PrusaSlicer-NonPlainar/src/libslic3r/Flow.cpp
Vojtech Bubnik 067cde85f1 WIP Refactoring of exceptions:
1) All slicer's exceptions are now derived from Slic3r::Exception.
2) New exceptions are defined for slicing errors.
3) Exceptions are propagated to the Plater to show.
It remains to modify the slicing back-end to throw the new SlicingError
exceptions instead of std::runtime_error and to show the other exceptions
by a message dialog instead of a notification.
2020-09-14 18:03:22 +02:00

257 lines
11 KiB
C++

#include "Flow.hpp"
#include "I18N.hpp"
#include "Print.hpp"
#include <cmath>
#include <assert.h>
#include <boost/algorithm/string/predicate.hpp>
// Mark string for localization and translate.
#define L(s) Slic3r::I18N::translate(s)
namespace Slic3r {
FlowErrorNegativeSpacing::FlowErrorNegativeSpacing() :
FlowError("Flow::spacing() produced negative spacing. Did you set some extrusion width too small?") {}
FlowErrorNegativeFlow::FlowErrorNegativeFlow() :
FlowError("Flow::mm3_per_mm() produced negative flow. Did you set some extrusion width too small?") {}
// This static method returns a sane extrusion width default.
float Flow::auto_extrusion_width(FlowRole role, float nozzle_diameter)
{
switch (role) {
case frSupportMaterial:
case frSupportMaterialInterface:
case frTopSolidInfill:
return nozzle_diameter;
default:
case frExternalPerimeter:
case frPerimeter:
case frSolidInfill:
case frInfill:
return 1.125f * nozzle_diameter;
}
}
// Used by the Flow::extrusion_width() funtion to provide hints to the user on default extrusion width values,
// and to provide reasonable values to the PlaceholderParser.
static inline FlowRole opt_key_to_flow_role(const std::string &opt_key)
{
if (opt_key == "perimeter_extrusion_width" ||
// or all the defaults:
opt_key == "extrusion_width" || opt_key == "first_layer_extrusion_width")
return frPerimeter;
else if (opt_key == "external_perimeter_extrusion_width")
return frExternalPerimeter;
else if (opt_key == "infill_extrusion_width")
return frInfill;
else if (opt_key == "solid_infill_extrusion_width")
return frSolidInfill;
else if (opt_key == "top_infill_extrusion_width")
return frTopSolidInfill;
else if (opt_key == "support_material_extrusion_width")
return frSupportMaterial;
else
throw Slic3r::RuntimeError("opt_key_to_flow_role: invalid argument");
};
static inline void throw_on_missing_variable(const std::string &opt_key, const char *dependent_opt_key)
{
throw FlowErrorMissingVariable((boost::format(L("Cannot calculate extrusion width for %1%: Variable \"%2%\" not accessible.")) % opt_key % dependent_opt_key).str());
}
// Used to provide hints to the user on default extrusion width values, and to provide reasonable values to the PlaceholderParser.
double Flow::extrusion_width(const std::string& opt_key, const ConfigOptionFloatOrPercent* opt, const ConfigOptionResolver& config, const unsigned int first_printing_extruder)
{
assert(opt != nullptr);
bool first_layer = boost::starts_with(opt_key, "first_layer_");
#if 0
// This is the logic used for skit / brim, but not for the rest of the 1st layer.
if (opt->value == 0. && first_layer) {
// The "first_layer_extrusion_width" was set to zero, try a substitute.
opt = config.option<ConfigOptionFloatOrPercent>("perimeter_extrusion_width");
if (opt == nullptr)
throw_on_missing_variable(opt_key, "perimeter_extrusion_width");
}
#endif
if (opt->value == 0.) {
// The role specific extrusion width value was set to zero, try the role non-specific extrusion width.
opt = config.option<ConfigOptionFloatOrPercent>("extrusion_width");
if (opt == nullptr)
throw_on_missing_variable(opt_key, "extrusion_width");
// Use the "layer_height" instead of "first_layer_height".
first_layer = false;
}
if (opt->percent) {
auto opt_key_layer_height = first_layer ? "first_layer_height" : "layer_height";
auto opt_layer_height = config.option(opt_key_layer_height);
if (opt_layer_height == nullptr)
throw_on_missing_variable(opt_key, opt_key_layer_height);
double layer_height = opt_layer_height->getFloat();
if (first_layer && static_cast<const ConfigOptionFloatOrPercent*>(opt_layer_height)->percent) {
// first_layer_height depends on layer_height.
opt_layer_height = config.option("layer_height");
if (opt_layer_height == nullptr)
throw_on_missing_variable(opt_key, "layer_height");
layer_height *= 0.01 * opt_layer_height->getFloat();
}
return opt->get_abs_value(layer_height);
}
if (opt->value == 0.) {
// If user left option to 0, calculate a sane default width.
auto opt_nozzle_diameters = config.option<ConfigOptionFloats>("nozzle_diameter");
if (opt_nozzle_diameters == nullptr)
throw_on_missing_variable(opt_key, "nozzle_diameter");
return auto_extrusion_width(opt_key_to_flow_role(opt_key), float(opt_nozzle_diameters->get_at(first_printing_extruder)));
}
return opt->value;
}
// Used to provide hints to the user on default extrusion width values, and to provide reasonable values to the PlaceholderParser.
double Flow::extrusion_width(const std::string& opt_key, const ConfigOptionResolver &config, const unsigned int first_printing_extruder)
{
return extrusion_width(opt_key, config.option<ConfigOptionFloatOrPercent>(opt_key), config, first_printing_extruder);
}
// This constructor builds a Flow object from an extrusion width config setting
// and other context properties.
Flow Flow::new_from_config_width(FlowRole role, const ConfigOptionFloatOrPercent &width, float nozzle_diameter, float height, float bridge_flow_ratio)
{
// we need layer height unless it's a bridge
if (height <= 0 && bridge_flow_ratio == 0)
throw Slic3r::InvalidArgument("Invalid flow height supplied to new_from_config_width()");
float w;
if (bridge_flow_ratio > 0) {
// If bridge flow was requested, calculate the bridge width.
height = w = (bridge_flow_ratio == 1.) ?
// optimization to avoid sqrt()
nozzle_diameter :
sqrt(bridge_flow_ratio) * nozzle_diameter;
} else if (! width.percent && width.value == 0.) {
// If user left option to 0, calculate a sane default width.
w = auto_extrusion_width(role, nozzle_diameter);
} else {
// If user set a manual value, use it.
w = float(width.get_abs_value(height));
}
return Flow(w, height, nozzle_diameter, bridge_flow_ratio > 0);
}
// This constructor builds a Flow object from a given centerline spacing.
Flow Flow::new_from_spacing(float spacing, float nozzle_diameter, float height, bool bridge)
{
// we need layer height unless it's a bridge
if (height <= 0 && !bridge)
throw Slic3r::InvalidArgument("Invalid flow height supplied to new_from_spacing()");
// Calculate width from spacing.
// For normal extrusons, extrusion width is wider than the spacing due to the rounding and squishing of the extrusions.
// For bridge extrusions, the extrusions are placed with a tiny BRIDGE_EXTRA_SPACING gaps between the threads.
float width = float(bridge ?
(spacing - BRIDGE_EXTRA_SPACING) :
#ifdef HAS_PERIMETER_LINE_OVERLAP
(spacing + PERIMETER_LINE_OVERLAP_FACTOR * height * (1. - 0.25 * PI));
#else
(spacing + height * (1. - 0.25 * PI)));
#endif
return Flow(width, bridge ? width : height, nozzle_diameter, bridge);
}
// This method returns the centerline spacing between two adjacent extrusions
// having the same extrusion width (and other properties).
float Flow::spacing() const
{
#ifdef HAS_PERIMETER_LINE_OVERLAP
if (this->bridge)
return this->width + BRIDGE_EXTRA_SPACING;
// rectangle with semicircles at the ends
float min_flow_spacing = this->width - this->height * (1. - 0.25 * PI);
float res = this->width - PERIMETER_LINE_OVERLAP_FACTOR * (this->width - min_flow_spacing);
#else
float res = float(this->bridge ? (this->width + BRIDGE_EXTRA_SPACING) : (this->width - this->height * (1. - 0.25 * PI)));
#endif
// assert(res > 0.f);
if (res <= 0.f)
throw FlowErrorNegativeSpacing();
return res;
}
// This method returns the centerline spacing between an extrusion using this
// flow and another one using another flow.
// this->spacing(other) shall return the same value as other.spacing(*this)
float Flow::spacing(const Flow &other) const
{
assert(this->height == other.height);
assert(this->bridge == other.bridge);
float res = float(this->bridge ?
0.5 * this->width + 0.5 * other.width + BRIDGE_EXTRA_SPACING :
0.5 * this->spacing() + 0.5 * other.spacing());
// assert(res > 0.f);
if (res <= 0.f)
throw FlowErrorNegativeSpacing();
return res;
}
// This method returns extrusion volume per head move unit.
double Flow::mm3_per_mm() const
{
float res = this->bridge ?
// Area of a circle with dmr of this->width.
float((this->width * this->width) * 0.25 * PI) :
// Rectangle with semicircles at the ends. ~ h (w - 0.215 h)
float(this->height * (this->width - this->height * (1. - 0.25 * PI)));
//assert(res > 0.);
if (res <= 0.)
throw FlowErrorNegativeFlow();
return res;
}
Flow support_material_flow(const PrintObject *object, float layer_height)
{
return Flow::new_from_config_width(
frSupportMaterial,
// The width parameter accepted by new_from_config_width is of type ConfigOptionFloatOrPercent, the Flow class takes care of the percent to value substitution.
(object->config().support_material_extrusion_width.value > 0) ? object->config().support_material_extrusion_width : object->config().extrusion_width,
// if object->config().support_material_extruder == 0 (which means to not trigger tool change, but use the current extruder instead), get_at will return the 0th component.
float(object->print()->config().nozzle_diameter.get_at(object->config().support_material_extruder-1)),
(layer_height > 0.f) ? layer_height : float(object->config().layer_height.value),
// bridge_flow_ratio
0.f);
}
Flow support_material_1st_layer_flow(const PrintObject *object, float layer_height)
{
const auto &width = (object->print()->config().first_layer_extrusion_width.value > 0) ? object->print()->config().first_layer_extrusion_width : object->config().support_material_extrusion_width;
return Flow::new_from_config_width(
frSupportMaterial,
// The width parameter accepted by new_from_config_width is of type ConfigOptionFloatOrPercent, the Flow class takes care of the percent to value substitution.
(width.value > 0) ? width : object->config().extrusion_width,
float(object->print()->config().nozzle_diameter.get_at(object->config().support_material_extruder-1)),
(layer_height > 0.f) ? layer_height : float(object->config().first_layer_height.get_abs_value(object->config().layer_height.value)),
// bridge_flow_ratio
0.f);
}
Flow support_material_interface_flow(const PrintObject *object, float layer_height)
{
return Flow::new_from_config_width(
frSupportMaterialInterface,
// The width parameter accepted by new_from_config_width is of type ConfigOptionFloatOrPercent, the Flow class takes care of the percent to value substitution.
(object->config().support_material_extrusion_width > 0) ? object->config().support_material_extrusion_width : object->config().extrusion_width,
// if object->config().support_material_interface_extruder == 0 (which means to not trigger tool change, but use the current extruder instead), get_at will return the 0th component.
float(object->print()->config().nozzle_diameter.get_at(object->config().support_material_interface_extruder-1)),
(layer_height > 0.f) ? layer_height : float(object->config().layer_height.value),
// bridge_flow_ratio
0.f);
}
}