.
|
|
int iPrev = intersection_on_prev_vertical_line(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection);
|
|
int iNext = intersection_on_next_vertical_line(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection);
|
|
IntersectionTypeOtherVLine intrsctn_type_prev = intersection_type_on_prev_vertical_line(segs, i_vline, i_intersection, iPrev);
|
|
IntersectionTypeOtherVLine intrsctn_type_next = intersection_type_on_next_vertical_line(segs, i_vline, i_intersection, iNext);
|
|
|
|
// 2) Find possible connection points on the same vertical line.
|
|
int iAbove = -1;
|
|
int iBelow = -1;
|
|
int iSegAbove = -1;
|
|
int iSegBelow = -1;
|
|
{
|
|
SegmentIntersection::SegmentIntersectionType type_crossing = (intrsctn->type == SegmentIntersection::INNER_LOW) ?
|
|
SegmentIntersection::INNER_HIGH : SegmentIntersection::INNER_LOW;
|
|
// Does the perimeter intersect the current vertical line above intrsctn?
|
|
for (size_t i = i_intersection + 1; i + 1 < seg.intersections.size(); ++ i)
|
|
// if (seg.intersections[i].iContour == intrsctn->iContour && seg.intersections[i].type == type_crossing) {
|
|
if (seg.intersections[i].iContour == intrsctn->iContour) {
|
|
iAbove = i;
|
|
iSegAbove = seg.intersections[i].iSegment;
|
|
break;
|
|
}
|
|
// Does the perimeter intersect the current vertical line below intrsctn?
|
|
for (size_t i = i_intersection - 1; i > 0; -- i)
|
|
// if (seg.intersections[i].iContour == intrsctn->iContour && seg.intersections[i].type == type_crossing) {
|
|
if (seg.intersections[i].iContour == intrsctn->iContour) {
|
|
iBelow = i;
|
|
iSegBelow = seg.intersections[i].iSegment;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// 3) Sort the intersection points, clear iPrev / iNext / iSegBelow / iSegAbove,
|
|
// if it is preceded by any other intersection point along the contour.
|
|
unsigned int vert_seg_dir_valid_mask =
|
|
(going_up ?
|
|
(iSegAbove != -1 && seg.intersections[iAbove].type == SegmentIntersection::INNER_LOW) :
|
|
(iSegBelow != -1 && seg.intersections[iBelow].type == SegmentIntersection::INNER_HIGH)) ?
|
|
(DIR_FORWARD | DIR_BACKWARD) :
|
|
0;
|
|
{
|
|
// Invalidate iPrev resp. iNext, if the perimeter crosses the current vertical line earlier than iPrev resp. iNext.
|
|
// The perimeter contour orientation.
|
|
const bool forward = intrsctn->is_low(); // == poly_with_offset.is_contour_ccw(intrsctn->iContour);
|
|
const Polygon &poly = poly_with_offset.contour(intrsctn->iContour);
|
|
{
|
|
int d_horiz = (iPrev == -1) ? std::numeric_limits<int>::max() :
|
|
distance_of_segmens(poly, segs[i_vline-1].intersections[iPrev].iSegment, intrsctn->iSegment, forward);
|
|
int d_down = (iSegBelow == -1) ? std::numeric_limits<int>::max() :
|
|
distance_of_segmens(poly, iSegBelow, intrsctn->iSegment, forward);
|
|
int d_up = (iSegAbove == -1) ? std::numeric_limits<int>::max() :
|
|
distance_of_segmens(poly, iSegAbove, intrsctn->iSegment, forward);
|
|
if (intrsctn_type_prev == INTERSECTION_TYPE_OTHER_VLINE_OK && d_horiz > std::min(d_down, d_up))
|
|
// The vertical crossing comes eralier than the prev crossing.
|
|
// Disable the perimeter going back.
|
|
intrsctn_type_prev = INTERSECTION_TYPE_OTHER_VLINE_NOT_FIRST;
|
|
if (going_up ? (d_up > std::min(d_horiz, d_down)) : (d_down > std::min(d_horiz, d_up)))
|
|
// The horizontal crossing comes earlier than the vertical crossing.
|
|
vert_seg_dir_valid_mask &= ~(forward ? DIR_BACKWARD : DIR_FORWARD);
|
|
}
|
|
{
|
|
int d_horiz = (iNext == -1) ? std::numeric_limits<int>::max() :
|
|
distance_of_segmens(poly, intrsctn->iSegment, segs[i_vline+1].intersections[iNext].iSegment, forward);
|
|
int d_down = (iSegBelow == -1) ? std::numeric_limits<int>::max() :
|
|
distance_of_segmens(poly, intrsctn->iSegment, iSegBelow, forward);
|
|
int d_up = (iSegAbove == -1) ? std::numeric_limits<int>::max() :
|
|
distance_of_segmens(poly, intrsctn->iSegment, iSegAbove, forward);
|
|
if (intrsctn_type_next == INTERSECTION_TYPE_OTHER_VLINE_OK && d_horiz > std::min(d_down, d_up))
|
|
// The vertical crossing comes eralier than the prev crossing.
|
|
// Disable the perimeter going forward.
|
|
intrsctn_type_next = INTERSECTION_TYPE_OTHER_VLINE_NOT_FIRST;
|
|
if (going_up ? (d_up > std::min(d_horiz, d_down)) : (d_down > std::min(d_horiz, d_up)))
|
|
// The horizontal crossing comes earlier than the vertical crossing.
|
|
vert_seg_dir_valid_mask &= ~(forward ? DIR_FORWARD : DIR_BACKWARD);
|
|
}
|
|
}
|
|
|
|
// 4) Try to connect to a previous or next vertical line, making a zig-zag pattern.
|
|
if (intrsctn_type_prev == INTERSECTION_TYPE_OTHER_VLINE_OK || intrsctn_type_next == INTERSECTION_TYPE_OTHER_VLINE_OK) {
|
|
coordf_t distPrev = (intrsctn_type_prev != INTERSECTION_TYPE_OTHER_VLINE_OK) ? std::numeric_limits<coord_t>::max() :
|
|
measure_perimeter_prev_segment_length(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, iPrev);
|
|
coordf_t distNext = (intrsctn_type_next != INTERSECTION_TYPE_OTHER_VLINE_OK) ? std::numeric_limits<coord_t>::max() :
|
|
measure_perimeter_next_segment_length(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, iNext);
|
|
// Take the shorter path.
|
|
//FIXME this may not be always the best strategy to take the shortest connection line now.
|
|
bool take_next = (intrsctn_type_prev == INTERSECTION_TYPE_OTHER_VLINE_OK && intrsctn_type_next == INTERSECTION_TYPE_OTHER_VLINE_OK) ?
|
|
(distNext < distPrev) :
|
|
intrsctn_type_next == INTERSECTION_TYPE_OTHER_VLINE_OK;
|
|
myassert(intrsctn->is_inner());
|
|
bool skip = params.dont_connect || (link_max_length > 0 && (take_next ? distNext : distPrev) > link_max_length);
|
|
if (skip) {
|
|
// Just skip the connecting contour and start a new path.
|
|
goto dont_connect;
|
|
polyline_current->points.push_back(Point(seg.pos, intrsctn->pos()));
|
|
polylines_out.push_back(Polyline());
|
|
polyline_current = &polylines_out.back();
|
|
const SegmentedIntersectionLine &il2 = segs[take_next ? (i_vline + 1) : (i_vline - 1)];
|
|
polyline_current->points.push_back(Point(il2.pos, il2.intersections[take_next ? iNext : iPrev].pos()));
|
|
} else {
|
|
polyline_current->points.push_back(Point(seg.pos, intrsctn->pos()));
|
|
emit_perimeter_prev_next_segment(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, take_next ? iNext : iPrev, *polyline_current, take_next);
|
|
}
|
|
// Mark both the left and right connecting segment as consumed, because one cannot go to this intersection point as it has been consumed.
|
|
if (iPrev != -1)
|
|
segs[i_vline-1].intersections[iPrev].consumed_perimeter_right = true;
|
|
if (iNext != -1)
|
|
intrsctn->consumed_perimeter_right = true;
|
|
//FIXME consume the left / right connecting segments at the other end of this line? Currently it is not critical because a perimeter segment is not followed if the vertical segment at the other side has already been consumed.
|
|
// Advance to the neighbor line.
|
|
if (take_next) {
|
|
++ i_vline;
|
|
i_intersection = iNext;
|
|
} else {
|
|
-- i_vline;
|
|
i_intersection = iPrev;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// 5) Try to connect to a previous or next point on the same vertical line.
|
|
if (vert_seg_dir_valid_mask) {
|
|
bool valid = true;
|
|
// Verify, that there is no intersection with the inner contour up to the end of the contour segment.
|
|
// Verify, that the successive segment has not been consumed yet.
|
|
if (going_up) {
|
|
if (seg.intersections[iAbove].consumed_vertical_up) {
|
|
valid = false;
|
|
} else {
|
|
for (int i = (int)i_intersection + 1; i < iAbove && valid; ++i)
|
|
if (seg.intersections[i].is_inner())
|
|
valid = false;
|
|
}
|
|
} else {
|
|
if (seg.intersections[iBelow-1].consumed_vertical_up) {
|
|
valid = false;
|
|
} else {
|
|
for (int i = iBelow + 1; i < (int)i_intersection && valid; ++i)
|
|
if (seg.intersections[i].is_inner())
|
|
valid = false;
|
|
}
|
|
}
|
|
if (valid) {
|
|
const Polygon &poly = poly_with_offset.contour(intrsctn->iContour);
|
|
int iNext = going_up ? iAbove : iBelow;
|
|
int iSegNext = going_up ? iSegAbove : iSegBelow;
|
|
bool dir_forward = (vert_seg_dir_valid_mask == (DIR_FORWARD | DIR_BACKWARD)) ?
|
|
// Take the shorter length between the current and the next intersection point.
|
|
(distance_of_segmens(poly, intrsctn->iSegment, iSegNext, true) <
|
|
distance_of_segmens(poly, intrsctn->iSegment, iSegNext, false)) :
|
|
(vert_seg_dir_valid_mask == DIR_FORWARD);
|
|
// Skip this perimeter line?
|
|
bool skip = params.dont_connect;
|
|
if (! skip && link_max_length > 0) {
|
|
coordf_t link_length = measure_perimeter_segment_on_vertical_line_length(
|
|
poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, iNext, dir_forward);
|
|
skip = link_length > link_max_length;
|
|
}
|
|
polyline_current->points.push_back(Point(seg.pos, intrsctn->pos()));
|
|
if (skip) {
|
|
// Just skip the connecting contour and start a new path.
|
|
polylines_out.push_back(Polyline());
|
|
polyline_current = &polylines_out.back();
|
|
polyline_current->points.push_back(Point(seg.pos, seg.intersections[iNext].pos()));
|
|
} else {
|
|
// Consume the connecting contour and the next segment.
|
|
emit_perimeter_segment_on_vertical_line(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, iNext, *polyline_current, dir_forward);
|
|
}
|
|
// Mark both the left and right connecting segment as consumed, because one cannot go to this intersection point as it has been consumed.
|
|
// If there are any outer intersection points skipped (bypassed) by the contour,
|
|
// mark them as processed.
|
|
if (going_up) {
|
|
for (int i = (int)i_intersection; i < iAbove; ++ i)
|
|
seg.intersections[i].consumed_vertical_up = true;
|
|
} else {
|
|
for (int i = iBelow; i < (int)i_intersection; ++ i)
|
|
seg.intersections[i].consumed_vertical_up = true;
|
|
}
|
|
// seg.intersections[going_up ? i_intersection : i_intersection - 1].consumed_vertical_up = true;
|
|
intrsctn->consumed_perimeter_right = true;
|
|
i_intersection = iNext;
|
|
if (going_up)
|
|
++ intrsctn;
|
|
else
|
|
-- intrsctn;
|
|
intrsctn->consumed_perimeter_right = true;
|
|
continue;
|
|
}
|
|
}
|
|
dont_connect:
|
|
// No way to continue the current polyline. Take the rest of the line up to the outer contour.
|
|
// This will finish the polyline, starting another polyline at a new point.
|
|
if (going_up)
|
|
++ intrsctn;
|
|
else
|
|
-- intrsctn;
|
|
}
|
|
|
|
// Finish the current vertical line,
|
|
// reset the current vertical line to pick a new starting point in the next round.
|
|
myassert(intrsctn->is_outer());
|
|
myassert(intrsctn->is_high() == going_up);
|
|
pointLast = Point(seg.pos, intrsctn->pos());
|
|
polyline_current->points.push_back(pointLast);
|
|
// Handle duplicate points and zero length segments.
|
|
polyline_current->remove_duplicate_points();
|
|
myassert(! polyline_current->has_duplicate_points());
|
|
// Handle nearly zero length edges.
|
|
if (polyline_current->points.size() <= 1 ||
|
|
(polyline_current->points.size() == 2 &&
|
|
std::abs(polyline_current->points.front().x - polyline_current->points.back().x) < SCALED_EPSILON &&
|
|
std::abs(polyline_current->points.front().y - polyline_current->points.back().y) < SCALED_EPSILON))
|
|
polylines_out.pop_back();
|
|
intrsctn = NULL;
|
|
i_intersection = -1;
|
|
polyline_current = NULL;
|
|
}
|
|
|
|
#ifdef SLIC3R_DEBUG
|
|
{
|
|
{
|
|
::Slic3r::SVG svg(debug_out_path("FillRectilinear2-final-%03d.svg", iRun), bbox_svg); // , scale_(1.));
|
|
poly_with_offset.export_to_svg(svg);
|
|
for (size_t i = n_polylines_out_initial; i < polylines_out.size(); ++ i)
|
|
svg.draw(polylines_out[i].lines(), "black");
|
|
}
|
|
// Paint a picture per polyline. This makes it easier to discover the order of the polylines and their overlap.
|
|
for (size_t i_polyline = n_polylines_out_initial; i_polyline < polylines_out.size(); ++ i_polyline) {
|
|
::Slic3r::SVG svg(debug_out_path("FillRectilinear2-final-%03d-%03d.svg", iRun, i_polyline), bbox_svg); // , scale_(1.));
|
|
svg.draw(polylines_out[i_polyline].lines(), "black");
|
|
}
|
|
}
|
|
#endif /* SLIC3R_DEBUG */
|
|
|
|
// paths must be rotated back
|
|
for (Polylines::iterator it = polylines_out.begin() + n_polylines_out_initial; it != polylines_out.end(); ++ it) {
|
|
// No need to translate, the absolute position is irrelevant.
|
|
// it->translate(- rotate_vector.second.x, - rotate_vector.second.y);
|
|
myassert(! it->has_duplicate_points());
|
|
it->rotate(rotate_vector.first);
|
|
//FIXME rather simplify the paths to avoid very short edges?
|
|
//myassert(! it->has_duplicate_points());
|
|
it->remove_duplicate_points();
|
|
}
|
|
|
|
#ifdef SLIC3R_DEBUG
|
|
// Verify, that there are no duplicate points in the sequence.
|
|
for (Polylines::iterator it = polylines_out.begin(); it != polylines_out.end(); ++ it)
|
|
myassert(! it->has_duplicate_points());
|
|
#endif /* SLIC3R_DEBUG */
|
|
|
|
return true;
|
|
}
|
|
|
|
Polylines FillRectilinear2::fill_surface(const Surface *surface, const FillParams ¶ms)
|
|
{
|
|
Polylines polylines_out;
|
|
if (! fill_surface_by_lines(surface, params, 0.f, 0.f, polylines_out)) {
|
|
printf("FillRectilinear2::fill_surface() failed to fill a region.\n");
|
|
}
|
|
return polylines_out;
|
|
}
|
|
|
|
Polylines FillGrid2::fill_surface(const Surface *surface, const FillParams ¶ms)
|
|
{
|
|
// Each linear fill covers half of the target coverage.
|
|
FillParams params2 = params;
|
|
params2.density *= 0.5f;
|
|
Polylines polylines_out;
|
|
if (! fill_surface_by_lines(surface, params2, 0.f, 0.f, polylines_out) ||
|
|
! fill_surface_by_lines(surface, params2, float(M_PI / 2.), 0.f, polylines_out)) {
|
|
printf("FillGrid2::fill_surface() failed to fill a region.\n");
|
|
}
|
|
return polylines_out;
|
|
}
|
|
|
|
Polylines FillTriangles::fill_surface(const Surface *surface, const FillParams ¶ms)
|
|
{
|
|
// Each linear fill covers 1/3 of the target coverage.
|
|
FillParams params2 = params;
|
|
params2.density *= 0.333333333f;
|
|
Polylines polylines_out;
|
|
if (! fill_surface_by_lines(surface, params2, 0.f, 0., polylines_out) ||
|
|
! fill_surface_by_lines(surface, params2, float(M_PI / 3.), 0., polylines_out) ||
|
|
! fill_surface_by_lines(surface, params2, float(2. * M_PI / 3.), 0.5 * this->spacing / params2.density, polylines_out)) {
|
|
printf("FillTriangles::fill_surface() failed to fill a region.\n");
|
|
}
|
|
return polylines_out;
|
|
}
|
|
|
|
Polylines FillStars::fill_surface(const Surface *surface, const FillParams ¶ms)
|
|
{
|
|
// Each linear fill covers 1/3 of the target coverage.
|
|
FillParams params2 = params;
|
|
params2.density *= 0.333333333f;
|
|
Polylines polylines_out;
|
|
if (! fill_surface_by_lines(surface, params2, 0.f, 0., polylines_out) ||
|
|
! fill_surface_by_lines(surface, params2, float(M_PI / 3.), 0., polylines_out) ||
|
|
! fill_surface_by_lines(surface, params2, float(2. * M_PI / 3.), 0., polylines_out)) {
|
|
printf("FillStars::fill_surface() failed to fill a region.\n");
|
|
}
|
|
return polylines_out;
|
|
}
|
|
|
|
Polylines FillCubic::fill_surface(const Surface *surface, const FillParams ¶ms)
|
|
{
|
|
// Each linear fill covers 1/3 of the target coverage.
|
|
FillParams params2 = params;
|
|
params2.density *= 0.333333333f;
|
|
Polylines polylines_out;
|
|
if (! fill_surface_by_lines(surface, params2, 0.f, z, polylines_out) ||
|
|
! fill_surface_by_lines(surface, params2, float(M_PI / 3.), -z, polylines_out) ||
|
|
// Rotated by PI*2/3 + PI to achieve reverse sloping wall.
|
|
! fill_surface_by_lines(surface, params2, float(M_PI * 2. / 3.), z, polylines_out)) {
|
|
printf("FillCubic::fill_surface() failed to fill a region.\n");
|
|
}
|
|
return polylines_out;
|
|
}
|
|
|
|
} // namespace Slic3r
|