2964 lines
169 KiB
C++
2964 lines
169 KiB
C++
#include "ClipperUtils.hpp"
|
||
#include "ExtrusionEntityCollection.hpp"
|
||
#include "PerimeterGenerator.hpp"
|
||
#include "Layer.hpp"
|
||
#include "Print.hpp"
|
||
#include "SupportMaterial.hpp"
|
||
#include "Fill/FillBase.hpp"
|
||
#include "EdgeGrid.hpp"
|
||
#include "Geometry.hpp"
|
||
|
||
#include <cmath>
|
||
#include <memory>
|
||
#include <boost/log/trivial.hpp>
|
||
|
||
#include <tbb/parallel_for.h>
|
||
#include <tbb/atomic.h>
|
||
#include <tbb/spin_mutex.h>
|
||
#include <tbb/task_group.h>
|
||
|
||
// #define SLIC3R_DEBUG
|
||
|
||
// Make assert active if SLIC3R_DEBUG
|
||
#ifdef SLIC3R_DEBUG
|
||
#define DEBUG
|
||
#define _DEBUG
|
||
#undef NDEBUG
|
||
#include "SVG.hpp"
|
||
#endif
|
||
|
||
// #undef NDEBUG
|
||
#include <cassert>
|
||
|
||
namespace Slic3r {
|
||
|
||
// Increment used to reach MARGIN in steps to avoid trespassing thin objects
|
||
#define NUM_MARGIN_STEPS 3
|
||
|
||
// Dimensions of a tree-like structure to save material
|
||
#define PILLAR_SIZE (2.5)
|
||
#define PILLAR_SPACING 10
|
||
|
||
//#define SUPPORT_SURFACES_OFFSET_PARAMETERS ClipperLib::jtMiter, 3.
|
||
//#define SUPPORT_SURFACES_OFFSET_PARAMETERS ClipperLib::jtMiter, 1.5
|
||
#define SUPPORT_SURFACES_OFFSET_PARAMETERS ClipperLib::jtSquare, 0.
|
||
|
||
#ifdef SLIC3R_DEBUG
|
||
const char* support_surface_type_to_color_name(const PrintObjectSupportMaterial::SupporLayerType surface_type)
|
||
{
|
||
switch (surface_type) {
|
||
case PrintObjectSupportMaterial::sltTopContact: return "rgb(255,0,0)"; // "red";
|
||
case PrintObjectSupportMaterial::sltTopInterface: return "rgb(0,255,0)"; // "green";
|
||
case PrintObjectSupportMaterial::sltBase: return "rgb(0,0,255)"; // "blue";
|
||
case PrintObjectSupportMaterial::sltBottomInterface:return "rgb(255,255,128)"; // yellow
|
||
case PrintObjectSupportMaterial::sltBottomContact: return "rgb(255,0,255)"; // magenta
|
||
case PrintObjectSupportMaterial::sltRaftInterface: return "rgb(0,255,255)";
|
||
case PrintObjectSupportMaterial::sltRaftBase: return "rgb(128,128,128)";
|
||
case PrintObjectSupportMaterial::sltUnknown: return "rgb(128,0,0)"; // maroon
|
||
default: return "rgb(64,64,64)";
|
||
};
|
||
}
|
||
|
||
Point export_support_surface_type_legend_to_svg_box_size()
|
||
{
|
||
return Point(scale_(1.+10.*8.), scale_(3.));
|
||
}
|
||
|
||
void export_support_surface_type_legend_to_svg(SVG &svg, const Point &pos)
|
||
{
|
||
// 1st row
|
||
coord_t pos_x0 = pos.x + scale_(1.);
|
||
coord_t pos_x = pos_x0;
|
||
coord_t pos_y = pos.y + scale_(1.5);
|
||
coord_t step_x = scale_(10.);
|
||
svg.draw_legend(Point(pos_x, pos_y), "top contact" , support_surface_type_to_color_name(PrintObjectSupportMaterial::sltTopContact));
|
||
pos_x += step_x;
|
||
svg.draw_legend(Point(pos_x, pos_y), "top iface" , support_surface_type_to_color_name(PrintObjectSupportMaterial::sltTopInterface));
|
||
pos_x += step_x;
|
||
svg.draw_legend(Point(pos_x, pos_y), "base" , support_surface_type_to_color_name(PrintObjectSupportMaterial::sltBase));
|
||
pos_x += step_x;
|
||
svg.draw_legend(Point(pos_x, pos_y), "bottom iface" , support_surface_type_to_color_name(PrintObjectSupportMaterial::sltBottomInterface));
|
||
pos_x += step_x;
|
||
svg.draw_legend(Point(pos_x, pos_y), "bottom contact" , support_surface_type_to_color_name(PrintObjectSupportMaterial::sltBottomContact));
|
||
// 2nd row
|
||
pos_x = pos_x0;
|
||
pos_y = pos.y+scale_(2.8);
|
||
svg.draw_legend(Point(pos_x, pos_y), "raft interface" , support_surface_type_to_color_name(PrintObjectSupportMaterial::sltRaftInterface));
|
||
pos_x += step_x;
|
||
svg.draw_legend(Point(pos_x, pos_y), "raft base" , support_surface_type_to_color_name(PrintObjectSupportMaterial::sltRaftBase));
|
||
pos_x += step_x;
|
||
svg.draw_legend(Point(pos_x, pos_y), "unknown" , support_surface_type_to_color_name(PrintObjectSupportMaterial::sltUnknown));
|
||
pos_x += step_x;
|
||
svg.draw_legend(Point(pos_x, pos_y), "intermediate" , support_surface_type_to_color_name(PrintObjectSupportMaterial::sltIntermediate));
|
||
}
|
||
|
||
void export_print_z_polygons_to_svg(const char *path, PrintObjectSupportMaterial::MyLayer ** const layers, size_t n_layers)
|
||
{
|
||
BoundingBox bbox;
|
||
for (int i = 0; i < n_layers; ++ i)
|
||
bbox.merge(get_extents(layers[i]->polygons));
|
||
Point legend_size = export_support_surface_type_legend_to_svg_box_size();
|
||
Point legend_pos(bbox.min.x, bbox.max.y);
|
||
bbox.merge(Point(std::max(bbox.min.x + legend_size.x, bbox.max.x), bbox.max.y + legend_size.y));
|
||
SVG svg(path, bbox);
|
||
const float transparency = 0.5f;
|
||
for (int i = 0; i < n_layers; ++ i)
|
||
svg.draw(union_ex(layers[i]->polygons), support_surface_type_to_color_name(layers[i]->layer_type), transparency);
|
||
for (int i = 0; i < n_layers; ++ i)
|
||
svg.draw(to_polylines(layers[i]->polygons), support_surface_type_to_color_name(layers[i]->layer_type));
|
||
export_support_surface_type_legend_to_svg(svg, legend_pos);
|
||
svg.Close();
|
||
}
|
||
|
||
void export_print_z_polygons_and_extrusions_to_svg(
|
||
const char *path,
|
||
PrintObjectSupportMaterial::MyLayer ** const layers,
|
||
size_t n_layers,
|
||
SupportLayer &support_layer)
|
||
{
|
||
BoundingBox bbox;
|
||
for (int i = 0; i < n_layers; ++ i)
|
||
bbox.merge(get_extents(layers[i]->polygons));
|
||
Point legend_size = export_support_surface_type_legend_to_svg_box_size();
|
||
Point legend_pos(bbox.min.x, bbox.max.y);
|
||
bbox.merge(Point(std::max(bbox.min.x + legend_size.x, bbox.max.x), bbox.max.y + legend_size.y));
|
||
SVG svg(path, bbox);
|
||
const float transparency = 0.5f;
|
||
for (int i = 0; i < n_layers; ++ i)
|
||
svg.draw(union_ex(layers[i]->polygons), support_surface_type_to_color_name(layers[i]->layer_type), transparency);
|
||
for (int i = 0; i < n_layers; ++ i)
|
||
svg.draw(to_polylines(layers[i]->polygons), support_surface_type_to_color_name(layers[i]->layer_type));
|
||
|
||
Polygons polygons_support, polygons_interface;
|
||
support_layer.support_fills.polygons_covered_by_width(polygons_support, SCALED_EPSILON);
|
||
// support_layer.support_interface_fills.polygons_covered_by_width(polygons_interface, SCALED_EPSILON);
|
||
svg.draw(union_ex(polygons_support), "brown");
|
||
svg.draw(union_ex(polygons_interface), "black");
|
||
|
||
export_support_surface_type_legend_to_svg(svg, legend_pos);
|
||
svg.Close();
|
||
}
|
||
#endif /* SLIC3R_DEBUG */
|
||
|
||
PrintObjectSupportMaterial::PrintObjectSupportMaterial(const PrintObject *object, const SlicingParameters &slicing_params) :
|
||
m_object (object),
|
||
m_print_config (&object->print()->config),
|
||
m_object_config (&object->config),
|
||
m_slicing_params (slicing_params),
|
||
m_first_layer_flow (support_material_1st_layer_flow(object, float(slicing_params.first_print_layer_height))),
|
||
m_support_material_flow (support_material_flow(object, float(slicing_params.layer_height))),
|
||
m_support_material_interface_flow(support_material_interface_flow(object, float(slicing_params.layer_height))),
|
||
m_support_layer_height_min(0.01)
|
||
{
|
||
// Calculate a minimum support layer height as a minimum over all extruders, but not smaller than 10um.
|
||
m_support_layer_height_min = 1000000.;
|
||
for (auto lh : m_print_config->min_layer_height.values)
|
||
m_support_layer_height_min = std::min(m_support_layer_height_min, std::max(0.01, lh));
|
||
|
||
if (m_object_config->support_material_interface_layers.value == 0) {
|
||
// No interface layers allowed, print everything with the base support pattern.
|
||
m_support_material_interface_flow = m_support_material_flow;
|
||
}
|
||
|
||
// Evaluate the XY gap between the object outer perimeters and the support structures.
|
||
coordf_t external_perimeter_width = 0.;
|
||
for (size_t region_id = 0; region_id < object->region_volumes.size(); ++ region_id) {
|
||
if (! object->region_volumes[region_id].empty()) {
|
||
const PrintRegionConfig &config = object->print()->get_region(region_id)->config;
|
||
coordf_t width = config.external_perimeter_extrusion_width.get_abs_value(slicing_params.layer_height);
|
||
if (width <= 0.)
|
||
width = m_print_config->nozzle_diameter.get_at(config.perimeter_extruder-1);
|
||
external_perimeter_width = std::max(external_perimeter_width, width);
|
||
}
|
||
}
|
||
m_gap_xy = m_object_config->support_material_xy_spacing.get_abs_value(external_perimeter_width);
|
||
|
||
m_can_merge_support_regions = m_object_config->support_material_extruder.value == m_object_config->support_material_interface_extruder.value;
|
||
if (! m_can_merge_support_regions && (m_object_config->support_material_extruder.value == 0 || m_object_config->support_material_interface_extruder.value == 0)) {
|
||
// One of the support extruders is of "don't care" type.
|
||
auto object_extruders = m_object->print()->object_extruders();
|
||
if (object_extruders.size() == 1 &&
|
||
*object_extruders.begin() == std::max<unsigned int>(m_object_config->support_material_extruder.value, m_object_config->support_material_interface_extruder.value))
|
||
// Object is printed with the same extruder as the support.
|
||
m_can_merge_support_regions = true;
|
||
}
|
||
}
|
||
|
||
// Using the std::deque as an allocator.
|
||
inline PrintObjectSupportMaterial::MyLayer& layer_allocate(
|
||
std::deque<PrintObjectSupportMaterial::MyLayer> &layer_storage,
|
||
PrintObjectSupportMaterial::SupporLayerType layer_type)
|
||
{
|
||
layer_storage.push_back(PrintObjectSupportMaterial::MyLayer());
|
||
layer_storage.back().layer_type = layer_type;
|
||
return layer_storage.back();
|
||
}
|
||
|
||
inline PrintObjectSupportMaterial::MyLayer& layer_allocate(
|
||
std::deque<PrintObjectSupportMaterial::MyLayer> &layer_storage,
|
||
tbb::spin_mutex &layer_storage_mutex,
|
||
PrintObjectSupportMaterial::SupporLayerType layer_type)
|
||
{
|
||
layer_storage_mutex.lock();
|
||
layer_storage.push_back(PrintObjectSupportMaterial::MyLayer());
|
||
PrintObjectSupportMaterial::MyLayer *layer_new = &layer_storage.back();
|
||
layer_storage_mutex.unlock();
|
||
layer_new->layer_type = layer_type;
|
||
return *layer_new;
|
||
}
|
||
|
||
inline void layers_append(PrintObjectSupportMaterial::MyLayersPtr &dst, const PrintObjectSupportMaterial::MyLayersPtr &src)
|
||
{
|
||
dst.insert(dst.end(), src.begin(), src.end());
|
||
}
|
||
|
||
// Compare layers lexicographically.
|
||
struct MyLayersPtrCompare
|
||
{
|
||
bool operator()(const PrintObjectSupportMaterial::MyLayer* layer1, const PrintObjectSupportMaterial::MyLayer* layer2) const {
|
||
return *layer1 < *layer2;
|
||
}
|
||
};
|
||
|
||
void PrintObjectSupportMaterial::generate(PrintObject &object)
|
||
{
|
||
BOOST_LOG_TRIVIAL(info) << "Support generator - Start";
|
||
|
||
coordf_t max_object_layer_height = 0.;
|
||
for (size_t i = 0; i < object.layer_count(); ++ i)
|
||
max_object_layer_height = std::max(max_object_layer_height, object.layers[i]->height);
|
||
|
||
// Layer instances will be allocated by std::deque and they will be kept until the end of this function call.
|
||
// The layers will be referenced by various LayersPtr (of type std::vector<Layer*>)
|
||
MyLayerStorage layer_storage;
|
||
|
||
BOOST_LOG_TRIVIAL(info) << "Support generator - Creating top contacts";
|
||
|
||
// Determine the top contact surfaces of the support, defined as:
|
||
// contact = overhangs - clearance + margin
|
||
// This method is responsible for identifying what contact surfaces
|
||
// should the support material expose to the object in order to guarantee
|
||
// that it will be effective, regardless of how it's built below.
|
||
// If raft is to be generated, the 1st top_contact layer will contain the 1st object layer silhouette without holes.
|
||
MyLayersPtr top_contacts = this->top_contact_layers(object, layer_storage);
|
||
if (top_contacts.empty())
|
||
// Nothing is supported, no supports are generated.
|
||
return;
|
||
|
||
#ifdef SLIC3R_DEBUG
|
||
static int iRun = 0;
|
||
iRun ++;
|
||
for (MyLayersPtr::const_iterator it = top_contacts.begin(); it != top_contacts.end(); ++ it)
|
||
Slic3r::SVG::export_expolygons(
|
||
debug_out_path("support-top-contacts-%d-%lf.svg", iRun, (*it)->print_z),
|
||
union_ex((*it)->polygons, false));
|
||
#endif /* SLIC3R_DEBUG */
|
||
|
||
BOOST_LOG_TRIVIAL(info) << "Support generator - Creating bottom contacts";
|
||
|
||
// Determine the bottom contact surfaces of the supports over the top surfaces of the object.
|
||
// Depending on whether the support is soluble or not, the contact layer thickness is decided.
|
||
// layer_support_areas contains the per object layer support areas. These per object layer support areas
|
||
// may get merged and trimmed by this->generate_base_layers() if the support layers are not synchronized with object layers.
|
||
std::vector<Polygons> layer_support_areas;
|
||
MyLayersPtr bottom_contacts = this->bottom_contact_layers_and_layer_support_areas(
|
||
object, top_contacts, layer_storage,
|
||
layer_support_areas);
|
||
|
||
#ifdef SLIC3R_DEBUG
|
||
for (size_t layer_id = 0; layer_id < object.layers.size(); ++ layer_id)
|
||
Slic3r::SVG::export_expolygons(
|
||
debug_out_path("support-areas-%d-%lf.svg", iRun, object.layers[layer_id]->print_z),
|
||
union_ex(layer_support_areas[layer_id], false));
|
||
#endif /* SLIC3R_DEBUG */
|
||
|
||
BOOST_LOG_TRIVIAL(info) << "Support generator - Creating intermediate layers - indices";
|
||
|
||
// Allocate empty layers between the top / bottom support contact layers
|
||
// as placeholders for the base and intermediate support layers.
|
||
// The layers may or may not be synchronized with the object layers, depending on the configuration.
|
||
// For example, a single nozzle multi material printing will need to generate a waste tower, which in turn
|
||
// wastes less material, if there are as little tool changes as possible.
|
||
MyLayersPtr intermediate_layers = this->raft_and_intermediate_support_layers(
|
||
object, bottom_contacts, top_contacts, layer_storage);
|
||
|
||
this->trim_support_layers_by_object(object, top_contacts, m_slicing_params.soluble_interface ? 0. : m_support_layer_height_min, 0., m_gap_xy);
|
||
|
||
BOOST_LOG_TRIVIAL(info) << "Support generator - Creating base layers";
|
||
|
||
// Fill in intermediate layers between the top / bottom support contact layers, trimm them by the object.
|
||
this->generate_base_layers(object, bottom_contacts, top_contacts, intermediate_layers, layer_support_areas);
|
||
|
||
#ifdef SLIC3R_DEBUG
|
||
for (MyLayersPtr::const_iterator it = intermediate_layers.begin(); it != intermediate_layers.end(); ++ it)
|
||
Slic3r::SVG::export_expolygons(
|
||
debug_out_path("support-base-layers-%d-%lf.svg", iRun, (*it)->print_z),
|
||
union_ex((*it)->polygons, false));
|
||
#endif /* SLIC3R_DEBUG */
|
||
|
||
BOOST_LOG_TRIVIAL(info) << "Support generator - Trimming top contacts by bottom contacts";
|
||
|
||
// Because the top and bottom contacts are thick slabs, they may overlap causing over extrusion
|
||
// and unwanted strong bonds to the object.
|
||
// Rather trim the top contacts by their overlapping bottom contacts to leave a gap instead of over extruding
|
||
// top contacts over the bottom contacts.
|
||
this->trim_top_contacts_by_bottom_contacts(object, bottom_contacts, top_contacts);
|
||
|
||
|
||
BOOST_LOG_TRIVIAL(info) << "Support generator - Creating interfaces";
|
||
|
||
// Propagate top / bottom contact layers to generate interface layers.
|
||
MyLayersPtr interface_layers = this->generate_interface_layers(
|
||
bottom_contacts, top_contacts, intermediate_layers, layer_storage);
|
||
|
||
BOOST_LOG_TRIVIAL(info) << "Support generator - Creating raft";
|
||
|
||
// If raft is to be generated, the 1st top_contact layer will contain the 1st object layer silhouette with holes filled.
|
||
// There is also a 1st intermediate layer containing bases of support columns.
|
||
// Inflate the bases of the support columns and create the raft base under the object.
|
||
MyLayersPtr raft_layers = this->generate_raft_base(top_contacts, interface_layers, intermediate_layers, layer_storage);
|
||
|
||
#ifdef SLIC3R_DEBUG
|
||
for (MyLayersPtr::const_iterator it = interface_layers.begin(); it != interface_layers.end(); ++ it)
|
||
Slic3r::SVG::export_expolygons(
|
||
debug_out_path("support-interface-layers-%d-%lf.svg", iRun, (*it)->print_z),
|
||
union_ex((*it)->polygons, false));
|
||
#endif /* SLIC3R_DEBUG */
|
||
|
||
/*
|
||
// Clip with the pillars.
|
||
if (! shape.empty()) {
|
||
this->clip_with_shape(interface, shape);
|
||
this->clip_with_shape(base, shape);
|
||
}
|
||
*/
|
||
|
||
BOOST_LOG_TRIVIAL(info) << "Support generator - Creating layers";
|
||
|
||
// For debugging purposes, one may want to show only some of the support extrusions.
|
||
// raft_layers.clear();
|
||
// bottom_contacts.clear();
|
||
// top_contacts.clear();
|
||
// intermediate_layers.clear();
|
||
// interface_layers.clear();
|
||
|
||
// Install support layers into the object.
|
||
// A support layer installed on a PrintObject has a unique print_z.
|
||
MyLayersPtr layers_sorted;
|
||
layers_sorted.reserve(raft_layers.size() + bottom_contacts.size() + top_contacts.size() + intermediate_layers.size() + interface_layers.size());
|
||
layers_append(layers_sorted, raft_layers);
|
||
layers_append(layers_sorted, bottom_contacts);
|
||
layers_append(layers_sorted, top_contacts);
|
||
layers_append(layers_sorted, intermediate_layers);
|
||
layers_append(layers_sorted, interface_layers);
|
||
// Sort the layers lexicographically by a raising print_z and a decreasing height.
|
||
std::sort(layers_sorted.begin(), layers_sorted.end(), MyLayersPtrCompare());
|
||
int layer_id = 0;
|
||
assert(object.support_layers.empty());
|
||
for (int i = 0; i < int(layers_sorted.size());) {
|
||
// Find the last layer with roughly the same print_z, find the minimum layer height of all.
|
||
// Due to the floating point inaccuracies, the print_z may not be the same even if in theory they should.
|
||
int j = i + 1;
|
||
coordf_t zmax = layers_sorted[i]->print_z + EPSILON;
|
||
for (; j < layers_sorted.size() && layers_sorted[j]->print_z <= zmax; ++j) ;
|
||
// Assign an average print_z to the set of layers with nearly equal print_z.
|
||
coordf_t zavg = 0.5 * (layers_sorted[i]->print_z + layers_sorted[j - 1]->print_z);
|
||
coordf_t height_min = layers_sorted[i]->height;
|
||
bool empty = true;
|
||
for (int u = i; u < j; ++u) {
|
||
MyLayer &layer = *layers_sorted[u];
|
||
if (! layer.polygons.empty())
|
||
empty = false;
|
||
layer.print_z = zavg;
|
||
height_min = std::min(height_min, layer.height);
|
||
}
|
||
if (! empty) {
|
||
// Here the upper_layer and lower_layer pointers are left to null at the support layers,
|
||
// as they are never used. These pointers are candidates for removal.
|
||
object.add_support_layer(layer_id ++, height_min, zavg);
|
||
}
|
||
i = j;
|
||
}
|
||
|
||
BOOST_LOG_TRIVIAL(info) << "Support generator - Generating tool paths";
|
||
|
||
// Generate the actual toolpaths and save them into each layer.
|
||
this->generate_toolpaths(object, raft_layers, bottom_contacts, top_contacts, intermediate_layers, interface_layers);
|
||
|
||
#ifdef SLIC3R_DEBUG
|
||
{
|
||
size_t layer_id = 0;
|
||
for (int i = 0; i < int(layers_sorted.size());) {
|
||
// Find the last layer with roughly the same print_z, find the minimum layer height of all.
|
||
// Due to the floating point inaccuracies, the print_z may not be the same even if in theory they should.
|
||
int j = i + 1;
|
||
coordf_t zmax = layers_sorted[i]->print_z + EPSILON;
|
||
bool empty = true;
|
||
for (; j < layers_sorted.size() && layers_sorted[j]->print_z <= zmax; ++j)
|
||
if (! layers_sorted[j]->polygons.empty())
|
||
empty = false;
|
||
if (! empty) {
|
||
export_print_z_polygons_to_svg(
|
||
debug_out_path("support-%d-%lf.svg", iRun, layers_sorted[i]->print_z).c_str(),
|
||
layers_sorted.data() + i, j - i);
|
||
export_print_z_polygons_and_extrusions_to_svg(
|
||
debug_out_path("support-w-fills-%d-%lf.svg", iRun, layers_sorted[i]->print_z).c_str(),
|
||
layers_sorted.data() + i, j - i,
|
||
*object.support_layers[layer_id]);
|
||
++layer_id;
|
||
}
|
||
i = j;
|
||
}
|
||
}
|
||
#endif /* SLIC3R_DEBUG */
|
||
|
||
BOOST_LOG_TRIVIAL(info) << "Support generator - End";
|
||
}
|
||
|
||
// Collect all polygons of all regions in a layer with a given surface type.
|
||
Polygons collect_region_slices_by_type(const Layer &layer, SurfaceType surface_type)
|
||
{
|
||
// 1) Count the new polygons first.
|
||
size_t n_polygons_new = 0;
|
||
for (LayerRegionPtrs::const_iterator it_region = layer.regions.begin(); it_region != layer.regions.end(); ++ it_region) {
|
||
const LayerRegion ®ion = *(*it_region);
|
||
const SurfaceCollection &slices = region.slices;
|
||
for (Surfaces::const_iterator it = slices.surfaces.begin(); it != slices.surfaces.end(); ++ it) {
|
||
const Surface &surface = *it;
|
||
if (surface.surface_type == surface_type)
|
||
n_polygons_new += surface.expolygon.holes.size() + 1;
|
||
}
|
||
}
|
||
|
||
// 2) Collect the new polygons.
|
||
Polygons out;
|
||
out.reserve(n_polygons_new);
|
||
for (LayerRegionPtrs::const_iterator it_region = layer.regions.begin(); it_region != layer.regions.end(); ++ it_region) {
|
||
const LayerRegion ®ion = *(*it_region);
|
||
const SurfaceCollection &slices = region.slices;
|
||
for (Surfaces::const_iterator it = slices.surfaces.begin(); it != slices.surfaces.end(); ++ it) {
|
||
const Surface &surface = *it;
|
||
if (surface.surface_type == surface_type)
|
||
polygons_append(out, surface.expolygon);
|
||
}
|
||
}
|
||
|
||
return out;
|
||
}
|
||
|
||
// Collect outer contours of all slices of this layer.
|
||
// This is useful for calculating the support base with holes filled.
|
||
Polygons collect_slices_outer(const Layer &layer)
|
||
{
|
||
Polygons out;
|
||
out.reserve(out.size() + layer.slices.expolygons.size());
|
||
for (ExPolygons::const_iterator it = layer.slices.expolygons.begin(); it != layer.slices.expolygons.end(); ++ it)
|
||
out.push_back(it->contour);
|
||
return out;
|
||
}
|
||
|
||
class SupportGridPattern
|
||
{
|
||
public:
|
||
SupportGridPattern(
|
||
const Polygons &support_polygons,
|
||
const Polygons &trimming_polygons,
|
||
coordf_t support_spacing,
|
||
coordf_t support_angle) :
|
||
m_support_polygons(&support_polygons), m_trimming_polygons(&trimming_polygons),
|
||
m_support_spacing(support_spacing), m_support_angle(support_angle)
|
||
{
|
||
if (m_support_angle != 0.) {
|
||
// Create a copy of the rotated contours.
|
||
m_support_polygons_rotated = support_polygons;
|
||
m_trimming_polygons_rotated = trimming_polygons;
|
||
m_support_polygons = &m_support_polygons_rotated;
|
||
m_trimming_polygons = &m_trimming_polygons_rotated;
|
||
polygons_rotate(m_support_polygons_rotated, - support_angle);
|
||
polygons_rotate(m_trimming_polygons_rotated, - support_angle);
|
||
}
|
||
// Create an EdgeGrid, initialize it with projection, initialize signed distance field.
|
||
coord_t grid_resolution = coord_t(scale_(m_support_spacing));
|
||
BoundingBox bbox = get_extents(*m_support_polygons);
|
||
bbox.offset(20);
|
||
bbox.align_to_grid(grid_resolution);
|
||
m_grid.set_bbox(bbox);
|
||
m_grid.create(*m_support_polygons, grid_resolution);
|
||
m_grid.calculate_sdf();
|
||
// Extract a bounding contour from the grid, trim by the object.
|
||
m_island_samples = island_samples(*m_support_polygons);
|
||
}
|
||
|
||
// Extract polygons from the grid, offsetted by offset_in_grid,
|
||
// and trim the extracted polygons by trimming_polygons.
|
||
// Trimming by the trimming_polygons may split the extracted polygons into pieces.
|
||
// Remove all the pieces, which do not contain any of the island_samples.
|
||
Polygons extract_support(const coord_t offset_in_grid)
|
||
{
|
||
// Generate islands, so each island may be tested for overlap with m_island_samples.
|
||
ExPolygons islands = diff_ex(
|
||
m_grid.contours_simplified(offset_in_grid),
|
||
*m_trimming_polygons, false);
|
||
|
||
// Extract polygons, which contain some of the m_island_samples.
|
||
Polygons out;
|
||
std::vector<std::pair<Point,bool>> samples_inside;
|
||
|
||
for (ExPolygon &island : islands) {
|
||
BoundingBox bbox = get_extents(island.contour);
|
||
auto it_lower = std::lower_bound(m_island_samples.begin(), m_island_samples.end(), bbox.min - Point(1, 1));
|
||
auto it_upper = std::upper_bound(m_island_samples.begin(), m_island_samples.end(), bbox.max + Point(1, 1));
|
||
samples_inside.clear();
|
||
for (auto it = it_lower; it != it_upper; ++ it)
|
||
if (bbox.contains(*it))
|
||
samples_inside.push_back(std::make_pair(*it, false));
|
||
if (! samples_inside.empty()) {
|
||
// For all samples_inside count the boundary crossing.
|
||
for (size_t i_contour = 0; i_contour <= island.holes.size(); ++ i_contour) {
|
||
Polygon &contour = (i_contour == 0) ? island.contour : island.holes[i_contour - 1];
|
||
Points::const_iterator i = contour.points.begin();
|
||
Points::const_iterator j = contour.points.end() - 1;
|
||
for (; i != contour.points.end(); j = i ++) {
|
||
//FIXME this test is not numerically robust. Particularly, it does not handle horizontal segments at y == point.y well.
|
||
// Does the ray with y == point.y intersect this line segment?
|
||
for (auto &sample_inside : samples_inside) {
|
||
if ((i->y > sample_inside.first.y) != (j->y > sample_inside.first.y)) {
|
||
double x1 = (double)sample_inside.first.x;
|
||
double x2 = (double)i->x + (double)(j->x - i->x) * (double)(sample_inside.first.y - i->y) / (double)(j->y - i->y);
|
||
if (x1 < x2)
|
||
sample_inside.second = !sample_inside.second;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
// If any of the sample is inside this island, add this island to the output.
|
||
for (auto &sample_inside : samples_inside)
|
||
if (sample_inside.second) {
|
||
polygons_append(out, std::move(island));
|
||
island.clear();
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
#ifdef SLIC3R_DEBUG
|
||
static int iRun = 0;
|
||
++iRun;
|
||
BoundingBox bbox = get_extents(*m_trimming_polygons);
|
||
if (! islands.empty())
|
||
bbox.merge(get_extents(islands));
|
||
if (!out.empty())
|
||
bbox.merge(get_extents(out));
|
||
SVG svg(debug_out_path("extract_support_from_grid_trimmed-%d.svg", iRun).c_str(), bbox);
|
||
svg.draw(islands, "red", 0.5f);
|
||
svg.draw(union_ex(out), "green", 0.5f);
|
||
svg.draw(union_ex(*m_support_polygons), "blue", 0.5f);
|
||
svg.draw_outline(islands, "red", "red", scale_(0.05));
|
||
svg.draw_outline(union_ex(out), "green", "green", scale_(0.05));
|
||
svg.draw_outline(union_ex(*m_support_polygons), "blue", "blue", scale_(0.05));
|
||
for (const Point &pt : m_island_samples)
|
||
svg.draw(pt, "black", coord_t(scale_(0.15)));
|
||
svg.Close();
|
||
#endif /* SLIC3R_DEBUG */
|
||
|
||
if (m_support_angle != 0.)
|
||
polygons_rotate(out, m_support_angle);
|
||
return out;
|
||
}
|
||
|
||
private:
|
||
SupportGridPattern& operator=(const SupportGridPattern &rhs);
|
||
|
||
// Get some internal point of an expolygon, to be used as a representative
|
||
// sample to test, whether this island is inside another island.
|
||
static Point island_sample(const ExPolygon &expoly)
|
||
{
|
||
// Find the lowest point lexicographically.
|
||
const Point *pt_min = &expoly.contour.points.front();
|
||
for (size_t i = 1; i < expoly.contour.points.size(); ++ i)
|
||
if (expoly.contour.points[i] < *pt_min)
|
||
pt_min = &expoly.contour.points[i];
|
||
|
||
// Lowest corner will always be convex, in worst case denegenerate with zero angle.
|
||
const Point &p1 = (pt_min == &expoly.contour.points.front()) ? expoly.contour.points.back() : *(pt_min - 1);
|
||
const Point &p2 = *pt_min;
|
||
const Point &p3 = (pt_min == &expoly.contour.points.back()) ? expoly.contour.points.front() : *(pt_min + 1);
|
||
|
||
Vector v = (p3 - p2) + (p1 - p2);
|
||
double l2 = double(v.x)*double(v.x)+double(v.y)*double(v.y);
|
||
if (l2 == 0.)
|
||
return p2;
|
||
double coef = 20. / sqrt(l2);
|
||
return Point(p2.x + coef * v.x, p2.y + coef * v.y);
|
||
}
|
||
|
||
static Points island_samples(const ExPolygons &expolygons)
|
||
{
|
||
Points pts;
|
||
pts.reserve(expolygons.size());
|
||
for (const ExPolygon &expoly : expolygons)
|
||
if (expoly.contour.points.size() > 2) {
|
||
#if 0
|
||
pts.push_back(island_sample(expoly));
|
||
#else
|
||
Polygons polygons = offset(expoly, - 20.f);
|
||
for (const Polygon &poly : polygons)
|
||
if (! poly.points.empty()) {
|
||
pts.push_back(poly.points.front());
|
||
break;
|
||
}
|
||
#endif
|
||
}
|
||
// Sort the points lexicographically, so a binary search could be used to locate points inside a bounding box.
|
||
std::sort(pts.begin(), pts.end());
|
||
return pts;
|
||
}
|
||
|
||
static Points island_samples(const Polygons &polygons)
|
||
{
|
||
return island_samples(union_ex(polygons));
|
||
}
|
||
|
||
const Polygons *m_support_polygons;
|
||
const Polygons *m_trimming_polygons;
|
||
Polygons m_support_polygons_rotated;
|
||
Polygons m_trimming_polygons_rotated;
|
||
// Angle in radians, by which the whole support is rotated.
|
||
coordf_t m_support_angle;
|
||
// X spacing of the support lines parallel with the Y axis.
|
||
coordf_t m_support_spacing;
|
||
|
||
Slic3r::EdgeGrid::Grid m_grid;
|
||
Points m_island_samples;
|
||
};
|
||
|
||
// Generate top contact layers supporting overhangs.
|
||
// For a soluble interface material synchronize the layer heights with the object, otherwise leave the layer height undefined.
|
||
// If supports over bed surface only are requested, don't generate contact layers over an object.
|
||
PrintObjectSupportMaterial::MyLayersPtr PrintObjectSupportMaterial::top_contact_layers(
|
||
const PrintObject &object, MyLayerStorage &layer_storage) const
|
||
{
|
||
#ifdef SLIC3R_DEBUG
|
||
static int iRun = 0;
|
||
++ iRun;
|
||
#endif /* SLIC3R_DEBUG */
|
||
|
||
// Output layers, sorted by top Z.
|
||
MyLayersPtr contact_out;
|
||
|
||
// If user specified a custom angle threshold, convert it to radians.
|
||
// Zero means automatic overhang detection.
|
||
const double threshold_rad = (m_object_config->support_material_threshold.value > 0) ?
|
||
M_PI * double(m_object_config->support_material_threshold.value + 1) / 180. : // +1 makes the threshold inclusive
|
||
0.;
|
||
|
||
// Build support on a build plate only? If so, then collect and union all the surfaces below the current layer.
|
||
// Unfortunately this is an inherently serial process.
|
||
const bool buildplate_only = this->build_plate_only();
|
||
std::vector<Polygons> buildplate_covered;
|
||
if (buildplate_only) {
|
||
BOOST_LOG_TRIVIAL(debug) << "PrintObjectSupportMaterial::top_contact_layers() - collecting regions covering the print bed.";
|
||
buildplate_covered.assign(object.layers.size(), Polygons());
|
||
for (size_t layer_id = 1; layer_id < object.layers.size(); ++ layer_id) {
|
||
const Layer &lower_layer = *object.layers[layer_id-1];
|
||
// Merge the new slices with the preceding slices.
|
||
// Apply the safety offset to the newly added polygons, so they will connect
|
||
// with the polygons collected before,
|
||
// but don't apply the safety offset during the union operation as it would
|
||
// inflate the polygons over and over.
|
||
Polygons &covered = buildplate_covered[layer_id];
|
||
covered = buildplate_covered[layer_id - 1];
|
||
polygons_append(covered, offset(lower_layer.slices.expolygons, scale_(0.01)));
|
||
covered = union_(covered, false); // don't apply the safety offset.
|
||
}
|
||
}
|
||
|
||
BOOST_LOG_TRIVIAL(debug) << "PrintObjectSupportMaterial::top_contact_layers() in parallel - start";
|
||
// Determine top contact areas.
|
||
// If generating raft only (no support), only calculate top contact areas for the 0th layer.
|
||
// If having a raft, start with 0th layer, otherwise with 1st layer.
|
||
// Note that layer_id < layer->id when raft_layers > 0 as the layer->id incorporates the raft layers.
|
||
// So layer_id == 0 means first object layer and layer->id == 0 means first print layer if there are no explicit raft layers.
|
||
size_t num_layers = this->has_support() ? object.layer_count() : 1;
|
||
contact_out.assign(num_layers, nullptr);
|
||
tbb::spin_mutex layer_storage_mutex;
|
||
tbb::parallel_for(tbb::blocked_range<size_t>(this->has_raft() ? 0 : 1, num_layers),
|
||
[this, &object, &buildplate_covered, threshold_rad, &layer_storage, &layer_storage_mutex, &contact_out](const tbb::blocked_range<size_t>& range) {
|
||
for (size_t layer_id = range.begin(); layer_id < range.end(); ++ layer_id)
|
||
{
|
||
const Layer &layer = *object.layers[layer_id];
|
||
|
||
// Detect overhangs and contact areas needed to support them.
|
||
// Collect overhangs and contacts of all regions of this layer supported by the layer immediately below.
|
||
Polygons overhang_polygons;
|
||
Polygons contact_polygons;
|
||
Polygons slices_margin_cached;
|
||
float slices_margin_cached_offset = -1.;
|
||
if (layer_id == 0) {
|
||
// This is the first object layer, so the object is being printed on a raft and
|
||
// we're here just to get the object footprint for the raft.
|
||
// We only consider contours and discard holes to get a more continuous raft.
|
||
overhang_polygons = collect_slices_outer(layer);
|
||
// Extend by SUPPORT_MATERIAL_MARGIN, which is 1.5mm
|
||
contact_polygons = offset(overhang_polygons, scale_(SUPPORT_MATERIAL_MARGIN));
|
||
} else {
|
||
// Generate overhang / contact_polygons for non-raft layers.
|
||
const Layer &lower_layer = *object.layers[layer_id-1];
|
||
for (LayerRegion *layerm : layer.regions) {
|
||
// Extrusion width accounts for the roundings of the extrudates.
|
||
// It is the maximum widh of the extrudate.
|
||
float fw = float(layerm->flow(frExternalPerimeter).scaled_width());
|
||
float lower_layer_offset =
|
||
(layer_id < this->m_object_config->support_material_enforce_layers.value) ?
|
||
// Enforce a full possible support, ignore the overhang angle.
|
||
0.f :
|
||
(threshold_rad > 0. ?
|
||
// Overhang defined by an angle.
|
||
float(scale_(lower_layer.height / tan(threshold_rad))) :
|
||
// Overhang defined by half the extrusion width.
|
||
0.5f * fw);
|
||
// Overhang polygons for this layer and region.
|
||
Polygons diff_polygons;
|
||
Polygons layerm_polygons = to_polygons(layerm->slices);
|
||
Polygons lower_layer_polygons = to_polygons(lower_layer.slices.expolygons);
|
||
if (lower_layer_offset == 0.f) {
|
||
// Support everything.
|
||
diff_polygons = diff(layerm_polygons, lower_layer_polygons);
|
||
if (! buildplate_covered.empty()) {
|
||
// Don't support overhangs above the top surfaces.
|
||
// This step is done before the contact surface is calculated by growing the overhang region.
|
||
diff_polygons = diff(diff_polygons, buildplate_covered[layer_id]);
|
||
}
|
||
} else {
|
||
// Get the regions needing a suport, collapse very tiny spots.
|
||
//FIXME cache the lower layer offset if this layer has multiple regions.
|
||
diff_polygons = offset2(
|
||
diff(layerm_polygons,
|
||
offset(lower_layer_polygons, lower_layer_offset, SUPPORT_SURFACES_OFFSET_PARAMETERS)),
|
||
-0.1f*fw, +0.1f*fw);
|
||
if (! buildplate_covered.empty()) {
|
||
// Don't support overhangs above the top surfaces.
|
||
// This step is done before the contact surface is calculated by growing the overhang region.
|
||
diff_polygons = diff(diff_polygons, buildplate_covered[layer_id]);
|
||
}
|
||
if (diff_polygons.empty())
|
||
continue;
|
||
// Offset the support regions back to a full overhang, restrict them to the full overhang.
|
||
diff_polygons = diff(
|
||
intersection(offset(diff_polygons, lower_layer_offset, SUPPORT_SURFACES_OFFSET_PARAMETERS), layerm_polygons),
|
||
lower_layer_polygons);
|
||
}
|
||
if (diff_polygons.empty())
|
||
continue;
|
||
|
||
#ifdef SLIC3R_DEBUG
|
||
{
|
||
::Slic3r::SVG svg(debug_out_path("support-top-contacts-raw-run%d-layer%d-region%d.svg",
|
||
iRun, layer_id,
|
||
std::find_if(layer.regions.begin(), layer.regions.end(), [layerm](const LayerRegion* other){return other == layerm;}) - layer.regions.begin()),
|
||
get_extents(diff_polygons));
|
||
Slic3r::ExPolygons expolys = union_ex(diff_polygons, false);
|
||
svg.draw(expolys);
|
||
}
|
||
#endif /* SLIC3R_DEBUG */
|
||
|
||
if (this->m_object_config->dont_support_bridges) {
|
||
// compute the area of bridging perimeters
|
||
// Note: this is duplicate code from GCode.pm, we need to refactor
|
||
if (true) {
|
||
Polygons bridged_perimeters;
|
||
{
|
||
Flow bridge_flow = layerm->flow(frPerimeter, true);
|
||
coordf_t nozzle_diameter = m_print_config->nozzle_diameter.get_at(layerm->region()->config.perimeter_extruder-1);
|
||
Polygons lower_grown_slices = offset(lower_layer_polygons, 0.5f*float(scale_(nozzle_diameter)), SUPPORT_SURFACES_OFFSET_PARAMETERS);
|
||
|
||
// Collect perimeters of this layer.
|
||
// TODO: split_at_first_point() could split a bridge mid-way
|
||
Polylines overhang_perimeters;
|
||
for (ExtrusionEntity* extrusion_entity : layerm->perimeters.entities) {
|
||
const ExtrusionEntityCollection *island = dynamic_cast<ExtrusionEntityCollection*>(extrusion_entity);
|
||
assert(island != NULL);
|
||
for (size_t i = 0; i < island->entities.size(); ++ i) {
|
||
ExtrusionEntity *entity = island->entities[i];
|
||
ExtrusionLoop *loop = dynamic_cast<Slic3r::ExtrusionLoop*>(entity);
|
||
overhang_perimeters.push_back(loop ?
|
||
loop->as_polyline() :
|
||
dynamic_cast<const Slic3r::ExtrusionPath*>(entity)->polyline);
|
||
}
|
||
}
|
||
|
||
// workaround for Clipper bug, see Slic3r::Polygon::clip_as_polyline()
|
||
for (Polyline &polyline : overhang_perimeters)
|
||
polyline.points[0].x += 1;
|
||
// Trim the perimeters of this layer by the lower layer to get the unsupported pieces of perimeters.
|
||
overhang_perimeters = diff_pl(overhang_perimeters, lower_grown_slices);
|
||
|
||
// only consider straight overhangs
|
||
// only consider overhangs having endpoints inside layer's slices
|
||
// convert bridging polylines into polygons by inflating them with their thickness
|
||
// since we're dealing with bridges, we can't assume width is larger than spacing,
|
||
// so we take the largest value and also apply safety offset to be ensure no gaps
|
||
// are left in between
|
||
float w = float(std::max(bridge_flow.scaled_width(), bridge_flow.scaled_spacing()));
|
||
for (Polyline &polyline : overhang_perimeters)
|
||
if (polyline.is_straight()) {
|
||
// This is a bridge
|
||
polyline.extend_start(fw);
|
||
polyline.extend_end(fw);
|
||
// Is the straight perimeter segment supported at both sides?
|
||
if (layer.slices.contains(polyline.first_point()) && layer.slices.contains(polyline.last_point()))
|
||
// Offset a polyline into a thick line.
|
||
polygons_append(bridged_perimeters, offset(polyline, 0.5f * w + 10.f));
|
||
}
|
||
bridged_perimeters = union_(bridged_perimeters);
|
||
}
|
||
// remove the entire bridges and only support the unsupported edges
|
||
Polygons bridges;
|
||
for (const Surface &surface : layerm->fill_surfaces.surfaces)
|
||
if (surface.surface_type == stBottomBridge && surface.bridge_angle != -1)
|
||
polygons_append(bridges, surface.expolygon);
|
||
diff_polygons = diff(diff_polygons, bridges, true);
|
||
polygons_append(bridges, bridged_perimeters);
|
||
polygons_append(diff_polygons,
|
||
intersection(
|
||
// Offset unsupported edges into polygons.
|
||
offset(layerm->unsupported_bridge_edges.polylines, scale_(SUPPORT_MATERIAL_MARGIN), SUPPORT_SURFACES_OFFSET_PARAMETERS),
|
||
bridges));
|
||
} else {
|
||
// just remove bridged areas
|
||
diff_polygons = diff(diff_polygons, layerm->bridged, true);
|
||
}
|
||
} // if (m_objconfig->dont_support_bridges)
|
||
|
||
if (diff_polygons.empty())
|
||
continue;
|
||
|
||
#ifdef SLIC3R_DEBUG
|
||
Slic3r::SVG::export_expolygons(
|
||
debug_out_path("support-top-contacts-filtered-run%d-layer%d-region%d-z%f.svg",
|
||
iRun, layer_id,
|
||
std::find_if(layer.regions.begin(), layer.regions.end(), [layerm](const LayerRegion* other){return other == layerm;}) - layer.regions.begin(),
|
||
layer.print_z),
|
||
union_ex(diff_polygons, false));
|
||
#endif /* SLIC3R_DEBUG */
|
||
|
||
if (this->has_contact_loops())
|
||
polygons_append(overhang_polygons, diff_polygons);
|
||
|
||
// Let's define the required contact area by using a max gap of half the upper
|
||
// extrusion width and extending the area according to the configured margin.
|
||
// We increment the area in steps because we don't want our support to overflow
|
||
// on the other side of the object (if it's very thin).
|
||
{
|
||
//FIMXE 1) Make the offset configurable, 2) Make the Z span configurable.
|
||
float slices_margin_offset = std::min(lower_layer_offset, float(scale_(m_gap_xy)));
|
||
if (slices_margin_cached_offset != slices_margin_offset) {
|
||
slices_margin_cached_offset = slices_margin_offset;
|
||
slices_margin_cached = (slices_margin_offset == 0.f) ?
|
||
to_polygons(lower_layer.slices.expolygons) :
|
||
offset(lower_layer.slices.expolygons, slices_margin_offset, SUPPORT_SURFACES_OFFSET_PARAMETERS);
|
||
if (! buildplate_covered.empty()) {
|
||
// Trim the inflated contact surfaces by the top surfaces as well.
|
||
polygons_append(slices_margin_cached, buildplate_covered[layer_id]);
|
||
slices_margin_cached = union_(slices_margin_cached);
|
||
}
|
||
}
|
||
// Offset the contact polygons outside.
|
||
for (size_t i = 0; i < NUM_MARGIN_STEPS; ++ i) {
|
||
diff_polygons = diff(
|
||
offset(
|
||
diff_polygons,
|
||
SUPPORT_MATERIAL_MARGIN / NUM_MARGIN_STEPS,
|
||
ClipperLib::jtRound,
|
||
// round mitter limit
|
||
scale_(0.05)),
|
||
slices_margin_cached);
|
||
}
|
||
}
|
||
polygons_append(contact_polygons, diff_polygons);
|
||
} // for each layer.region
|
||
} // end of Generate overhang/contact_polygons for non-raft layers.
|
||
|
||
// now apply the contact areas to the layer were they need to be made
|
||
if (! contact_polygons.empty()) {
|
||
// get the average nozzle diameter used on this layer
|
||
MyLayer &new_layer = layer_allocate(layer_storage, layer_storage_mutex, sltTopContact);
|
||
new_layer.idx_object_layer_above = layer_id;
|
||
if (m_slicing_params.soluble_interface) {
|
||
// Align the contact surface height with a layer immediately below the supported layer.
|
||
new_layer.print_z = layer.print_z - layer.height;
|
||
if (layer_id == 0) {
|
||
// This is a raft contact layer sitting directly on the print bed.
|
||
new_layer.height = m_slicing_params.contact_raft_layer_height;
|
||
new_layer.bottom_z = m_slicing_params.raft_interface_top_z;
|
||
} else {
|
||
// Interface layer will be synchronized with the object.
|
||
assert(layer_id > 0);
|
||
new_layer.height = object.layers[layer_id - 1]->height;
|
||
new_layer.bottom_z = (layer_id == 1) ? m_slicing_params.object_print_z_min : object.layers[layer_id - 2]->print_z;
|
||
}
|
||
} else {
|
||
// Contact layer will be printed with a normal flow, but
|
||
// it will support layers printed with a bridging flow.
|
||
//FIXME Probably printing with the bridge flow? How about the unsupported perimeters? Are they printed with the bridging flow?
|
||
// In the future we may switch to a normal extrusion flow for the supported bridges.
|
||
// Get the average nozzle diameter used on this layer.
|
||
coordf_t nozzle_dmr = 0.;
|
||
for (const LayerRegion *region : layer.regions)
|
||
nozzle_dmr += region->region()->nozzle_dmr_avg(*m_print_config);
|
||
nozzle_dmr /= coordf_t(layer.regions.size());
|
||
new_layer.print_z = layer.print_z - nozzle_dmr - m_object_config->support_material_contact_distance;
|
||
new_layer.bottom_z = new_layer.print_z;
|
||
new_layer.height = 0.;
|
||
if (layer_id == 0) {
|
||
// This is a raft contact layer sitting directly on the print bed.
|
||
assert(this->has_raft());
|
||
new_layer.bottom_z = m_slicing_params.raft_interface_top_z;
|
||
new_layer.height = m_slicing_params.contact_raft_layer_height;
|
||
} else {
|
||
// Ignore this contact area if it's too low.
|
||
// Don't want to print a layer below the first layer height as it may not stick well.
|
||
//FIXME there may be a need for a single layer support, then one may decide to print it either as a bottom contact or a top contact
|
||
// and it may actually make sense to do it with a thinner layer than the first layer height.
|
||
if (new_layer.print_z < m_slicing_params.first_print_layer_height - EPSILON) {
|
||
// This contact layer is below the first layer height, therefore not printable. Don't support this surface.
|
||
continue;
|
||
} else if (new_layer.print_z < m_slicing_params.first_print_layer_height + EPSILON) {
|
||
// Align the layer with the 1st layer height.
|
||
new_layer.print_z = m_slicing_params.first_print_layer_height;
|
||
new_layer.bottom_z = 0;
|
||
new_layer.height = m_slicing_params.first_print_layer_height;
|
||
} else {
|
||
// Don't know the height of the top contact layer yet. The top contact layer is printed with a normal flow and
|
||
// its height will be set adaptively later on.
|
||
}
|
||
}
|
||
}
|
||
|
||
SupportGridPattern support_grid_pattern(
|
||
// Support islands, to be stretched into a grid.
|
||
contact_polygons,
|
||
// Trimming polygons, to trim the stretched support islands.
|
||
slices_margin_cached,
|
||
// How much to offset the extracted contour outside of the grid.
|
||
m_object_config->support_material_spacing.value + m_support_material_flow.spacing(),
|
||
Geometry::deg2rad(m_object_config->support_material_angle.value));
|
||
// 1) infill polygons, expand them by half the extrusion width + a tiny bit of extra.
|
||
new_layer.polygons = support_grid_pattern.extract_support(m_support_material_flow.scaled_spacing()/2 + 5);
|
||
// 2) Contact polygons will be projected down. To keep the interface and base layers to grow, return a contour a tiny bit smaller than the grid cells.
|
||
new_layer.contact_polygons = new Polygons(support_grid_pattern.extract_support(-3));
|
||
|
||
// Even after the contact layer was expanded into a grid, some of the contact islands may be too tiny to be extruded.
|
||
// Remove those tiny islands from new_layer.polygons and new_layer.contact_polygons.
|
||
|
||
// Store the overhang polygons.
|
||
// The overhang polygons are used in the path generator for planning of the contact loops.
|
||
// if (this->has_contact_loops())
|
||
new_layer.overhang_polygons = new Polygons(std::move(overhang_polygons));
|
||
contact_out[layer_id] = &new_layer;
|
||
}
|
||
}
|
||
});
|
||
// Compress contact_out, remove the nullptr items.
|
||
remove_nulls(contact_out);
|
||
BOOST_LOG_TRIVIAL(debug) << "PrintObjectSupportMaterial::top_contact_layers() in parallel - end";
|
||
|
||
return contact_out;
|
||
}
|
||
|
||
// Generate bottom contact layers supporting the top contact layers.
|
||
// For a soluble interface material synchronize the layer heights with the object,
|
||
// otherwise set the layer height to a bridging flow of a support interface nozzle.
|
||
PrintObjectSupportMaterial::MyLayersPtr PrintObjectSupportMaterial::bottom_contact_layers_and_layer_support_areas(
|
||
const PrintObject &object, const MyLayersPtr &top_contacts, MyLayerStorage &layer_storage,
|
||
std::vector<Polygons> &layer_support_areas) const
|
||
{
|
||
#ifdef SLIC3R_DEBUG
|
||
static int iRun = 0;
|
||
++ iRun;
|
||
#endif /* SLIC3R_DEBUG */
|
||
|
||
// Allocate empty surface areas, one per object layer.
|
||
layer_support_areas.assign(object.total_layer_count(), Polygons());
|
||
|
||
// find object top surfaces
|
||
// we'll use them to clip our support and detect where does it stick
|
||
MyLayersPtr bottom_contacts;
|
||
|
||
if (! top_contacts.empty())
|
||
{
|
||
// There is some support to be built, if there are non-empty top surfaces detected.
|
||
// Sum of unsupported contact areas above the current layer.print_z.
|
||
Polygons projection;
|
||
// Last top contact layer visited when collecting the projection of contact areas.
|
||
int contact_idx = int(top_contacts.size()) - 1;
|
||
for (int layer_id = int(object.total_layer_count()) - 2; layer_id >= 0; -- layer_id) {
|
||
BOOST_LOG_TRIVIAL(trace) << "Support generator - bottom_contact_layers - layer " << layer_id;
|
||
const Layer &layer = *object.get_layer(layer_id);
|
||
// Collect projections of all contact areas above or at the same level as this top surface.
|
||
for (; contact_idx >= 0 && top_contacts[contact_idx]->print_z >= layer.print_z; -- contact_idx) {
|
||
Polygons polygons_new;
|
||
// Contact surfaces are expanded away from the object, trimmed by the object.
|
||
// Use a slight positive offset to overlap the touching regions.
|
||
#if 0
|
||
// Merge and collect the contact polygons. The contact polygons are inflated, but not extended into a grid form.
|
||
polygons_append(polygons_new, offset(*top_contacts[contact_idx]->contact_polygons, SCALED_EPSILON));
|
||
#else
|
||
// Consume the contact_polygons. The contact polygons are already expanded into a grid form.
|
||
polygons_append(polygons_new, std::move(*top_contacts[contact_idx]->contact_polygons));
|
||
#endif
|
||
// These are the overhang surfaces. They are touching the object and they are not expanded away from the object.
|
||
// Use a slight positive offset to overlap the touching regions.
|
||
polygons_append(polygons_new, offset(*top_contacts[contact_idx]->overhang_polygons, float(SCALED_EPSILON)));
|
||
polygons_append(projection, union_(polygons_new));
|
||
}
|
||
if (projection.empty())
|
||
continue;
|
||
Polygons projection_raw = union_(projection);
|
||
|
||
// Top surfaces of this layer, to be used to stop the surface volume from growing down.
|
||
tbb::task_group task_group;
|
||
if (! m_object_config->support_material_buildplate_only)
|
||
task_group.run([this, &object, &top_contacts, contact_idx, &layer, layer_id, &layer_storage, &layer_support_areas, &bottom_contacts, &projection_raw] {
|
||
Polygons top = collect_region_slices_by_type(layer, stTop);
|
||
#ifdef SLIC3R_DEBUG
|
||
{
|
||
BoundingBox bbox = get_extents(projection_raw);
|
||
bbox.merge(get_extents(top));
|
||
::Slic3r::SVG svg(debug_out_path("support-bottom-layers-raw-%d-%lf.svg", iRun, layer.print_z), bbox);
|
||
svg.draw(union_ex(top, false), "blue", 0.5f);
|
||
svg.draw(union_ex(projection_raw, true), "red", 0.5f);
|
||
svg.draw_outline(union_ex(projection_raw, true), "red", "blue", scale_(0.1f));
|
||
svg.draw(layer.slices.expolygons, "green", 0.5f);
|
||
}
|
||
#endif /* SLIC3R_DEBUG */
|
||
|
||
// Now find whether any projection of the contact surfaces above layer.print_z not yet supported by any
|
||
// top surfaces above layer.print_z falls onto this top surface.
|
||
// Touching are the contact surfaces supported exclusively by this top surfaces.
|
||
// Don't use a safety offset as it has been applied during insertion of polygons.
|
||
if (! top.empty()) {
|
||
Polygons touching = intersection(top, projection_raw, false);
|
||
if (! touching.empty()) {
|
||
// Allocate a new bottom contact layer.
|
||
MyLayer &layer_new = layer_allocate(layer_storage, sltBottomContact);
|
||
bottom_contacts.push_back(&layer_new);
|
||
// Grow top surfaces so that interface and support generation are generated
|
||
// with some spacing from object - it looks we don't need the actual
|
||
// top shapes so this can be done here
|
||
layer_new.height = m_slicing_params.soluble_interface ?
|
||
// Align the interface layer with the object's layer height.
|
||
object.layers[layer_id + 1]->height :
|
||
// Place a bridge flow interface layer over the top surface.
|
||
m_support_material_interface_flow.nozzle_diameter;
|
||
layer_new.print_z = m_slicing_params.soluble_interface ? object.layers[layer_id + 1]->print_z :
|
||
layer.print_z + layer_new.height + m_object_config->support_material_contact_distance.value;
|
||
layer_new.bottom_z = layer.print_z;
|
||
layer_new.idx_object_layer_below = layer_id;
|
||
layer_new.bridging = ! m_slicing_params.soluble_interface;
|
||
//FIXME how much to inflate the top surface?
|
||
layer_new.polygons = offset(touching, float(m_support_material_flow.scaled_width()), SUPPORT_SURFACES_OFFSET_PARAMETERS);
|
||
if (! m_slicing_params.soluble_interface) {
|
||
// Walk the top surfaces, snap the top of the new bottom surface to the closest top of the top surface,
|
||
// so there will be no support surfaces generated with thickness lower than m_support_layer_height_min.
|
||
for (size_t top_idx = size_t(std::max<int>(0, contact_idx));
|
||
top_idx < top_contacts.size() && top_contacts[top_idx]->print_z < layer_new.print_z + this->m_support_layer_height_min;
|
||
++ top_idx) {
|
||
if (top_contacts[top_idx]->print_z > layer_new.print_z - this->m_support_layer_height_min) {
|
||
// A top layer has been found, which is close to the new bottom layer.
|
||
coordf_t diff = layer_new.print_z - top_contacts[top_idx]->print_z;
|
||
assert(std::abs(diff) <= this->m_support_layer_height_min);
|
||
if (diff > 0.) {
|
||
// The top contact layer is below this layer. Make the bridging layer thinner to align with the existing top layer.
|
||
assert(diff < layer_new.height + EPSILON);
|
||
assert(layer_new.height - diff >= this->m_support_layer_height_min - EPSILON);
|
||
layer_new.print_z = top_contacts[top_idx]->print_z;
|
||
layer_new.height -= diff;
|
||
} else {
|
||
// The top contact layer is above this layer. One may either make this layer thicker or thinner.
|
||
// By making the layer thicker, one will decrease the number of discrete layers with the price of extruding a bit too thick bridges.
|
||
// By making the layer thinner, one adds one more discrete layer.
|
||
layer_new.print_z = top_contacts[top_idx]->print_z;
|
||
layer_new.height -= diff;
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
#ifdef SLIC3R_DEBUG
|
||
Slic3r::SVG::export_expolygons(
|
||
debug_out_path("support-bottom-contacts-%d-%lf.svg", iRun, layer_new.print_z),
|
||
union_ex(layer_new.polygons, false));
|
||
#endif /* SLIC3R_DEBUG */
|
||
// Trim the already created base layers above the current layer intersecting with the new bottom contacts layer.
|
||
touching = offset(touching, float(SCALED_EPSILON));
|
||
for (int layer_id_above = layer_id + 1; layer_id_above < int(object.total_layer_count()); ++ layer_id_above) {
|
||
const Layer &layer_above = *object.layers[layer_id_above];
|
||
if (layer_above.print_z > layer_new.print_z + EPSILON)
|
||
break;
|
||
if (! layer_support_areas[layer_id_above].empty()) {
|
||
#ifdef SLIC3R_DEBUG
|
||
{
|
||
BoundingBox bbox = get_extents(touching);
|
||
bbox.merge(get_extents(layer_support_areas[layer_id_above]));
|
||
::Slic3r::SVG svg(debug_out_path("support-support-areas-raw-before-trimming-%d-with-%f-%lf.svg", iRun, layer.print_z, layer_above.print_z), bbox);
|
||
svg.draw(union_ex(touching, false), "blue", 0.5f);
|
||
svg.draw(union_ex(layer_support_areas[layer_id_above], true), "red", 0.5f);
|
||
svg.draw_outline(union_ex(layer_support_areas[layer_id_above], true), "red", "blue", scale_(0.1f));
|
||
}
|
||
#endif /* SLIC3R_DEBUG */
|
||
layer_support_areas[layer_id_above] = diff(layer_support_areas[layer_id_above], touching);
|
||
#ifdef SLIC3R_DEBUG
|
||
Slic3r::SVG::export_expolygons(
|
||
debug_out_path("support-support-areas-raw-after-trimming-%d-with-%f-%lf.svg", iRun, layer.print_z, layer_above.print_z),
|
||
union_ex(layer_support_areas[layer_id_above], false));
|
||
#endif /* SLIC3R_DEBUG */
|
||
}
|
||
}
|
||
}
|
||
} // ! top.empty()
|
||
});
|
||
|
||
Polygons &layer_support_area = layer_support_areas[layer_id];
|
||
task_group.run([this, &projection, &projection_raw, &layer, &layer_support_area, layer_id] {
|
||
// Remove the areas that touched from the projection that will continue on next, lower, top surfaces.
|
||
// Polygons trimming = union_(to_polygons(layer.slices.expolygons), touching, true);
|
||
Polygons trimming = offset(layer.slices.expolygons, float(SCALED_EPSILON));
|
||
projection = diff(projection_raw, trimming, false);
|
||
#ifdef SLIC3R_DEBUG
|
||
{
|
||
BoundingBox bbox = get_extents(projection_raw);
|
||
bbox.merge(get_extents(trimming));
|
||
::Slic3r::SVG svg(debug_out_path("support-support-areas-raw-%d-%lf.svg", iRun, layer.print_z), bbox);
|
||
svg.draw(union_ex(trimming, false), "blue", 0.5f);
|
||
svg.draw(union_ex(projection, true), "red", 0.5f);
|
||
svg.draw_outline(union_ex(projection, true), "red", "blue", scale_(0.1f));
|
||
}
|
||
#endif /* SLIC3R_DEBUG */
|
||
remove_sticks(projection);
|
||
remove_degenerate(projection);
|
||
#ifdef SLIC3R_DEBUG
|
||
Slic3r::SVG::export_expolygons(
|
||
debug_out_path("support-support-areas-raw-cleaned-%d-%lf.svg", iRun, layer.print_z),
|
||
union_ex(projection, false));
|
||
#endif /* SLIC3R_DEBUG */
|
||
SupportGridPattern support_grid_pattern(
|
||
// Support islands, to be stretched into a grid.
|
||
projection,
|
||
// Trimming polygons, to trim the stretched support islands.
|
||
trimming,
|
||
// How much to offset the extracted contour outside of the grid.
|
||
m_object_config->support_material_spacing.value + m_support_material_flow.spacing(),
|
||
Geometry::deg2rad(m_object_config->support_material_angle.value));
|
||
tbb::task_group task_group_inner;
|
||
// 1) Cache the slice of a support volume. The support volume is expanded by 1/2 of support material flow spacing
|
||
// to allow a placement of suppot zig-zag snake along the grid lines.
|
||
task_group_inner.run([this, &support_grid_pattern, &layer_support_area
|
||
#ifdef SLIC3R_DEBUG
|
||
, &layer
|
||
#endif /* SLIC3R_DEBUG */
|
||
] {
|
||
layer_support_area = support_grid_pattern.extract_support(m_support_material_flow.scaled_spacing()/2 + 25);
|
||
#ifdef SLIC3R_DEBUG
|
||
Slic3r::SVG::export_expolygons(
|
||
debug_out_path("support-layer_support_area-gridded-%d-%lf.svg", iRun, layer.print_z),
|
||
union_ex(layer_support_area, false));
|
||
#endif /* SLIC3R_DEBUG */
|
||
});
|
||
// 2) Support polygons will be projected down. To keep the interface and base layers from growing, return a contour a tiny bit smaller than the grid cells.
|
||
Polygons projection_new;
|
||
task_group_inner.run([&projection_new, &support_grid_pattern
|
||
#ifdef SLIC3R_DEBUG
|
||
, &layer
|
||
#endif /* SLIC3R_DEBUG */
|
||
] {
|
||
projection_new = support_grid_pattern.extract_support(-5);
|
||
#ifdef SLIC3R_DEBUG
|
||
Slic3r::SVG::export_expolygons(
|
||
debug_out_path("support-projection_new-gridded-%d-%lf.svg", iRun, layer.print_z),
|
||
union_ex(projection_new, false));
|
||
#endif /* SLIC3R_DEBUG */
|
||
});
|
||
task_group_inner.wait();
|
||
projection = std::move(projection_new);
|
||
});
|
||
task_group.wait();
|
||
}
|
||
std::reverse(bottom_contacts.begin(), bottom_contacts.end());
|
||
trim_support_layers_by_object(object, bottom_contacts, m_slicing_params.soluble_interface ? 0. : m_support_layer_height_min, 0., m_gap_xy);
|
||
} // ! top_contacts.empty()
|
||
|
||
return bottom_contacts;
|
||
}
|
||
|
||
// FN_HIGHER_EQUAL: the provided object pointer has a Z value >= of an internal threshold.
|
||
// Find the first item with Z value >= of an internal threshold of fn_higher_equal.
|
||
// If no vec item with Z value >= of an internal threshold of fn_higher_equal is found, return vec.size()
|
||
// If the initial idx is size_t(-1), then use binary search.
|
||
// Otherwise search linearly upwards.
|
||
template<typename T, typename FN_HIGHER_EQUAL>
|
||
size_t idx_higher_or_equal(const std::vector<T*> &vec, size_t idx, FN_HIGHER_EQUAL fn_higher_equal)
|
||
{
|
||
if (vec.empty()) {
|
||
idx = 0;
|
||
} else if (idx == size_t(-1)) {
|
||
// First of the batch of layers per thread pool invocation. Use binary search.
|
||
int idx_low = 0;
|
||
int idx_high = std::max(0, int(vec.size()) - 1);
|
||
while (idx_low + 1 < idx_high) {
|
||
int idx_mid = (idx_low + idx_high) / 2;
|
||
if (fn_higher_equal(vec[idx_mid]))
|
||
idx_high = idx_mid;
|
||
else
|
||
idx_low = idx_mid;
|
||
}
|
||
idx = fn_higher_equal(vec[idx_low]) ? idx_low :
|
||
(fn_higher_equal(vec[idx_high]) ? idx_high : vec.size());
|
||
} else {
|
||
// For the other layers of this batch of layers, search incrementally, which is cheaper than the binary search.
|
||
while (idx < vec.size() && ! fn_higher_equal(vec[idx]))
|
||
++ idx;
|
||
}
|
||
return idx;
|
||
}
|
||
|
||
// FN_LOWER_EQUAL: the provided object pointer has a Z value <= of an internal threshold.
|
||
// Find the first item with Z value <= of an internal threshold of fn_lower_equal.
|
||
// If no vec item with Z value <= of an internal threshold of fn_lower_equal is found, return -1.
|
||
// If the initial idx is < -1, then use binary search.
|
||
// Otherwise search linearly downwards.
|
||
template<typename T, typename FN_LOWER_EQUAL>
|
||
int idx_lower_or_equal(const std::vector<T*> &vec, int idx, FN_LOWER_EQUAL fn_lower_equal)
|
||
{
|
||
if (vec.empty()) {
|
||
idx = -1;
|
||
} else if (idx < -1) {
|
||
// First of the batch of layers per thread pool invocation. Use binary search.
|
||
int idx_low = 0;
|
||
int idx_high = std::max(0, int(vec.size()) - 1);
|
||
while (idx_low + 1 < idx_high) {
|
||
int idx_mid = (idx_low + idx_high) / 2;
|
||
if (fn_lower_equal(vec[idx_mid]))
|
||
idx_low = idx_mid;
|
||
else
|
||
idx_high = idx_mid;
|
||
}
|
||
idx = fn_lower_equal(vec[idx_high]) ? idx_high :
|
||
(fn_lower_equal(vec[idx_low ]) ? idx_low : -1);
|
||
} else {
|
||
// For the other layers of this batch of layers, search incrementally, which is cheaper than the binary search.
|
||
while (idx >= 0 && ! fn_lower_equal(vec[idx]))
|
||
-- idx;
|
||
}
|
||
return idx;
|
||
}
|
||
|
||
// Trim the top_contacts layers with the bottom_contacts layers if they overlap, so there would not be enough vertical space for both of them.
|
||
void PrintObjectSupportMaterial::trim_top_contacts_by_bottom_contacts(
|
||
const PrintObject &object, const MyLayersPtr &bottom_contacts, MyLayersPtr &top_contacts) const
|
||
{
|
||
tbb::parallel_for(tbb::blocked_range<int>(0, int(top_contacts.size())),
|
||
[this, &object, &bottom_contacts, &top_contacts](const tbb::blocked_range<int>& range) {
|
||
int idx_bottom_overlapping_first = -2;
|
||
// For all top contact layers, counting downwards due to the way idx_higher_or_equal caches the last index to avoid repeated binary search.
|
||
for (int idx_top = range.end() - 1; idx_top >= range.begin(); -- idx_top) {
|
||
MyLayer &layer_top = *top_contacts[idx_top];
|
||
// Find the first bottom layer overlapping with layer_top.
|
||
idx_bottom_overlapping_first = idx_lower_or_equal(bottom_contacts, idx_bottom_overlapping_first, [&layer_top](const MyLayer *layer_bottom){ return layer_bottom->bottom_print_z() - EPSILON <= layer_top.bottom_z; });
|
||
// For all top contact layers overlapping with the thick bottom contact layer:
|
||
for (int idx_bottom_overlapping = idx_bottom_overlapping_first; idx_bottom_overlapping >= 0; -- idx_bottom_overlapping) {
|
||
const MyLayer &layer_bottom = *bottom_contacts[idx_bottom_overlapping];
|
||
assert(layer_bottom.bottom_print_z() - EPSILON <= layer_top.bottom_z);
|
||
if (layer_top.print_z < layer_bottom.print_z + EPSILON) {
|
||
// Layers overlap. Trim layer_top with layer_bottom.
|
||
layer_top.polygons = diff(layer_top.polygons, layer_bottom.polygons);
|
||
} else
|
||
break;
|
||
}
|
||
}
|
||
});
|
||
}
|
||
|
||
PrintObjectSupportMaterial::MyLayersPtr PrintObjectSupportMaterial::raft_and_intermediate_support_layers(
|
||
const PrintObject &object,
|
||
const MyLayersPtr &bottom_contacts,
|
||
const MyLayersPtr &top_contacts,
|
||
MyLayerStorage &layer_storage) const
|
||
{
|
||
MyLayersPtr intermediate_layers;
|
||
|
||
// Collect and sort the extremes (bottoms of the top contacts and tops of the bottom contacts).
|
||
MyLayersPtr extremes;
|
||
extremes.reserve(top_contacts.size() + bottom_contacts.size());
|
||
for (size_t i = 0; i < top_contacts.size(); ++ i)
|
||
// Bottoms of the top contact layers. In case of non-soluble supports,
|
||
// the top contact layer thickness is not known yet.
|
||
extremes.push_back(top_contacts[i]);
|
||
for (size_t i = 0; i < bottom_contacts.size(); ++ i)
|
||
// Tops of the bottom contact layers.
|
||
extremes.push_back(bottom_contacts[i]);
|
||
if (extremes.empty())
|
||
return intermediate_layers;
|
||
|
||
auto layer_extreme_lower = [](const MyLayer *l1, const MyLayer *l2) {
|
||
coordf_t z1 = l1->extreme_z();
|
||
coordf_t z2 = l2->extreme_z();
|
||
// If the layers are aligned, return the top contact surface first.
|
||
return z1 < z2 || (z1 == z2 && l1->layer_type == PrintObjectSupportMaterial::sltTopContact && l2->layer_type == PrintObjectSupportMaterial::sltBottomContact);
|
||
};
|
||
std::sort(extremes.begin(), extremes.end(), layer_extreme_lower);
|
||
|
||
assert(extremes.empty() ||
|
||
(extremes.front()->extreme_z() > m_slicing_params.raft_interface_top_z - EPSILON &&
|
||
(m_slicing_params.raft_layers() == 1 || // only raft contact layer
|
||
extremes.front()->layer_type == sltTopContact || // first extreme is a top contact layer
|
||
extremes.front()->extreme_z() > m_slicing_params.first_print_layer_height - EPSILON)));
|
||
|
||
bool synchronize = this->synchronize_layers();
|
||
|
||
#ifdef _DEBUG
|
||
// Verify that the extremes are separated by m_support_layer_height_min.
|
||
for (size_t i = 1; i < extremes.size(); ++ i) {
|
||
assert(extremes[i]->extreme_z() - extremes[i-1]->extreme_z() == 0. ||
|
||
extremes[i]->extreme_z() - extremes[i-1]->extreme_z() > this->m_support_layer_height_min - EPSILON);
|
||
assert(extremes[i]->extreme_z() - extremes[i-1]->extreme_z() > 0. ||
|
||
extremes[i]->layer_type == extremes[i-1]->layer_type ||
|
||
(extremes[i]->layer_type == sltBottomContact && extremes[i - 1]->layer_type == sltTopContact));
|
||
}
|
||
#endif
|
||
|
||
// Generate intermediate layers.
|
||
// The first intermediate layer is the same as the 1st layer if there is no raft,
|
||
// or the bottom of the first intermediate layer is aligned with the bottom of the raft contact layer.
|
||
// Intermediate layers are always printed with a normal etrusion flow (non-bridging).
|
||
size_t idx_layer_object = 0;
|
||
for (size_t idx_extreme = 0; idx_extreme < extremes.size(); ++ idx_extreme) {
|
||
MyLayer *extr2 = extremes[idx_extreme];
|
||
coordf_t extr2z = extr2->extreme_z();
|
||
if (std::abs(extr2z - m_slicing_params.raft_interface_top_z) < EPSILON) {
|
||
// This is a raft contact layer, its height has been decided in this->top_contact_layers().
|
||
assert(extr2->layer_type == sltTopContact);
|
||
continue;
|
||
}
|
||
if (std::abs(extr2z - m_slicing_params.first_print_layer_height) < EPSILON) {
|
||
// This is a bottom of a synchronized (or soluble) top contact layer, its height has been decided in this->top_contact_layers().
|
||
assert(extr2->layer_type == sltTopContact);
|
||
assert(extr2->bottom_z == m_slicing_params.first_print_layer_height);
|
||
assert(extr2->print_z >= m_slicing_params.first_print_layer_height + this->m_support_layer_height_min - EPSILON);
|
||
if (intermediate_layers.empty() || intermediate_layers.back()->print_z < m_slicing_params.first_print_layer_height) {
|
||
MyLayer &layer_new = layer_allocate(layer_storage, sltIntermediate);
|
||
layer_new.bottom_z = 0.;
|
||
layer_new.print_z = m_slicing_params.first_print_layer_height;
|
||
layer_new.height = m_slicing_params.first_print_layer_height;
|
||
intermediate_layers.push_back(&layer_new);
|
||
}
|
||
continue;
|
||
}
|
||
assert(extr2z >= m_slicing_params.raft_interface_top_z + EPSILON);
|
||
assert(extr2z >= m_slicing_params.first_print_layer_height + EPSILON);
|
||
MyLayer *extr1 = (idx_extreme == 0) ? nullptr : extremes[idx_extreme - 1];
|
||
// Fuse a support layer firmly to the raft top interface (not to the raft contacts).
|
||
coordf_t extr1z = (extr1 == nullptr) ? m_slicing_params.raft_interface_top_z : extr1->extreme_z();
|
||
assert(extr2z >= extr1z);
|
||
assert(extr2z > extr1z || (extr1 != nullptr && extr2->layer_type == sltBottomContact));
|
||
if (std::abs(extr1z) < EPSILON) {
|
||
// This layer interval starts with the 1st layer. Print the 1st layer using the prescribed 1st layer thickness.
|
||
assert(! m_slicing_params.has_raft());
|
||
assert(intermediate_layers.empty() || intermediate_layers.back()->print_z <= m_slicing_params.first_print_layer_height);
|
||
// At this point only layers above first_print_layer_heigth + EPSILON are expected as the other cases were captured earlier.
|
||
assert(extr2z >= m_slicing_params.first_print_layer_height + EPSILON);
|
||
// Generate a new intermediate layer.
|
||
MyLayer &layer_new = layer_allocate(layer_storage, sltIntermediate);
|
||
layer_new.bottom_z = 0.;
|
||
layer_new.print_z = extr1z = m_slicing_params.first_print_layer_height;
|
||
layer_new.height = extr1z;
|
||
intermediate_layers.push_back(&layer_new);
|
||
// Continue printing the other layers up to extr2z.
|
||
}
|
||
coordf_t dist = extr2z - extr1z;
|
||
assert(dist >= 0.);
|
||
if (dist == 0.)
|
||
continue;
|
||
// The new layers shall be at least m_support_layer_height_min thick.
|
||
assert(dist >= m_support_layer_height_min - EPSILON);
|
||
if (synchronize) {
|
||
// Emit support layers synchronized with the object layers.
|
||
// Find the first object layer, which has its print_z in this support Z range.
|
||
while (idx_layer_object < object.layers.size() && object.layers[idx_layer_object]->print_z < extr1z + EPSILON)
|
||
++ idx_layer_object;
|
||
if (idx_layer_object == 0 && extr1z == m_slicing_params.raft_interface_top_z) {
|
||
// Insert one base support layer below the object.
|
||
MyLayer &layer_new = layer_allocate(layer_storage, sltIntermediate);
|
||
layer_new.print_z = m_slicing_params.object_print_z_min;
|
||
layer_new.bottom_z = m_slicing_params.raft_interface_top_z;
|
||
layer_new.height = layer_new.print_z - layer_new.bottom_z;
|
||
intermediate_layers.push_back(&layer_new);
|
||
}
|
||
// Emit all intermediate support layers synchronized with object layers up to extr2z.
|
||
for (; idx_layer_object < object.layers.size() && object.layers[idx_layer_object]->print_z < extr2z + EPSILON; ++ idx_layer_object) {
|
||
MyLayer &layer_new = layer_allocate(layer_storage, sltIntermediate);
|
||
layer_new.print_z = object.layers[idx_layer_object]->print_z;
|
||
layer_new.height = object.layers[idx_layer_object]->height;
|
||
layer_new.bottom_z = (idx_layer_object > 0) ? object.layers[idx_layer_object - 1]->print_z : (layer_new.print_z - layer_new.height);
|
||
assert(intermediate_layers.empty() || intermediate_layers.back()->print_z < layer_new.print_z + EPSILON);
|
||
intermediate_layers.push_back(&layer_new);
|
||
}
|
||
} else {
|
||
// Insert intermediate layers.
|
||
size_t n_layers_extra = size_t(ceil(dist / m_slicing_params.max_suport_layer_height));
|
||
assert(n_layers_extra > 0);
|
||
coordf_t step = dist / coordf_t(n_layers_extra);
|
||
if (extr1 != nullptr && extr1->layer_type == sltTopContact &&
|
||
extr1->print_z + this->m_support_layer_height_min > extr1->bottom_z + step) {
|
||
// The bottom extreme is a bottom of a top surface. Ensure that the gap
|
||
// between the 1st intermediate layer print_z and extr1->print_z is not too small.
|
||
assert(extr1->bottom_z + this->m_support_layer_height_min < extr1->print_z + EPSILON);
|
||
// Generate the first intermediate layer.
|
||
MyLayer &layer_new = layer_allocate(layer_storage, sltIntermediate);
|
||
layer_new.bottom_z = extr1->bottom_z;
|
||
layer_new.print_z = extr1z = extr1->print_z;
|
||
layer_new.height = extr1->height;
|
||
intermediate_layers.push_back(&layer_new);
|
||
dist = extr2z - extr1z;
|
||
n_layers_extra = size_t(ceil(dist / m_slicing_params.max_suport_layer_height));
|
||
if (n_layers_extra == 0)
|
||
continue;
|
||
// Continue printing the other layers up to extr2z.
|
||
step = dist / coordf_t(n_layers_extra);
|
||
}
|
||
if (! m_slicing_params.soluble_interface && extr2->layer_type == sltTopContact) {
|
||
// This is a top interface layer, which does not have a height assigned yet. Do it now.
|
||
assert(extr2->height == 0.);
|
||
assert(extr1z > m_slicing_params.first_print_layer_height - EPSILON);
|
||
extr2->height = step;
|
||
extr2->bottom_z = extr2z = extr2->print_z - step;
|
||
if (-- n_layers_extra == 0)
|
||
continue;
|
||
}
|
||
coordf_t extr2z_large_steps = extr2z;
|
||
// Take the largest allowed step in the Z axis until extr2z_large_steps is reached.
|
||
for (size_t i = 0; i < n_layers_extra; ++ i) {
|
||
MyLayer &layer_new = layer_allocate(layer_storage, sltIntermediate);
|
||
if (i + 1 == n_layers_extra) {
|
||
// Last intermediate layer added. Align the last entered layer with extr2z_large_steps exactly.
|
||
layer_new.bottom_z = (i == 0) ? extr1z : intermediate_layers.back()->print_z;
|
||
layer_new.print_z = extr2z_large_steps;
|
||
layer_new.height = layer_new.print_z - layer_new.bottom_z;
|
||
}
|
||
else {
|
||
// Intermediate layer, not the last added.
|
||
layer_new.height = step;
|
||
layer_new.bottom_z = extr1z + i * step;
|
||
layer_new.print_z = layer_new.bottom_z + step;
|
||
}
|
||
assert(intermediate_layers.empty() || intermediate_layers.back()->print_z <= layer_new.print_z);
|
||
intermediate_layers.push_back(&layer_new);
|
||
}
|
||
}
|
||
}
|
||
|
||
#ifdef _DEBUG
|
||
for (size_t i = 0; i < top_contacts.size(); ++i)
|
||
assert(top_contacts[i]->height > 0.);
|
||
#endif /* _DEBUG */
|
||
|
||
return intermediate_layers;
|
||
}
|
||
|
||
// At this stage there shall be intermediate_layers allocated between bottom_contacts and top_contacts, but they have no polygons assigned.
|
||
// Also the bottom/top_contacts shall have a layer thickness assigned already.
|
||
void PrintObjectSupportMaterial::generate_base_layers(
|
||
const PrintObject &object,
|
||
const MyLayersPtr &bottom_contacts,
|
||
const MyLayersPtr &top_contacts,
|
||
MyLayersPtr &intermediate_layers,
|
||
const std::vector<Polygons> &layer_support_areas) const
|
||
{
|
||
#ifdef SLIC3R_DEBUG
|
||
static int iRun = 0;
|
||
#endif /* SLIC3R_DEBUG */
|
||
|
||
if (top_contacts.empty())
|
||
// No top contacts -> no intermediate layers will be produced.
|
||
return;
|
||
|
||
// coordf_t fillet_radius_scaled = scale_(m_object_config->support_material_spacing);
|
||
|
||
BOOST_LOG_TRIVIAL(debug) << "PrintObjectSupportMaterial::generate_base_layers() in parallel - start";
|
||
tbb::parallel_for(
|
||
tbb::blocked_range<size_t>(0, intermediate_layers.size()),
|
||
[this, &object, &bottom_contacts, &top_contacts, &intermediate_layers, &layer_support_areas](const tbb::blocked_range<size_t>& range) {
|
||
// index -2 means not initialized yet, -1 means intialized and decremented to 0 and then -1.
|
||
int idx_top_contact_above = -2;
|
||
int idx_bottom_contact_overlapping = -2;
|
||
int idx_object_layer_above = -2;
|
||
// Counting down due to the way idx_lower_or_equal caches indices to avoid repeated binary search over the complete sequence.
|
||
for (int idx_intermediate = int(range.end()) - 1; idx_intermediate >= int(range.begin()); -- idx_intermediate)
|
||
{
|
||
BOOST_LOG_TRIVIAL(trace) << "Support generator - generate_base_layers - creating layer " <<
|
||
idx_intermediate << " of " << intermediate_layers.size();
|
||
MyLayer &layer_intermediate = *intermediate_layers[idx_intermediate];
|
||
// Layers must be sorted by print_z.
|
||
assert(idx_intermediate == 0 || layer_intermediate.print_z >= intermediate_layers[idx_intermediate - 1]->print_z);
|
||
|
||
// Find a top_contact layer touching the layer_intermediate from above, if any, and collect its polygons into polygons_new.
|
||
idx_top_contact_above = idx_lower_or_equal(top_contacts, idx_top_contact_above,
|
||
[&layer_intermediate](const MyLayer *layer){ return layer->bottom_z <= layer_intermediate.print_z - EPSILON; });
|
||
|
||
// New polygons for layer_intermediate.
|
||
Polygons polygons_new;
|
||
|
||
// Use the precomputed layer_support_areas.
|
||
idx_object_layer_above = std::max(0, idx_lower_or_equal(object.layers, idx_object_layer_above,
|
||
[&layer_intermediate](const Layer *layer){ return layer->print_z <= layer_intermediate.print_z + EPSILON; }));
|
||
polygons_new = layer_support_areas[idx_object_layer_above];
|
||
|
||
// Polygons to trim polygons_new.
|
||
Polygons polygons_trimming;
|
||
|
||
// Trimming the base layer with any overlapping top layer.
|
||
// Following cases are recognized:
|
||
// 1) top.bottom_z >= base.top_z -> No overlap, no trimming needed.
|
||
// 2) base.bottom_z >= top.print_z -> No overlap, no trimming needed.
|
||
// 3) base.print_z > top.print_z && base.bottom_z >= top.bottom_z -> Overlap, which will be solved inside generate_toolpaths() by reducing the base layer height where it overlaps the top layer. No trimming needed here.
|
||
// 4) base.print_z > top.bottom_z && base.bottom_z < top.bottom_z -> Base overlaps with top.bottom_z. This must not happen.
|
||
// 5) base.print_z <= top.print_z && base.bottom_z >= top.bottom_z -> Base is fully inside top. Trim base by top.
|
||
int idx_top_contact_overlapping = idx_top_contact_above;
|
||
while (idx_top_contact_overlapping >= 0 &&
|
||
top_contacts[idx_top_contact_overlapping]->bottom_z > layer_intermediate.print_z - EPSILON)
|
||
-- idx_top_contact_overlapping;
|
||
// Collect all the top_contact layer intersecting with this layer.
|
||
for (; idx_top_contact_overlapping >= 0; -- idx_top_contact_overlapping) {
|
||
MyLayer &layer_top_overlapping = *top_contacts[idx_top_contact_overlapping];
|
||
if (layer_top_overlapping.print_z < layer_intermediate.bottom_z + EPSILON)
|
||
break;
|
||
// Base must not overlap with top.bottom_z.
|
||
assert(! (layer_intermediate.print_z > layer_top_overlapping.bottom_z + EPSILON && layer_intermediate.bottom_z < layer_top_overlapping.bottom_z - EPSILON));
|
||
if (layer_intermediate.print_z <= layer_top_overlapping.print_z + EPSILON && layer_intermediate.bottom_z >= layer_top_overlapping.bottom_z - EPSILON)
|
||
// Base is fully inside top. Trim base by top.
|
||
polygons_append(polygons_trimming, layer_top_overlapping.polygons);
|
||
}
|
||
|
||
// Trimming the base layer with any overlapping bottom layer.
|
||
// Following cases are recognized:
|
||
// 1) bottom.bottom_z >= base.top_z -> No overlap, no trimming needed.
|
||
// 2) base.bottom_z >= bottom.print_z -> No overlap, no trimming needed.
|
||
// 3) base.print_z > bottom.bottom_z && base.bottom_z < bottom.bottom_z -> Overlap, which will be solved inside generate_toolpaths() by reducing the bottom layer height where it overlaps the base layer. No trimming needed here.
|
||
// 4) base.print_z > bottom.print_z && base.bottom_z >= bottom.print_z -> Base overlaps with bottom.print_z. This must not happen.
|
||
// 5) base.print_z <= bottom.print_z && base.bottom_z >= bottom.bottom_z -> Base is fully inside top. Trim base by top.
|
||
idx_bottom_contact_overlapping = idx_lower_or_equal(bottom_contacts, idx_bottom_contact_overlapping,
|
||
[&layer_intermediate](const MyLayer *layer){ return layer->bottom_print_z() <= layer_intermediate.print_z - EPSILON; });
|
||
// Collect all the bottom_contacts layer intersecting with this layer.
|
||
for (int i = idx_bottom_contact_overlapping; i >= 0; -- i) {
|
||
MyLayer &layer_bottom_overlapping = *bottom_contacts[i];
|
||
if (layer_bottom_overlapping.print_z < layer_intermediate.bottom_print_z() + EPSILON)
|
||
break;
|
||
// Base must not overlap with bottom.top_z.
|
||
assert(! (layer_intermediate.print_z > layer_bottom_overlapping.print_z + EPSILON && layer_intermediate.bottom_z < layer_bottom_overlapping.print_z - EPSILON));
|
||
if (layer_intermediate.print_z <= layer_bottom_overlapping.print_z + EPSILON && layer_intermediate.bottom_z >= layer_bottom_overlapping.bottom_print_z() - EPSILON)
|
||
// Base is fully inside bottom. Trim base by bottom.
|
||
polygons_append(polygons_trimming, layer_bottom_overlapping.polygons);
|
||
}
|
||
|
||
#ifdef SLIC3R_DEBUG
|
||
{
|
||
BoundingBox bbox = get_extents(polygons_new);
|
||
bbox.merge(get_extents(polygons_trimming));
|
||
::Slic3r::SVG svg(debug_out_path("support-intermediate-layers-raw-%d-%lf.svg", iRun, layer_intermediate.print_z), bbox);
|
||
svg.draw(union_ex(polygons_new, false), "blue", 0.5f);
|
||
svg.draw(to_polylines(polygons_new), "blue");
|
||
svg.draw(union_ex(polygons_trimming, true), "red", 0.5f);
|
||
svg.draw(to_polylines(polygons_trimming), "red");
|
||
}
|
||
#endif /* SLIC3R_DEBUG */
|
||
|
||
// Trim the polygons, store them.
|
||
if (polygons_trimming.empty())
|
||
layer_intermediate.polygons = std::move(polygons_new);
|
||
else
|
||
layer_intermediate.polygons = diff(
|
||
polygons_new,
|
||
polygons_trimming,
|
||
true); // safety offset to merge the touching source polygons
|
||
layer_intermediate.layer_type = sltBase;
|
||
|
||
#if 0
|
||
// Fillet the base polygons and trim them again with the top, interface and contact layers.
|
||
$base->{$i} = diff(
|
||
offset2(
|
||
$base->{$i},
|
||
$fillet_radius_scaled,
|
||
-$fillet_radius_scaled,
|
||
# Use a geometric offsetting for filleting.
|
||
JT_ROUND,
|
||
0.2*$fillet_radius_scaled),
|
||
$trim_polygons,
|
||
false); // don't apply the safety offset.
|
||
}
|
||
#endif
|
||
}
|
||
});
|
||
BOOST_LOG_TRIVIAL(debug) << "PrintObjectSupportMaterial::generate_base_layers() in parallel - end";
|
||
|
||
#ifdef SLIC3R_DEBUG
|
||
for (MyLayersPtr::const_iterator it = intermediate_layers.begin(); it != intermediate_layers.end(); ++it)
|
||
::Slic3r::SVG::export_expolygons(
|
||
debug_out_path("support-intermediate-layers-untrimmed-%d-%lf.svg", iRun, (*it)->print_z),
|
||
union_ex((*it)->polygons, false));
|
||
++ iRun;
|
||
#endif /* SLIC3R_DEBUG */
|
||
|
||
trim_support_layers_by_object(object, intermediate_layers, m_slicing_params.soluble_interface ? 0. : m_support_layer_height_min, m_slicing_params.soluble_interface ? 0. : m_support_layer_height_min, m_gap_xy);
|
||
}
|
||
|
||
void PrintObjectSupportMaterial::trim_support_layers_by_object(
|
||
const PrintObject &object,
|
||
MyLayersPtr &support_layers,
|
||
const coordf_t gap_extra_above,
|
||
const coordf_t gap_extra_below,
|
||
const coordf_t gap_xy) const
|
||
{
|
||
const float gap_xy_scaled = float(scale_(gap_xy));
|
||
|
||
// Collect non-empty layers to be processed in parallel.
|
||
// This is a good idea as pulling a thread from a thread pool for an empty task is expensive.
|
||
MyLayersPtr nonempty_layers;
|
||
nonempty_layers.reserve(support_layers.size());
|
||
for (size_t idx_layer = 0; idx_layer < support_layers.size(); ++ idx_layer) {
|
||
MyLayer *support_layer = support_layers[idx_layer];
|
||
if (! support_layer->polygons.empty() && support_layer->print_z >= m_slicing_params.raft_contact_top_z + EPSILON)
|
||
// Non-empty support layer and not a raft layer.
|
||
nonempty_layers.push_back(support_layer);
|
||
}
|
||
|
||
// For all intermediate support layers:
|
||
BOOST_LOG_TRIVIAL(debug) << "PrintObjectSupportMaterial::trim_support_layers_by_object() in parallel - start";
|
||
tbb::parallel_for(
|
||
tbb::blocked_range<size_t>(0, nonempty_layers.size()),
|
||
[this, &object, &nonempty_layers, gap_extra_above, gap_extra_below, gap_xy_scaled](const tbb::blocked_range<size_t>& range) {
|
||
size_t idx_object_layer_overlapping = size_t(-1);
|
||
for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++ idx_layer) {
|
||
MyLayer &support_layer = *nonempty_layers[idx_layer];
|
||
// BOOST_LOG_TRIVIAL(trace) << "Support generator - trim_support_layers_by_object - trimmming non-empty layer " << idx_layer << " of " << nonempty_layers.size();
|
||
assert(! support_layer.polygons.empty() && support_layer.print_z >= m_slicing_params.raft_contact_top_z + EPSILON);
|
||
// Find the overlapping object layers including the extra above / below gap.
|
||
coordf_t z_threshold = support_layer.print_z - support_layer.height - gap_extra_below + EPSILON;
|
||
idx_object_layer_overlapping = idx_higher_or_equal(
|
||
object.layers, idx_object_layer_overlapping,
|
||
[z_threshold](const Layer *layer){ return layer->print_z >= z_threshold; });
|
||
// Collect all the object layers intersecting with this layer.
|
||
Polygons polygons_trimming;
|
||
size_t i = idx_object_layer_overlapping;
|
||
for (; i < object.layers.size(); ++ i) {
|
||
const Layer &object_layer = *object.layers[i];
|
||
if (object_layer.print_z - object_layer.height > support_layer.print_z + gap_extra_above - EPSILON)
|
||
break;
|
||
polygons_append(polygons_trimming, (Polygons)object_layer.slices);
|
||
}
|
||
if (! this->m_slicing_params.soluble_interface) {
|
||
// Collect all bottom surfaces, which will be extruded with a bridging flow.
|
||
for (; i < object.layers.size(); ++ i) {
|
||
const Layer &object_layer = *object.layers[i];
|
||
bool some_region_overlaps = false;
|
||
for (LayerRegion* region : object_layer.regions) {
|
||
coordf_t nozzle_dmr = region->region()->nozzle_dmr_avg(*this->m_print_config);
|
||
if (object_layer.print_z - nozzle_dmr > support_layer.print_z + gap_extra_above - EPSILON)
|
||
break;
|
||
some_region_overlaps = true;
|
||
polygons_append(polygons_trimming, to_polygons(region->slices.filter_by_type(stBottomBridge)));
|
||
}
|
||
if (! some_region_overlaps)
|
||
break;
|
||
}
|
||
}
|
||
// $layer->slices contains the full shape of layer, thus including
|
||
// perimeter's width. $support contains the full shape of support
|
||
// material, thus including the width of its foremost extrusion.
|
||
// We leave a gap equal to a full extrusion width.
|
||
support_layer.polygons = diff(
|
||
support_layer.polygons,
|
||
offset(polygons_trimming, gap_xy_scaled, SUPPORT_SURFACES_OFFSET_PARAMETERS));
|
||
}
|
||
});
|
||
BOOST_LOG_TRIVIAL(debug) << "PrintObjectSupportMaterial::trim_support_layers_by_object() in parallel - end";
|
||
}
|
||
|
||
PrintObjectSupportMaterial::MyLayersPtr PrintObjectSupportMaterial::generate_raft_base(
|
||
const MyLayersPtr &top_contacts,
|
||
const MyLayersPtr &interface_layers,
|
||
const MyLayersPtr &base_layers,
|
||
MyLayerStorage &layer_storage) const
|
||
{
|
||
// How much to inflate the support columns to be stable. This also applies to the 1st layer, if no raft layers are to be printed.
|
||
const float inflate_factor_fine = float(scale_((m_slicing_params.raft_layers() > 1) ? 0.5 : EPSILON));
|
||
const float inflate_factor_1st_layer = float(scale_(3.)) - inflate_factor_fine;
|
||
MyLayer *contacts = top_contacts .empty() ? nullptr : top_contacts .front();
|
||
MyLayer *interfaces = interface_layers.empty() ? nullptr : interface_layers.front();
|
||
MyLayer *columns_base = base_layers .empty() ? nullptr : base_layers .front();
|
||
if (contacts != nullptr && contacts->print_z > std::max(m_slicing_params.first_print_layer_height, m_slicing_params.raft_contact_top_z) + EPSILON)
|
||
// This is not the raft contact layer.
|
||
contacts = nullptr;
|
||
if (interfaces != nullptr && interfaces->bottom_print_z() > m_slicing_params.raft_interface_top_z + EPSILON)
|
||
// This is not the raft column base layer.
|
||
interfaces = nullptr;
|
||
if (columns_base != nullptr && columns_base->bottom_print_z() > m_slicing_params.raft_interface_top_z + EPSILON)
|
||
// This is not the raft interface layer.
|
||
columns_base = nullptr;
|
||
|
||
Polygons interface_polygons;
|
||
if (contacts != nullptr && ! contacts->polygons.empty())
|
||
polygons_append(interface_polygons, offset(contacts->polygons, inflate_factor_fine, SUPPORT_SURFACES_OFFSET_PARAMETERS));
|
||
if (interfaces != nullptr && ! interfaces->polygons.empty())
|
||
polygons_append(interface_polygons, offset(interfaces->polygons, inflate_factor_fine, SUPPORT_SURFACES_OFFSET_PARAMETERS));
|
||
|
||
// Output vector.
|
||
MyLayersPtr raft_layers;
|
||
|
||
if (m_slicing_params.raft_layers() > 1) {
|
||
Polygons base;
|
||
Polygons columns;
|
||
if (columns_base != nullptr) {
|
||
base = columns_base->polygons;
|
||
columns = base;
|
||
if (! interface_polygons.empty())
|
||
// Trim the 1st layer columns with the inflated interface polygons.
|
||
columns = diff(columns, interface_polygons);
|
||
}
|
||
if (! interface_polygons.empty()) {
|
||
// Merge the untrimmed columns base with the expanded raft interface, to be used for the support base and interface.
|
||
base = union_(base, interface_polygons);
|
||
}
|
||
// Do not add the raft contact layer, only add the raft layers below the contact layer.
|
||
// Insert the 1st layer.
|
||
{
|
||
MyLayer &new_layer = layer_allocate(layer_storage, (m_slicing_params.base_raft_layers > 0) ? sltRaftBase : sltRaftInterface);
|
||
raft_layers.push_back(&new_layer);
|
||
new_layer.print_z = m_slicing_params.first_print_layer_height;
|
||
new_layer.height = m_slicing_params.first_print_layer_height;
|
||
new_layer.bottom_z = 0.;
|
||
new_layer.polygons = offset(base, inflate_factor_1st_layer);
|
||
}
|
||
// Insert the base layers.
|
||
for (size_t i = 1; i < m_slicing_params.base_raft_layers; ++ i) {
|
||
coordf_t print_z = raft_layers.back()->print_z;
|
||
MyLayer &new_layer = layer_allocate(layer_storage, sltRaftBase);
|
||
raft_layers.push_back(&new_layer);
|
||
new_layer.print_z = print_z + m_slicing_params.base_raft_layer_height;
|
||
new_layer.height = m_slicing_params.base_raft_layer_height;
|
||
new_layer.bottom_z = print_z;
|
||
new_layer.polygons = base;
|
||
}
|
||
// Insert the interface layers.
|
||
for (size_t i = 1; i < m_slicing_params.interface_raft_layers; ++ i) {
|
||
coordf_t print_z = raft_layers.back()->print_z;
|
||
MyLayer &new_layer = layer_allocate(layer_storage, sltRaftInterface);
|
||
raft_layers.push_back(&new_layer);
|
||
new_layer.print_z = print_z + m_slicing_params.interface_raft_layer_height;
|
||
new_layer.height = m_slicing_params.interface_raft_layer_height;
|
||
new_layer.bottom_z = print_z;
|
||
new_layer.polygons = interface_polygons;
|
||
//FIXME misusing contact_polygons for support columns.
|
||
new_layer.contact_polygons = new Polygons(columns);
|
||
}
|
||
} else if (columns_base != nullptr) {
|
||
// Expand the bases of the support columns in the 1st layer.
|
||
columns_base->polygons = diff(
|
||
offset(columns_base->polygons, inflate_factor_1st_layer),
|
||
offset(m_object->layers.front()->slices.expolygons, scale_(m_gap_xy), SUPPORT_SURFACES_OFFSET_PARAMETERS));
|
||
if (contacts != nullptr)
|
||
columns_base->polygons = diff(columns_base->polygons, interface_polygons);
|
||
}
|
||
|
||
return raft_layers;
|
||
}
|
||
|
||
// Convert some of the intermediate layers into top/bottom interface layers.
|
||
PrintObjectSupportMaterial::MyLayersPtr PrintObjectSupportMaterial::generate_interface_layers(
|
||
const MyLayersPtr &bottom_contacts,
|
||
const MyLayersPtr &top_contacts,
|
||
MyLayersPtr &intermediate_layers,
|
||
MyLayerStorage &layer_storage) const
|
||
{
|
||
// my $area_threshold = $self->interface_flow->scaled_spacing ** 2;
|
||
|
||
MyLayersPtr interface_layers;
|
||
// Contact layer is considered an interface layer, therefore run the following block only if support_material_interface_layers > 1.
|
||
if (! intermediate_layers.empty() && m_object_config->support_material_interface_layers.value > 1) {
|
||
// For all intermediate layers, collect top contact surfaces, which are not further than support_material_interface_layers.
|
||
BOOST_LOG_TRIVIAL(debug) << "PrintObjectSupportMaterial::generate_interface_layers() in parallel - start";
|
||
interface_layers.assign(intermediate_layers.size(), nullptr);
|
||
tbb::spin_mutex layer_storage_mutex;
|
||
tbb::parallel_for(tbb::blocked_range<size_t>(0, intermediate_layers.size()),
|
||
[this, &bottom_contacts, &top_contacts, &intermediate_layers, &layer_storage, &layer_storage_mutex, &interface_layers](const tbb::blocked_range<size_t>& range) {
|
||
// Index of the first top contact layer intersecting the current intermediate layer.
|
||
size_t idx_top_contact_first = size_t(-1);
|
||
// Index of the first bottom contact layer intersecting the current intermediate layer.
|
||
size_t idx_bottom_contact_first = size_t(-1);
|
||
for (size_t idx_intermediate_layer = range.begin(); idx_intermediate_layer < range.end(); ++ idx_intermediate_layer) {
|
||
MyLayer &intermediate_layer = *intermediate_layers[idx_intermediate_layer];
|
||
// Top / bottom Z coordinate of a slab, over which we are collecting the top / bottom contact surfaces.
|
||
coordf_t top_z = intermediate_layers[std::min<int>(intermediate_layers.size()-1, idx_intermediate_layer + m_object_config->support_material_interface_layers - 1)]->print_z;
|
||
coordf_t bottom_z = intermediate_layers[std::max<int>(0, int(idx_intermediate_layer) - int(m_object_config->support_material_interface_layers) + 1)]->bottom_z;
|
||
// Move idx_top_contact_first up until above the current print_z.
|
||
idx_top_contact_first = idx_higher_or_equal(top_contacts, idx_top_contact_first, [&intermediate_layer](const MyLayer *layer){ return layer->print_z >= intermediate_layer.print_z; });
|
||
// Collect the top contact areas above this intermediate layer, below top_z.
|
||
Polygons polygons_top_contact_projected;
|
||
for (size_t idx_top_contact = idx_top_contact_first; idx_top_contact < top_contacts.size(); ++ idx_top_contact) {
|
||
const MyLayer &top_contact_layer = *top_contacts[idx_top_contact];
|
||
if (top_contact_layer.bottom_z - EPSILON > top_z)
|
||
break;
|
||
polygons_append(polygons_top_contact_projected, top_contact_layer.polygons);
|
||
}
|
||
// Move idx_bottom_contact_first up until touching bottom_z.
|
||
idx_bottom_contact_first = idx_higher_or_equal(bottom_contacts, idx_bottom_contact_first, [bottom_z](const MyLayer *layer){ return layer->print_z >= bottom_z - EPSILON; });
|
||
// Collect the top contact areas above this intermediate layer, below top_z.
|
||
Polygons polygons_bottom_contact_projected;
|
||
for (size_t idx_bottom_contact = idx_bottom_contact_first; idx_bottom_contact < bottom_contacts.size(); ++ idx_bottom_contact) {
|
||
const MyLayer &bottom_contact_layer = *bottom_contacts[idx_bottom_contact];
|
||
if (bottom_contact_layer.print_z - EPSILON > intermediate_layer.bottom_z)
|
||
break;
|
||
polygons_append(polygons_bottom_contact_projected, bottom_contact_layer.polygons);
|
||
}
|
||
|
||
if (polygons_top_contact_projected.empty() && polygons_bottom_contact_projected.empty())
|
||
continue;
|
||
|
||
// Insert a new layer into top_interface_layers.
|
||
MyLayer &layer_new = layer_allocate(layer_storage, layer_storage_mutex,
|
||
polygons_top_contact_projected.empty() ? sltBottomInterface : sltTopInterface);
|
||
layer_new.print_z = intermediate_layer.print_z;
|
||
layer_new.bottom_z = intermediate_layer.bottom_z;
|
||
layer_new.height = intermediate_layer.height;
|
||
layer_new.bridging = intermediate_layer.bridging;
|
||
interface_layers[idx_intermediate_layer] = &layer_new;
|
||
|
||
polygons_append(polygons_top_contact_projected, polygons_bottom_contact_projected);
|
||
polygons_top_contact_projected = union_(polygons_top_contact_projected, true);
|
||
layer_new.polygons = intersection(intermediate_layer.polygons, polygons_top_contact_projected);
|
||
//FIXME filter layer_new.polygons islands by a minimum area?
|
||
// $interface_area = [ grep abs($_->area) >= $area_threshold, @$interface_area ];
|
||
intermediate_layer.polygons = diff(intermediate_layer.polygons, polygons_top_contact_projected, false);
|
||
}
|
||
});
|
||
|
||
// Compress contact_out, remove the nullptr items.
|
||
remove_nulls(interface_layers);
|
||
BOOST_LOG_TRIVIAL(debug) << "PrintObjectSupportMaterial::generate_interface_layers() in parallel - start";
|
||
}
|
||
|
||
return interface_layers;
|
||
}
|
||
|
||
static inline void fill_expolygons_generate_paths(
|
||
ExtrusionEntitiesPtr &dst,
|
||
const ExPolygons &expolygons,
|
||
Fill *filler,
|
||
float density,
|
||
ExtrusionRole role,
|
||
const Flow &flow)
|
||
{
|
||
FillParams fill_params;
|
||
fill_params.density = density;
|
||
fill_params.complete = true;
|
||
fill_params.dont_adjust = true;
|
||
for (ExPolygons::const_iterator it_expolygon = expolygons.begin(); it_expolygon != expolygons.end(); ++ it_expolygon) {
|
||
Surface surface(stInternal, *it_expolygon);
|
||
extrusion_entities_append_paths(
|
||
dst,
|
||
filler->fill_surface(&surface, fill_params),
|
||
role,
|
||
flow.mm3_per_mm(), flow.width, flow.height);
|
||
}
|
||
}
|
||
|
||
static inline void fill_expolygons_generate_paths(
|
||
ExtrusionEntitiesPtr &dst,
|
||
ExPolygons &&expolygons,
|
||
Fill *filler,
|
||
float density,
|
||
ExtrusionRole role,
|
||
const Flow &flow)
|
||
{
|
||
FillParams fill_params;
|
||
fill_params.density = density;
|
||
fill_params.complete = true;
|
||
fill_params.dont_adjust = true;
|
||
for (ExPolygons::iterator it_expolygon = expolygons.begin(); it_expolygon != expolygons.end(); ++ it_expolygon) {
|
||
Surface surface(stInternal, std::move(*it_expolygon));
|
||
extrusion_entities_append_paths(
|
||
dst,
|
||
filler->fill_surface(&surface, fill_params),
|
||
role,
|
||
flow.mm3_per_mm(), flow.width, flow.height);
|
||
}
|
||
}
|
||
|
||
// Support layers, partially processed.
|
||
struct MyLayerExtruded
|
||
{
|
||
MyLayerExtruded() : layer(nullptr), m_polygons_to_extrude(nullptr) {}
|
||
~MyLayerExtruded() { delete m_polygons_to_extrude; m_polygons_to_extrude = nullptr; }
|
||
|
||
bool empty() const {
|
||
return layer == nullptr || layer->polygons.empty();
|
||
}
|
||
|
||
void set_polygons_to_extrude(Polygons &&polygons) {
|
||
if (m_polygons_to_extrude == nullptr)
|
||
m_polygons_to_extrude = new Polygons(std::move(polygons));
|
||
else
|
||
*m_polygons_to_extrude = std::move(polygons);
|
||
}
|
||
Polygons& polygons_to_extrude() { return (this->m_polygons_to_extrude == nullptr) ? layer->polygons : *this->m_polygons_to_extrude; }
|
||
const Polygons& polygons_to_extrude() const { return (this->m_polygons_to_extrude == nullptr) ? layer->polygons : *this->m_polygons_to_extrude; }
|
||
|
||
bool could_merge(const MyLayerExtruded &other) const {
|
||
return ! this->empty() && ! other.empty() &&
|
||
std::abs(this->layer->height - other.layer->height) < EPSILON &&
|
||
this->layer->bridging == other.layer->bridging;
|
||
}
|
||
|
||
// Merge regions, perform boolean union over the merged polygons.
|
||
void merge(MyLayerExtruded &&other) {
|
||
assert(this->could_merge(other));
|
||
// 1) Merge the rest polygons to extrude, if there are any.
|
||
if (other.m_polygons_to_extrude != nullptr) {
|
||
if (this->m_polygons_to_extrude == nullptr) {
|
||
// This layer has no extrusions generated yet, if it has no m_polygons_to_extrude (its area to extrude was not reduced yet).
|
||
assert(this->extrusions.empty());
|
||
this->m_polygons_to_extrude = new Polygons(this->layer->polygons);
|
||
}
|
||
Slic3r::polygons_append(*this->m_polygons_to_extrude, std::move(*other.m_polygons_to_extrude));
|
||
*this->m_polygons_to_extrude = union_(*this->m_polygons_to_extrude, true);
|
||
delete other.m_polygons_to_extrude;
|
||
other.m_polygons_to_extrude = nullptr;
|
||
} else if (this->m_polygons_to_extrude != nullptr) {
|
||
assert(other.m_polygons_to_extrude == nullptr);
|
||
// The other layer has no extrusions generated yet, if it has no m_polygons_to_extrude (its area to extrude was not reduced yet).
|
||
assert(other.extrusions.empty());
|
||
Slic3r::polygons_append(*this->m_polygons_to_extrude, other.layer->polygons);
|
||
*this->m_polygons_to_extrude = union_(*this->m_polygons_to_extrude, true);
|
||
}
|
||
// 2) Merge the extrusions.
|
||
this->extrusions.insert(this->extrusions.end(), other.extrusions.begin(), other.extrusions.end());
|
||
other.extrusions.clear();
|
||
// 3) Merge the infill polygons.
|
||
Slic3r::polygons_append(this->layer->polygons, std::move(other.layer->polygons));
|
||
this->layer->polygons = union_(this->layer->polygons, true);
|
||
other.layer->polygons.clear();
|
||
}
|
||
|
||
void polygons_append(Polygons &dst) const {
|
||
if (layer != NULL && ! layer->polygons.empty())
|
||
Slic3r::polygons_append(dst, layer->polygons);
|
||
}
|
||
|
||
// The source layer. It carries the height and extrusion type (bridging / non bridging, extrusion height).
|
||
PrintObjectSupportMaterial::MyLayer *layer;
|
||
// Collect extrusions. They will be exported sorted by the bottom height.
|
||
ExtrusionEntitiesPtr extrusions;
|
||
// In case the extrusions are non-empty, m_polygons_to_extrude may contain the rest areas yet to be filled by additional support.
|
||
// This is useful mainly for the loop interfaces, which are generated before the zig-zag infills.
|
||
Polygons *m_polygons_to_extrude;
|
||
};
|
||
|
||
typedef std::vector<MyLayerExtruded*> MyLayerExtrudedPtrs;
|
||
|
||
struct LoopInterfaceProcessor
|
||
{
|
||
LoopInterfaceProcessor(coordf_t circle_r) :
|
||
n_contact_loops(0),
|
||
circle_radius(circle_r),
|
||
circle_distance(circle_r * 3.)
|
||
{
|
||
// Shape of the top contact area.
|
||
circle.points.reserve(6);
|
||
for (size_t i = 0; i < 6; ++ i) {
|
||
double angle = double(i) * M_PI / 3.;
|
||
circle.points.push_back(Point(circle_radius * cos(angle), circle_radius * sin(angle)));
|
||
}
|
||
}
|
||
|
||
// Generate loop contacts at the top_contact_layer,
|
||
// trim the top_contact_layer->polygons with the areas covered by the loops.
|
||
void generate(MyLayerExtruded &top_contact_layer, const Flow &interface_flow_src) const;
|
||
|
||
int n_contact_loops;
|
||
coordf_t circle_radius;
|
||
coordf_t circle_distance;
|
||
Polygon circle;
|
||
};
|
||
|
||
void LoopInterfaceProcessor::generate(MyLayerExtruded &top_contact_layer, const Flow &interface_flow_src) const
|
||
{
|
||
if (n_contact_loops == 0 || top_contact_layer.empty())
|
||
return;
|
||
|
||
Flow flow = interface_flow_src;
|
||
flow.height = float(top_contact_layer.layer->height);
|
||
|
||
Polygons overhang_polygons;
|
||
if (top_contact_layer.layer->overhang_polygons != nullptr)
|
||
overhang_polygons = std::move(*top_contact_layer.layer->overhang_polygons);
|
||
|
||
// Generate the outermost loop.
|
||
// Find centerline of the external loop (or any other kind of extrusions should the loop be skipped)
|
||
ExPolygons top_contact_expolygons = offset_ex(union_ex(top_contact_layer.layer->polygons), - 0.5f * flow.scaled_width());
|
||
|
||
// Grid size and bit shifts for quick and exact to/from grid coordinates manipulation.
|
||
coord_t circle_grid_resolution = 1;
|
||
coord_t circle_grid_powerof2 = 0;
|
||
{
|
||
// epsilon to account for rounding errors
|
||
coord_t circle_grid_resolution_non_powerof2 = coord_t(2. * circle_distance + 3.);
|
||
while (circle_grid_resolution < circle_grid_resolution_non_powerof2) {
|
||
circle_grid_resolution <<= 1;
|
||
++ circle_grid_powerof2;
|
||
}
|
||
}
|
||
|
||
struct PointAccessor {
|
||
const Point* operator()(const Point &pt) const { return &pt; }
|
||
};
|
||
typedef ClosestPointInRadiusLookup<Point, PointAccessor> ClosestPointLookupType;
|
||
|
||
Polygons loops0;
|
||
{
|
||
// find centerline of the external loop of the contours
|
||
// Only consider the loops facing the overhang.
|
||
Polygons external_loops;
|
||
// Holes in the external loops.
|
||
Polygons circles;
|
||
Polygons overhang_with_margin = offset(union_ex(overhang_polygons), 0.5f * flow.scaled_width());
|
||
for (ExPolygons::iterator it_contact_expoly = top_contact_expolygons.begin(); it_contact_expoly != top_contact_expolygons.end(); ++ it_contact_expoly) {
|
||
// Store the circle centers placed for an expolygon into a regular grid, hashed by the circle centers.
|
||
ClosestPointLookupType circle_centers_lookup(coord_t(circle_distance - SCALED_EPSILON));
|
||
Points circle_centers;
|
||
Point center_last;
|
||
// For each contour of the expolygon, start with the outer contour, continue with the holes.
|
||
for (size_t i_contour = 0; i_contour <= it_contact_expoly->holes.size(); ++ i_contour) {
|
||
Polygon &contour = (i_contour == 0) ? it_contact_expoly->contour : it_contact_expoly->holes[i_contour - 1];
|
||
const Point *seg_current_pt = nullptr;
|
||
coordf_t seg_current_t = 0.;
|
||
if (! intersection_pl(contour.split_at_first_point(), overhang_with_margin).empty()) {
|
||
// The contour is below the overhang at least to some extent.
|
||
//FIXME ideally one would place the circles below the overhang only.
|
||
// Walk around the contour and place circles so their centers are not closer than circle_distance from each other.
|
||
if (circle_centers.empty()) {
|
||
// Place the first circle.
|
||
seg_current_pt = &contour.points.front();
|
||
seg_current_t = 0.;
|
||
center_last = *seg_current_pt;
|
||
circle_centers_lookup.insert(center_last);
|
||
circle_centers.push_back(center_last);
|
||
}
|
||
for (Points::const_iterator it = contour.points.begin() + 1; it != contour.points.end(); ++it) {
|
||
// Is it possible to place a circle on this segment? Is it not too close to any of the circles already placed on this contour?
|
||
const Point &p1 = *(it-1);
|
||
const Point &p2 = *it;
|
||
// Intersection of a ray (p1, p2) with a circle placed at center_last, with radius of circle_distance.
|
||
const Pointf v_seg(coordf_t(p2.x) - coordf_t(p1.x), coordf_t(p2.y) - coordf_t(p1.y));
|
||
const Pointf v_cntr(coordf_t(p1.x - center_last.x), coordf_t(p1.y - center_last.y));
|
||
coordf_t a = dot(v_seg);
|
||
coordf_t b = 2. * dot(v_seg, v_cntr);
|
||
coordf_t c = dot(v_cntr) - circle_distance * circle_distance;
|
||
coordf_t disc = b * b - 4. * a * c;
|
||
if (disc > 0.) {
|
||
// The circle intersects a ray. Avoid the parts of the segment inside the circle.
|
||
coordf_t t1 = (-b - sqrt(disc)) / (2. * a);
|
||
coordf_t t2 = (-b + sqrt(disc)) / (2. * a);
|
||
coordf_t t0 = (seg_current_pt == &p1) ? seg_current_t : 0.;
|
||
// Take the lowest t in <t0, 1.>, excluding <t1, t2>.
|
||
coordf_t t;
|
||
if (t0 <= t1)
|
||
t = t0;
|
||
else if (t2 <= 1.)
|
||
t = t2;
|
||
else {
|
||
// Try the following segment.
|
||
seg_current_pt = nullptr;
|
||
continue;
|
||
}
|
||
seg_current_pt = &p1;
|
||
seg_current_t = t;
|
||
center_last = Point(p1.x + coord_t(v_seg.x * t), p1.y + coord_t(v_seg.y * t));
|
||
// It has been verified that the new point is far enough from center_last.
|
||
// Ensure, that it is far enough from all the centers.
|
||
std::pair<const Point*, coordf_t> circle_closest = circle_centers_lookup.find(center_last);
|
||
if (circle_closest.first != nullptr) {
|
||
-- it;
|
||
continue;
|
||
}
|
||
} else {
|
||
// All of the segment is outside the circle. Take the first point.
|
||
seg_current_pt = &p1;
|
||
seg_current_t = 0.;
|
||
center_last = p1;
|
||
}
|
||
// Place the first circle.
|
||
circle_centers_lookup.insert(center_last);
|
||
circle_centers.push_back(center_last);
|
||
}
|
||
external_loops.push_back(std::move(contour));
|
||
for (Points::const_iterator it_center = circle_centers.begin(); it_center != circle_centers.end(); ++ it_center) {
|
||
circles.push_back(circle);
|
||
circles.back().translate(*it_center);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
// Apply a pattern to the external loops.
|
||
loops0 = diff(external_loops, circles);
|
||
}
|
||
|
||
Polylines loop_lines;
|
||
{
|
||
// make more loops
|
||
Polygons loop_polygons = loops0;
|
||
for (size_t i = 1; i < n_contact_loops; ++ i)
|
||
polygons_append(loop_polygons,
|
||
offset2(
|
||
loops0,
|
||
- int(i) * flow.scaled_spacing() - 0.5f * flow.scaled_spacing(),
|
||
0.5f * flow.scaled_spacing()));
|
||
// Clip such loops to the side oriented towards the object.
|
||
// Collect split points, so they will be recognized after the clipping.
|
||
// At the split points the clipped pieces will be stitched back together.
|
||
loop_lines.reserve(loop_polygons.size());
|
||
std::unordered_map<Point, int, PointHash> map_split_points;
|
||
for (Polygons::const_iterator it = loop_polygons.begin(); it != loop_polygons.end(); ++ it) {
|
||
assert(map_split_points.find(it->first_point()) == map_split_points.end());
|
||
map_split_points[it->first_point()] = -1;
|
||
loop_lines.push_back(it->split_at_first_point());
|
||
}
|
||
loop_lines = intersection_pl(loop_lines, offset(overhang_polygons, scale_(SUPPORT_MATERIAL_MARGIN)));
|
||
// Because a closed loop has been split to a line, loop_lines may contain continuous segments split to 2 pieces.
|
||
// Try to connect them.
|
||
for (int i_line = 0; i_line < int(loop_lines.size()); ++ i_line) {
|
||
Polyline &polyline = loop_lines[i_line];
|
||
auto it = map_split_points.find(polyline.first_point());
|
||
if (it != map_split_points.end()) {
|
||
// This is a stitching point.
|
||
// If this assert triggers, multiple source polygons likely intersected at this point.
|
||
assert(it->second != -2);
|
||
if (it->second < 0) {
|
||
// First occurence.
|
||
it->second = i_line;
|
||
} else {
|
||
// Second occurence. Join the lines.
|
||
Polyline &polyline_1st = loop_lines[it->second];
|
||
assert(polyline_1st.first_point() == it->first || polyline_1st.last_point() == it->first);
|
||
if (polyline_1st.first_point() == it->first)
|
||
polyline_1st.reverse();
|
||
polyline_1st.append(std::move(polyline));
|
||
it->second = -2;
|
||
}
|
||
continue;
|
||
}
|
||
it = map_split_points.find(polyline.last_point());
|
||
if (it != map_split_points.end()) {
|
||
// This is a stitching point.
|
||
// If this assert triggers, multiple source polygons likely intersected at this point.
|
||
assert(it->second != -2);
|
||
if (it->second < 0) {
|
||
// First occurence.
|
||
it->second = i_line;
|
||
} else {
|
||
// Second occurence. Join the lines.
|
||
Polyline &polyline_1st = loop_lines[it->second];
|
||
assert(polyline_1st.first_point() == it->first || polyline_1st.last_point() == it->first);
|
||
if (polyline_1st.first_point() == it->first)
|
||
polyline_1st.reverse();
|
||
polyline.reverse();
|
||
polyline_1st.append(std::move(polyline));
|
||
it->second = -2;
|
||
}
|
||
}
|
||
}
|
||
// Remove empty lines.
|
||
remove_degenerate(loop_lines);
|
||
}
|
||
|
||
// add the contact infill area to the interface area
|
||
// note that growing loops by $circle_radius ensures no tiny
|
||
// extrusions are left inside the circles; however it creates
|
||
// a very large gap between loops and contact_infill_polygons, so maybe another
|
||
// solution should be found to achieve both goals
|
||
// Store the trimmed polygons into a separate polygon set, so the original infill area remains intact for
|
||
// "modulate by layer thickness".
|
||
top_contact_layer.set_polygons_to_extrude(diff(top_contact_layer.layer->polygons, offset(loop_lines, float(circle_radius * 1.1))));
|
||
|
||
// Transform loops into ExtrusionPath objects.
|
||
extrusion_entities_append_paths(
|
||
top_contact_layer.extrusions,
|
||
STDMOVE(loop_lines),
|
||
erSupportMaterialInterface, flow.mm3_per_mm(), flow.width, flow.height);
|
||
}
|
||
|
||
#ifdef SLIC3R_DEBUG
|
||
static std::string dbg_index_to_color(int idx)
|
||
{
|
||
if (idx < 0)
|
||
return "yellow";
|
||
idx = idx % 3;
|
||
switch (idx) {
|
||
case 0: return "red";
|
||
case 1: return "green";
|
||
default: return "blue";
|
||
}
|
||
}
|
||
#endif /* SLIC3R_DEBUG */
|
||
|
||
// When extruding a bottom interface layer over an object, the bottom interface layer is extruded in a thin air, therefore
|
||
// it is being extruded with a bridging flow to not shrink excessively (the die swell effect).
|
||
// Tiny extrusions are better avoided and it is always better to anchor the thread to an existing support structure if possible.
|
||
// Therefore the bottom interface spots are expanded a bit. The expanded regions may overlap with another bottom interface layers,
|
||
// leading to over extrusion, where they overlap. The over extrusion is better avoided as it often makes the interface layers
|
||
// to stick too firmly to the object.
|
||
void modulate_extrusion_by_overlapping_layers(
|
||
// Extrusions generated for this_layer.
|
||
ExtrusionEntitiesPtr &extrusions_in_out,
|
||
const PrintObjectSupportMaterial::MyLayer &this_layer,
|
||
// Multiple layers overlapping with this_layer, sorted bottom up.
|
||
const PrintObjectSupportMaterial::MyLayersPtr &overlapping_layers)
|
||
{
|
||
size_t n_overlapping_layers = overlapping_layers.size();
|
||
if (n_overlapping_layers == 0 || extrusions_in_out.empty())
|
||
// The extrusions do not overlap with any other extrusion.
|
||
return;
|
||
|
||
// Get the initial extrusion parameters.
|
||
ExtrusionPath *extrusion_path_template = dynamic_cast<ExtrusionPath*>(extrusions_in_out.front());
|
||
assert(extrusion_path_template != nullptr);
|
||
ExtrusionRole extrusion_role = extrusion_path_template->role();
|
||
float extrusion_width = extrusion_path_template->width;
|
||
|
||
struct ExtrusionPathFragment
|
||
{
|
||
ExtrusionPathFragment() : mm3_per_mm(-1), width(-1), height(-1) {};
|
||
ExtrusionPathFragment(double mm3_per_mm, float width, float height) : mm3_per_mm(mm3_per_mm), width(width), height(height) {};
|
||
|
||
Polylines polylines;
|
||
double mm3_per_mm;
|
||
float width;
|
||
float height;
|
||
};
|
||
|
||
// Split the extrusions by the overlapping layers, reduce their extrusion rate.
|
||
// The last path_fragment is from this_layer.
|
||
std::vector<ExtrusionPathFragment> path_fragments(
|
||
n_overlapping_layers + 1,
|
||
ExtrusionPathFragment(extrusion_path_template->mm3_per_mm, extrusion_path_template->width, extrusion_path_template->height));
|
||
// Don't use it, it will be released.
|
||
extrusion_path_template = nullptr;
|
||
|
||
#ifdef SLIC3R_DEBUG
|
||
static int iRun = 0;
|
||
++ iRun;
|
||
BoundingBox bbox;
|
||
for (size_t i_overlapping_layer = 0; i_overlapping_layer < n_overlapping_layers; ++ i_overlapping_layer) {
|
||
const PrintObjectSupportMaterial::MyLayer &overlapping_layer = *overlapping_layers[i_overlapping_layer];
|
||
bbox.merge(get_extents(overlapping_layer.polygons));
|
||
}
|
||
for (ExtrusionEntitiesPtr::const_iterator it = extrusions_in_out.begin(); it != extrusions_in_out.end(); ++ it) {
|
||
ExtrusionPath *path = dynamic_cast<ExtrusionPath*>(*it);
|
||
assert(path != nullptr);
|
||
bbox.merge(get_extents(path->polyline));
|
||
}
|
||
SVG svg(debug_out_path("support-fragments-%d-%lf.svg", iRun, this_layer.print_z).c_str(), bbox);
|
||
const float transparency = 0.5f;
|
||
// Filled polygons for the overlapping regions.
|
||
svg.draw(union_ex(this_layer.polygons), dbg_index_to_color(-1), transparency);
|
||
for (size_t i_overlapping_layer = 0; i_overlapping_layer < n_overlapping_layers; ++ i_overlapping_layer) {
|
||
const PrintObjectSupportMaterial::MyLayer &overlapping_layer = *overlapping_layers[i_overlapping_layer];
|
||
svg.draw(union_ex(overlapping_layer.polygons), dbg_index_to_color(int(i_overlapping_layer)), transparency);
|
||
}
|
||
// Contours of the overlapping regions.
|
||
svg.draw(to_polylines(this_layer.polygons), dbg_index_to_color(-1), scale_(0.2));
|
||
for (size_t i_overlapping_layer = 0; i_overlapping_layer < n_overlapping_layers; ++ i_overlapping_layer) {
|
||
const PrintObjectSupportMaterial::MyLayer &overlapping_layer = *overlapping_layers[i_overlapping_layer];
|
||
svg.draw(to_polylines(overlapping_layer.polygons), dbg_index_to_color(int(i_overlapping_layer)), scale_(0.1));
|
||
}
|
||
// Fill extrusion, the source.
|
||
for (ExtrusionEntitiesPtr::const_iterator it = extrusions_in_out.begin(); it != extrusions_in_out.end(); ++ it) {
|
||
ExtrusionPath *path = dynamic_cast<ExtrusionPath*>(*it);
|
||
std::string color_name;
|
||
switch ((it - extrusions_in_out.begin()) % 9) {
|
||
case 0: color_name = "magenta"; break;
|
||
case 1: color_name = "deepskyblue"; break;
|
||
case 2: color_name = "coral"; break;
|
||
case 3: color_name = "goldenrod"; break;
|
||
case 4: color_name = "orange"; break;
|
||
case 5: color_name = "olivedrab"; break;
|
||
case 6: color_name = "blueviolet"; break;
|
||
case 7: color_name = "brown"; break;
|
||
default: color_name = "orchid"; break;
|
||
}
|
||
svg.draw(path->polyline, color_name, scale_(0.2));
|
||
}
|
||
#endif /* SLIC3R_DEBUG */
|
||
|
||
// End points of the original paths.
|
||
std::vector<std::pair<Point, Point>> path_ends;
|
||
// Collect the paths of this_layer.
|
||
{
|
||
Polylines &polylines = path_fragments.back().polylines;
|
||
for (ExtrusionEntitiesPtr::const_iterator it = extrusions_in_out.begin(); it != extrusions_in_out.end(); ++ it) {
|
||
ExtrusionPath *path = dynamic_cast<ExtrusionPath*>(*it);
|
||
assert(path != nullptr);
|
||
polylines.emplace_back(Polyline(std::move(path->polyline)));
|
||
path_ends.emplace_back(std::pair<Point, Point>(polylines.back().points.front(), polylines.back().points.back()));
|
||
}
|
||
}
|
||
// Destroy the original extrusion paths, their polylines were moved to path_fragments already.
|
||
// This will be the destination for the new paths.
|
||
extrusions_in_out.clear();
|
||
|
||
// Fragment the path segments by overlapping layers. The overlapping layers are sorted by an increasing print_z.
|
||
// Trim by the highest overlapping layer first.
|
||
for (int i_overlapping_layer = int(n_overlapping_layers) - 1; i_overlapping_layer >= 0; -- i_overlapping_layer) {
|
||
const PrintObjectSupportMaterial::MyLayer &overlapping_layer = *overlapping_layers[i_overlapping_layer];
|
||
ExtrusionPathFragment &frag = path_fragments[i_overlapping_layer];
|
||
Polygons polygons_trimming = offset(union_ex(overlapping_layer.polygons), float(scale_(0.5*extrusion_width)));
|
||
frag.polylines = intersection_pl(path_fragments.back().polylines, polygons_trimming, false);
|
||
path_fragments.back().polylines = diff_pl(path_fragments.back().polylines, polygons_trimming, false);
|
||
// Adjust the extrusion parameters for a reduced layer height and a non-bridging flow (nozzle_dmr = -1, does not matter).
|
||
assert(this_layer.print_z > overlapping_layer.print_z);
|
||
frag.height = float(this_layer.print_z - overlapping_layer.print_z);
|
||
frag.mm3_per_mm = Flow(frag.width, frag.height, -1.f, false).mm3_per_mm();
|
||
#ifdef SLIC3R_DEBUG
|
||
svg.draw(frag.polylines, dbg_index_to_color(i_overlapping_layer), scale_(0.1));
|
||
#endif /* SLIC3R_DEBUG */
|
||
}
|
||
|
||
#ifdef SLIC3R_DEBUG
|
||
svg.draw(path_fragments.back().polylines, dbg_index_to_color(-1), scale_(0.1));
|
||
svg.Close();
|
||
#endif /* SLIC3R_DEBUG */
|
||
|
||
// Now chain the split segments using hashing and a nearly exact match, maintaining the order of segments.
|
||
// Create a single ExtrusionPath or ExtrusionEntityCollection per source ExtrusionPath.
|
||
// Map of fragment start/end points to a pair of <i_overlapping_layer, i_polyline_in_layer>
|
||
// Because a non-exact matching is used for the end points, a multi-map is used.
|
||
// As the clipper library may reverse the order of some clipped paths, store both ends into the map.
|
||
struct ExtrusionPathFragmentEnd
|
||
{
|
||
ExtrusionPathFragmentEnd(size_t alayer_idx, size_t apolyline_idx, bool ais_start) :
|
||
layer_idx(alayer_idx), polyline_idx(apolyline_idx), is_start(ais_start) {}
|
||
size_t layer_idx;
|
||
size_t polyline_idx;
|
||
bool is_start;
|
||
};
|
||
class ExtrusionPathFragmentEndPointAccessor {
|
||
public:
|
||
ExtrusionPathFragmentEndPointAccessor(const std::vector<ExtrusionPathFragment> &path_fragments) : m_path_fragments(path_fragments) {}
|
||
// Return an end point of a fragment, or nullptr if the fragment has been consumed already.
|
||
const Point* operator()(const ExtrusionPathFragmentEnd &fragment_end) const {
|
||
const Polyline &polyline = m_path_fragments[fragment_end.layer_idx].polylines[fragment_end.polyline_idx];
|
||
return polyline.points.empty() ? nullptr :
|
||
(fragment_end.is_start ? &polyline.points.front() : &polyline.points.back());
|
||
}
|
||
private:
|
||
ExtrusionPathFragmentEndPointAccessor& operator=(const ExtrusionPathFragmentEndPointAccessor&);
|
||
const std::vector<ExtrusionPathFragment> &m_path_fragments;
|
||
};
|
||
const coord_t search_radius = 7;
|
||
ClosestPointInRadiusLookup<ExtrusionPathFragmentEnd, ExtrusionPathFragmentEndPointAccessor> map_fragment_starts(
|
||
search_radius, ExtrusionPathFragmentEndPointAccessor(path_fragments));
|
||
for (size_t i_overlapping_layer = 0; i_overlapping_layer <= n_overlapping_layers; ++ i_overlapping_layer) {
|
||
const Polylines &polylines = path_fragments[i_overlapping_layer].polylines;
|
||
for (size_t i_polyline = 0; i_polyline < polylines.size(); ++ i_polyline) {
|
||
// Map a starting point of a polyline to a pair of <layer, polyline>
|
||
if (polylines[i_polyline].points.size() >= 2) {
|
||
map_fragment_starts.insert(ExtrusionPathFragmentEnd(i_overlapping_layer, i_polyline, true));
|
||
map_fragment_starts.insert(ExtrusionPathFragmentEnd(i_overlapping_layer, i_polyline, false));
|
||
}
|
||
}
|
||
}
|
||
|
||
// For each source path:
|
||
for (size_t i_path = 0; i_path < path_ends.size(); ++ i_path) {
|
||
const Point &pt_start = path_ends[i_path].first;
|
||
const Point &pt_end = path_ends[i_path].second;
|
||
Point pt_current = pt_start;
|
||
// Find a chain of fragments with the original / reduced print height.
|
||
ExtrusionMultiPath multipath;
|
||
for (;;) {
|
||
// Find a closest end point to pt_current.
|
||
std::pair<const ExtrusionPathFragmentEnd*, coordf_t> end_and_dist2 = map_fragment_starts.find(pt_current);
|
||
// There may be a bug in Clipper flipping the order of two last points in a fragment?
|
||
// assert(end_and_dist2.first != nullptr);
|
||
assert(end_and_dist2.first == nullptr || end_and_dist2.second < search_radius * search_radius);
|
||
if (end_and_dist2.first == nullptr) {
|
||
// New fragment connecting to pt_current was not found.
|
||
// Verify that the last point found is close to the original end point of the unfragmented path.
|
||
//const double d2 = pt_end.distance_to_sq(pt_current);
|
||
//assert(d2 < coordf_t(search_radius * search_radius));
|
||
// End of the path.
|
||
break;
|
||
}
|
||
const ExtrusionPathFragmentEnd &fragment_end_min = *end_and_dist2.first;
|
||
// Fragment to consume.
|
||
ExtrusionPathFragment &frag = path_fragments[fragment_end_min.layer_idx];
|
||
Polyline &frag_polyline = frag.polylines[fragment_end_min.polyline_idx];
|
||
// Path to append the fragment to.
|
||
ExtrusionPath *path = multipath.paths.empty() ? nullptr : &multipath.paths.back();
|
||
if (path != nullptr) {
|
||
// Verify whether the path is compatible with the current fragment.
|
||
assert(this_layer.layer_type == PrintObjectSupportMaterial::sltBottomContact || path->height != frag.height || path->mm3_per_mm != frag.mm3_per_mm);
|
||
if (path->height != frag.height || path->mm3_per_mm != frag.mm3_per_mm) {
|
||
path = nullptr;
|
||
}
|
||
// Merging with the previous path. This can only happen if the current layer was reduced by a base layer, which was split into a base and interface layer.
|
||
}
|
||
if (path == nullptr) {
|
||
// Allocate a new path.
|
||
multipath.paths.push_back(ExtrusionPath(extrusion_role, frag.mm3_per_mm, frag.width, frag.height));
|
||
path = &multipath.paths.back();
|
||
}
|
||
// The Clipper library may flip the order of the clipped polylines arbitrarily.
|
||
// Reverse the source polyline, if connecting to the end.
|
||
if (! fragment_end_min.is_start)
|
||
frag_polyline.reverse();
|
||
// Enforce exact overlap of the end points of successive fragments.
|
||
assert(frag_polyline.points.front() == pt_current);
|
||
frag_polyline.points.front() = pt_current;
|
||
// Don't repeat the first point.
|
||
if (! path->polyline.points.empty())
|
||
path->polyline.points.pop_back();
|
||
// Consume the fragment's polyline, remove it from the input fragments, so it will be ignored the next time.
|
||
path->polyline.append(std::move(frag_polyline));
|
||
frag_polyline.points.clear();
|
||
pt_current = path->polyline.points.back();
|
||
if (pt_current == pt_end) {
|
||
// End of the path.
|
||
break;
|
||
}
|
||
}
|
||
if (!multipath.paths.empty()) {
|
||
if (multipath.paths.size() == 1) {
|
||
// This path was not fragmented.
|
||
extrusions_in_out.push_back(new ExtrusionPath(std::move(multipath.paths.front())));
|
||
} else {
|
||
// This path was fragmented. Copy the collection as a whole object, so the order inside the collection will not be changed
|
||
// during the chaining of extrusions_in_out.
|
||
extrusions_in_out.push_back(new ExtrusionMultiPath(std::move(multipath)));
|
||
}
|
||
}
|
||
}
|
||
// If there are any non-consumed fragments, add them separately.
|
||
//FIXME this shall not happen, if the Clipper works as expected and all paths split to fragments could be re-connected.
|
||
for (auto it_fragment = path_fragments.begin(); it_fragment != path_fragments.end(); ++ it_fragment)
|
||
extrusion_entities_append_paths(extrusions_in_out, std::move(it_fragment->polylines), extrusion_role, it_fragment->mm3_per_mm, it_fragment->width, it_fragment->height);
|
||
}
|
||
|
||
void PrintObjectSupportMaterial::generate_toolpaths(
|
||
const PrintObject &object,
|
||
const MyLayersPtr &raft_layers,
|
||
const MyLayersPtr &bottom_contacts,
|
||
const MyLayersPtr &top_contacts,
|
||
const MyLayersPtr &intermediate_layers,
|
||
const MyLayersPtr &interface_layers) const
|
||
{
|
||
// Slic3r::debugf "Generating patterns\n";
|
||
// loop_interface_processor with a given circle radius.
|
||
LoopInterfaceProcessor loop_interface_processor(1.5 * m_support_material_interface_flow.scaled_width());
|
||
loop_interface_processor.n_contact_loops = this->has_contact_loops() ? 1 : 0;
|
||
|
||
float base_angle = Geometry::deg2rad(float(m_object_config->support_material_angle.value));
|
||
float interface_angle = Geometry::deg2rad(float(m_object_config->support_material_angle.value + 90.));
|
||
coordf_t interface_spacing = m_object_config->support_material_interface_spacing.value + m_support_material_interface_flow.spacing();
|
||
coordf_t interface_density = std::min(1., m_support_material_interface_flow.spacing() / interface_spacing);
|
||
coordf_t support_spacing = m_object_config->support_material_spacing.value + m_support_material_flow.spacing();
|
||
coordf_t support_density = std::min(1., m_support_material_flow.spacing() / support_spacing);
|
||
if (m_object_config->support_material_interface_layers.value == 0) {
|
||
// No interface layers allowed, print everything with the base support pattern.
|
||
interface_spacing = support_spacing;
|
||
interface_density = support_density;
|
||
}
|
||
|
||
// Prepare fillers.
|
||
SupportMaterialPattern support_pattern = m_object_config->support_material_pattern;
|
||
bool with_sheath = m_object_config->support_material_with_sheath;
|
||
InfillPattern infill_pattern;
|
||
std::vector<float> angles;
|
||
angles.push_back(base_angle);
|
||
switch (support_pattern) {
|
||
case smpRectilinearGrid:
|
||
angles.push_back(interface_angle);
|
||
// fall through
|
||
case smpRectilinear:
|
||
infill_pattern = ipRectilinear;
|
||
break;
|
||
case smpHoneycomb:
|
||
infill_pattern = ipHoneycomb;
|
||
break;
|
||
}
|
||
BoundingBox bbox_object(Point(-scale_(1.), -scale_(1.0)), Point(scale_(1.), scale_(1.)));
|
||
|
||
// const coordf_t link_max_length_factor = 3.;
|
||
const coordf_t link_max_length_factor = 0.;
|
||
|
||
float raft_angle_1st_layer = 0.f;
|
||
float raft_angle_base = 0.f;
|
||
float raft_angle_interface = 0.f;
|
||
if (m_slicing_params.base_raft_layers > 1) {
|
||
// There are all raft layer types (1st layer, base, interface & contact layers) available.
|
||
raft_angle_1st_layer = interface_angle;
|
||
raft_angle_base = base_angle;
|
||
raft_angle_interface = interface_angle;
|
||
} else if (m_slicing_params.base_raft_layers == 1 || m_slicing_params.interface_raft_layers > 1) {
|
||
// 1st layer, interface & contact layers available.
|
||
raft_angle_1st_layer = base_angle;
|
||
if (this->has_support())
|
||
// Print 1st layer at 45 degrees from both the interface and base angles as both can land on the 1st layer.
|
||
raft_angle_1st_layer += 0.7854f;
|
||
raft_angle_interface = interface_angle;
|
||
} else if (m_slicing_params.interface_raft_layers == 1) {
|
||
// Only the contact raft layer is non-empty, which will be printed as the 1st layer.
|
||
assert(m_slicing_params.base_raft_layers == 0);
|
||
assert(m_slicing_params.interface_raft_layers == 1);
|
||
assert(m_slicing_params.raft_layers() == 1 && raft_layers.size() == 0);
|
||
} else {
|
||
// No raft.
|
||
assert(m_slicing_params.base_raft_layers == 0);
|
||
assert(m_slicing_params.interface_raft_layers == 0);
|
||
assert(m_slicing_params.raft_layers() == 0 && raft_layers.size() == 0);
|
||
}
|
||
|
||
// Insert the raft base layers.
|
||
size_t n_raft_layers = size_t(std::max(0, int(m_slicing_params.raft_layers()) - 1));
|
||
tbb::parallel_for(tbb::blocked_range<size_t>(0, n_raft_layers),
|
||
[this, &object, &raft_layers,
|
||
infill_pattern, &bbox_object, support_density, interface_density, raft_angle_1st_layer, raft_angle_base, raft_angle_interface, link_max_length_factor, with_sheath]
|
||
(const tbb::blocked_range<size_t>& range) {
|
||
for (size_t support_layer_id = range.begin(); support_layer_id < range.end(); ++ support_layer_id)
|
||
{
|
||
assert(support_layer_id < raft_layers.size());
|
||
SupportLayer &support_layer = *object.support_layers[support_layer_id];
|
||
assert(support_layer.support_fills.entities.empty());
|
||
MyLayer &raft_layer = *raft_layers[support_layer_id];
|
||
|
||
std::unique_ptr<Fill> filler_interface = std::unique_ptr<Fill>(Fill::new_from_type(ipRectilinear));
|
||
std::unique_ptr<Fill> filler_support = std::unique_ptr<Fill>(Fill::new_from_type(infill_pattern));
|
||
filler_interface->set_bounding_box(bbox_object);
|
||
filler_support->set_bounding_box(bbox_object);
|
||
|
||
// Print the support base below the support columns, or the support base for the support columns plus the contacts.
|
||
if (support_layer_id > 0) {
|
||
Polygons to_infill_polygons = (support_layer_id < m_slicing_params.base_raft_layers) ?
|
||
raft_layer.polygons :
|
||
//FIXME misusing contact_polygons for support columns.
|
||
((raft_layer.contact_polygons == nullptr) ? Polygons() : *raft_layer.contact_polygons);
|
||
if (! to_infill_polygons.empty()) {
|
||
Flow flow(float(m_support_material_flow.width), float(raft_layer.height), m_support_material_flow.nozzle_diameter, raft_layer.bridging);
|
||
// find centerline of the external loop/extrusions
|
||
ExPolygons to_infill = (support_layer_id == 0 || ! with_sheath) ?
|
||
// union_ex(base_polygons, true) :
|
||
offset2_ex(to_infill_polygons, float(SCALED_EPSILON), float(- SCALED_EPSILON)) :
|
||
offset2_ex(to_infill_polygons, float(SCALED_EPSILON), float(- SCALED_EPSILON - 0.5*flow.scaled_width()));
|
||
if (! to_infill.empty() && with_sheath) {
|
||
// Draw a perimeter all around the support infill. This makes the support stable, but difficult to remove.
|
||
// TODO: use brim ordering algorithm
|
||
to_infill_polygons = to_polygons(to_infill);
|
||
// TODO: use offset2_ex()
|
||
to_infill = offset_ex(to_infill, float(- 0.4 * flow.scaled_spacing()));
|
||
extrusion_entities_append_paths(
|
||
support_layer.support_fills.entities,
|
||
to_polylines(STDMOVE(to_infill_polygons)),
|
||
erSupportMaterial, flow.mm3_per_mm(), flow.width, flow.height);
|
||
}
|
||
if (! to_infill.empty()) {
|
||
// We don't use $base_flow->spacing because we need a constant spacing
|
||
// value that guarantees that all layers are correctly aligned.
|
||
Fill *filler = filler_support.get();
|
||
filler->angle = raft_angle_base;
|
||
filler->spacing = m_support_material_flow.spacing();
|
||
filler->link_max_length = coord_t(scale_(filler->spacing * link_max_length_factor / support_density));
|
||
fill_expolygons_generate_paths(
|
||
// Destination
|
||
support_layer.support_fills.entities,
|
||
// Regions to fill
|
||
STDMOVE(to_infill),
|
||
// Filler and its parameters
|
||
filler, float(support_density),
|
||
// Extrusion parameters
|
||
erSupportMaterial, flow);
|
||
}
|
||
}
|
||
}
|
||
|
||
Fill *filler = filler_interface.get();
|
||
Flow flow = m_first_layer_flow;
|
||
float density = 0.f;
|
||
if (support_layer_id == 0) {
|
||
// Base flange.
|
||
filler->angle = raft_angle_1st_layer;
|
||
filler->spacing = m_first_layer_flow.spacing();
|
||
// 70% of density on the 1st layer.
|
||
density = 0.7f;
|
||
} else if (support_layer_id >= m_slicing_params.base_raft_layers) {
|
||
filler->angle = raft_angle_interface;
|
||
// We don't use $base_flow->spacing because we need a constant spacing
|
||
// value that guarantees that all layers are correctly aligned.
|
||
filler->spacing = m_support_material_flow.spacing();
|
||
flow = Flow(float(m_support_material_interface_flow.width), float(raft_layer.height), m_support_material_flow.nozzle_diameter, raft_layer.bridging);
|
||
density = float(interface_density);
|
||
} else
|
||
continue;
|
||
filler->link_max_length = coord_t(scale_(filler->spacing * link_max_length_factor / density));
|
||
fill_expolygons_generate_paths(
|
||
// Destination
|
||
support_layer.support_fills.entities,
|
||
// Regions to fill
|
||
offset2_ex(raft_layer.polygons, float(SCALED_EPSILON), float(- SCALED_EPSILON)),
|
||
// Filler and its parameters
|
||
filler, density,
|
||
// Extrusion parameters
|
||
(support_layer_id < m_slicing_params.base_raft_layers) ? erSupportMaterial : erSupportMaterialInterface, flow);
|
||
}
|
||
});
|
||
|
||
struct LayerCacheItem {
|
||
LayerCacheItem(MyLayerExtruded *layer_extruded = nullptr) : layer_extruded(layer_extruded) {}
|
||
MyLayerExtruded *layer_extruded;
|
||
std::vector<MyLayer*> overlapping;
|
||
};
|
||
struct LayerCache {
|
||
MyLayerExtruded bottom_contact_layer;
|
||
MyLayerExtruded top_contact_layer;
|
||
MyLayerExtruded base_layer;
|
||
MyLayerExtruded interface_layer;
|
||
std::vector<LayerCacheItem> overlaps;
|
||
};
|
||
std::vector<LayerCache> layer_caches(object.support_layers.size(), LayerCache());
|
||
|
||
tbb::parallel_for(tbb::blocked_range<size_t>(n_raft_layers, object.support_layers.size()),
|
||
[this, &object, &bottom_contacts, &top_contacts, &intermediate_layers, &interface_layers, &layer_caches, &loop_interface_processor,
|
||
infill_pattern, &bbox_object, support_density, interface_density, interface_angle, &angles, link_max_length_factor, with_sheath]
|
||
(const tbb::blocked_range<size_t>& range) {
|
||
// Indices of the 1st layer in their respective container at the support layer height.
|
||
size_t idx_layer_bottom_contact = size_t(-1);
|
||
size_t idx_layer_top_contact = size_t(-1);
|
||
size_t idx_layer_intermediate = size_t(-1);
|
||
size_t idx_layer_inteface = size_t(-1);
|
||
std::unique_ptr<Fill> filler_interface = std::unique_ptr<Fill>(Fill::new_from_type(m_slicing_params.soluble_interface ? ipConcentric : ipRectilinear));
|
||
std::unique_ptr<Fill> filler_support = std::unique_ptr<Fill>(Fill::new_from_type(infill_pattern));
|
||
filler_interface->set_bounding_box(bbox_object);
|
||
filler_support->set_bounding_box(bbox_object);
|
||
for (size_t support_layer_id = range.begin(); support_layer_id < range.end(); ++ support_layer_id)
|
||
{
|
||
SupportLayer &support_layer = *object.support_layers[support_layer_id];
|
||
LayerCache &layer_cache = layer_caches[support_layer_id];
|
||
|
||
// Find polygons with the same print_z.
|
||
MyLayerExtruded &bottom_contact_layer = layer_cache.bottom_contact_layer;
|
||
MyLayerExtruded &top_contact_layer = layer_cache.top_contact_layer;
|
||
MyLayerExtruded &base_layer = layer_cache.base_layer;
|
||
MyLayerExtruded &interface_layer = layer_cache.interface_layer;
|
||
// Increment the layer indices to find a layer at support_layer.print_z.
|
||
{
|
||
auto fun = [&support_layer](const MyLayer *l){ return l->print_z >= support_layer.print_z - EPSILON; };
|
||
idx_layer_bottom_contact = idx_higher_or_equal(bottom_contacts, idx_layer_bottom_contact, fun);
|
||
idx_layer_top_contact = idx_higher_or_equal(top_contacts, idx_layer_top_contact, fun);
|
||
idx_layer_intermediate = idx_higher_or_equal(intermediate_layers, idx_layer_intermediate, fun);
|
||
idx_layer_inteface = idx_higher_or_equal(interface_layers, idx_layer_inteface, fun);
|
||
}
|
||
// Copy polygons from the layers.
|
||
if (idx_layer_bottom_contact < bottom_contacts.size() && bottom_contacts[idx_layer_bottom_contact]->print_z < support_layer.print_z + EPSILON)
|
||
bottom_contact_layer.layer = bottom_contacts[idx_layer_bottom_contact];
|
||
if (idx_layer_top_contact < top_contacts.size() && top_contacts[idx_layer_top_contact]->print_z < support_layer.print_z + EPSILON)
|
||
top_contact_layer.layer = top_contacts[idx_layer_top_contact];
|
||
if (idx_layer_inteface < interface_layers.size() && interface_layers[idx_layer_inteface]->print_z < support_layer.print_z + EPSILON)
|
||
interface_layer.layer = interface_layers[idx_layer_inteface];
|
||
if (idx_layer_intermediate < intermediate_layers.size() && intermediate_layers[idx_layer_intermediate]->print_z < support_layer.print_z + EPSILON)
|
||
base_layer.layer = intermediate_layers[idx_layer_intermediate];
|
||
|
||
if (m_object_config->support_material_interface_layers == 0) {
|
||
// If no interface layers were requested, we treat the contact layer exactly as a generic base layer.
|
||
if (m_can_merge_support_regions) {
|
||
if (base_layer.could_merge(top_contact_layer))
|
||
base_layer.merge(std::move(top_contact_layer));
|
||
else if (base_layer.empty() && !top_contact_layer.empty() && !top_contact_layer.layer->bridging)
|
||
std::swap(base_layer, top_contact_layer);
|
||
if (base_layer.could_merge(bottom_contact_layer))
|
||
base_layer.merge(std::move(bottom_contact_layer));
|
||
else if (base_layer.empty() && !bottom_contact_layer.empty() && !bottom_contact_layer.layer->bridging)
|
||
std::swap(base_layer, bottom_contact_layer);
|
||
}
|
||
} else {
|
||
loop_interface_processor.generate(top_contact_layer, m_support_material_interface_flow);
|
||
// If no loops are allowed, we treat the contact layer exactly as a generic interface layer.
|
||
// Merge interface_layer into top_contact_layer, as the top_contact_layer is not synchronized and therefore it will be used
|
||
// to trim other layers.
|
||
if (top_contact_layer.could_merge(interface_layer))
|
||
top_contact_layer.merge(std::move(interface_layer));
|
||
}
|
||
|
||
if (! interface_layer.empty() && ! base_layer.empty()) {
|
||
// turn base support into interface when it's contained in our holes
|
||
// (this way we get wider interface anchoring)
|
||
//FIXME one wants to fill in the inner most holes of the interfaces, not all the holes.
|
||
Polygons islands = top_level_islands(interface_layer.layer->polygons);
|
||
polygons_append(interface_layer.layer->polygons, intersection(base_layer.layer->polygons, islands));
|
||
base_layer.layer->polygons = diff(base_layer.layer->polygons, islands);
|
||
}
|
||
|
||
// Top and bottom contacts, interface layers.
|
||
for (size_t i = 0; i < 3; ++ i) {
|
||
MyLayerExtruded &layer_ex = (i == 0) ? top_contact_layer : (i == 1 ? bottom_contact_layer : interface_layer);
|
||
if (layer_ex.empty() || layer_ex.polygons_to_extrude().empty())
|
||
continue;
|
||
//FIXME When paralellizing, each thread shall have its own copy of the fillers.
|
||
bool interface_as_base = (&layer_ex == &interface_layer) && m_object_config->support_material_interface_layers.value == 0;
|
||
Flow interface_flow(
|
||
float(layer_ex.layer->bridging ? layer_ex.layer->height : (interface_as_base ? m_support_material_flow.width : m_support_material_interface_flow.width)),
|
||
float(layer_ex.layer->height),
|
||
m_support_material_interface_flow.nozzle_diameter,
|
||
layer_ex.layer->bridging);
|
||
filler_interface->angle = interface_as_base ?
|
||
// If zero interface layers are configured, use the same angle as for the base layers.
|
||
angles[support_layer_id % angles.size()] :
|
||
// Use interface angle for the interface layers.
|
||
interface_angle;
|
||
filler_interface->spacing = m_support_material_interface_flow.spacing();
|
||
filler_interface->link_max_length = coord_t(scale_(filler_interface->spacing * link_max_length_factor / interface_density));
|
||
fill_expolygons_generate_paths(
|
||
// Destination
|
||
layer_ex.extrusions,
|
||
// Regions to fill
|
||
union_ex(layer_ex.polygons_to_extrude(), true),
|
||
// Filler and its parameters
|
||
filler_interface.get(), float(interface_density),
|
||
// Extrusion parameters
|
||
erSupportMaterialInterface, interface_flow);
|
||
}
|
||
|
||
// Base support or flange.
|
||
if (! base_layer.empty() && ! base_layer.polygons_to_extrude().empty()) {
|
||
//FIXME When paralellizing, each thread shall have its own copy of the fillers.
|
||
Fill *filler = filler_support.get();
|
||
filler->angle = angles[support_layer_id % angles.size()];
|
||
// We don't use $base_flow->spacing because we need a constant spacing
|
||
// value that guarantees that all layers are correctly aligned.
|
||
Flow flow(
|
||
float(base_layer.layer->bridging ? base_layer.layer->height : m_support_material_flow.width),
|
||
float(base_layer.layer->height),
|
||
m_support_material_flow.nozzle_diameter,
|
||
base_layer.layer->bridging);
|
||
filler->spacing = m_support_material_flow.spacing();
|
||
filler->link_max_length = coord_t(scale_(filler->spacing * link_max_length_factor / support_density));
|
||
float density = float(support_density);
|
||
// find centerline of the external loop/extrusions
|
||
ExPolygons to_infill = (support_layer_id == 0 || ! with_sheath) ?
|
||
// union_ex(base_polygons, true) :
|
||
offset2_ex(base_layer.polygons_to_extrude(), float(SCALED_EPSILON), float(- SCALED_EPSILON)) :
|
||
offset2_ex(base_layer.polygons_to_extrude(), float(SCALED_EPSILON), float(- SCALED_EPSILON - 0.5*flow.scaled_width()));
|
||
if (base_layer.layer->bottom_z < EPSILON) {
|
||
// Base flange (the 1st layer).
|
||
filler = filler_interface.get();
|
||
filler->angle = Geometry::deg2rad(float(m_object_config->support_material_angle.value + 90.));
|
||
density = 0.5f;
|
||
flow = m_first_layer_flow;
|
||
// use the proper spacing for first layer as we don't need to align
|
||
// its pattern to the other layers
|
||
//FIXME When paralellizing, each thread shall have its own copy of the fillers.
|
||
filler->spacing = flow.spacing();
|
||
filler->link_max_length = coord_t(scale_(filler->spacing * link_max_length_factor / density));
|
||
} else if (with_sheath) {
|
||
// Draw a perimeter all around the support infill. This makes the support stable, but difficult to remove.
|
||
// TODO: use brim ordering algorithm
|
||
Polygons to_infill_polygons = to_polygons(to_infill);
|
||
// TODO: use offset2_ex()
|
||
to_infill = offset_ex(to_infill, - 0.4 * float(flow.scaled_spacing()));
|
||
extrusion_entities_append_paths(
|
||
base_layer.extrusions,
|
||
to_polylines(STDMOVE(to_infill_polygons)),
|
||
erSupportMaterial, flow.mm3_per_mm(), flow.width, flow.height);
|
||
}
|
||
fill_expolygons_generate_paths(
|
||
// Destination
|
||
base_layer.extrusions,
|
||
// Regions to fill
|
||
STDMOVE(to_infill),
|
||
// Filler and its parameters
|
||
filler, density,
|
||
// Extrusion parameters
|
||
erSupportMaterial, flow);
|
||
}
|
||
|
||
layer_cache.overlaps.reserve(4);
|
||
if (! bottom_contact_layer.empty())
|
||
layer_cache.overlaps.push_back(&bottom_contact_layer);
|
||
if (! top_contact_layer.empty())
|
||
layer_cache.overlaps.push_back(&top_contact_layer);
|
||
if (! interface_layer.empty())
|
||
layer_cache.overlaps.push_back(&interface_layer);
|
||
if (! base_layer.empty())
|
||
layer_cache.overlaps.push_back(&base_layer);
|
||
// Sort the layers with the same print_z coordinate by their heights, thickest first.
|
||
std::sort(layer_cache.overlaps.begin(), layer_cache.overlaps.end(), [](const LayerCacheItem &lc1, const LayerCacheItem &lc2) { return lc1.layer_extruded->layer->height > lc2.layer_extruded->layer->height; });
|
||
// Collect the support areas with this print_z into islands, as there is no need
|
||
// for retraction over these islands.
|
||
Polygons polys;
|
||
// Collect the extrusions, sorted by the bottom extrusion height.
|
||
for (LayerCacheItem &layer_cache_item : layer_cache.overlaps) {
|
||
// Collect islands to polys.
|
||
layer_cache_item.layer_extruded->polygons_append(polys);
|
||
// The print_z of the top contact surfaces and bottom_z of the bottom contact surfaces are "free"
|
||
// in a sense that they are not synchronized with other support layers. As the top and bottom contact surfaces
|
||
// are inflated to achieve a better anchoring, it may happen, that these surfaces will at least partially
|
||
// overlap in Z with another support layers, leading to over-extrusion.
|
||
// Mitigate the over-extrusion by modulating the extrusion rate over these regions.
|
||
// The print head will follow the same print_z, but the layer thickness will be reduced
|
||
// where it overlaps with another support layer.
|
||
//FIXME When printing a briging path, what is an equivalent height of the squished extrudate of the same width?
|
||
// Collect overlapping top/bottom surfaces.
|
||
layer_cache_item.overlapping.reserve(16);
|
||
coordf_t bottom_z = layer_cache_item.layer_extruded->layer->bottom_print_z() + EPSILON;
|
||
for (int i = int(idx_layer_bottom_contact) - 1; i >= 0 && bottom_contacts[i]->print_z > bottom_z; -- i)
|
||
layer_cache_item.overlapping.push_back(bottom_contacts[i]);
|
||
for (int i = int(idx_layer_top_contact) - 1; i >= 0 && top_contacts[i]->print_z > bottom_z; -- i)
|
||
layer_cache_item.overlapping.push_back(top_contacts[i]);
|
||
if (layer_cache_item.layer_extruded->layer->layer_type == sltBottomContact) {
|
||
// Bottom contact layer may overlap with a base layer, which may be changed to interface layer.
|
||
for (int i = int(idx_layer_intermediate) - 1; i >= 0 && intermediate_layers[i]->print_z > bottom_z; -- i)
|
||
layer_cache_item.overlapping.push_back(intermediate_layers[i]);
|
||
for (int i = int(idx_layer_inteface) - 1; i >= 0 && interface_layers[i]->print_z > bottom_z; -- i)
|
||
layer_cache_item.overlapping.push_back(interface_layers[i]);
|
||
}
|
||
std::sort(layer_cache_item.overlapping.begin(), layer_cache_item.overlapping.end(), MyLayersPtrCompare());
|
||
}
|
||
if (! polys.empty())
|
||
expolygons_append(support_layer.support_islands.expolygons, union_ex(polys));
|
||
/* {
|
||
require "Slic3r/SVG.pm";
|
||
Slic3r::SVG::output("islands_" . $z . ".svg",
|
||
red_expolygons => union_ex($contact),
|
||
green_expolygons => union_ex($interface),
|
||
green_polylines => [ map $_->unpack->polyline, @{$layer->support_contact_fills} ],
|
||
polylines => [ map $_->unpack->polyline, @{$layer->support_fills} ],
|
||
);
|
||
} */
|
||
} // for each support_layer_id
|
||
});
|
||
|
||
// Now modulate the support layer height in parallel.
|
||
tbb::parallel_for(tbb::blocked_range<size_t>(n_raft_layers, object.support_layers.size()),
|
||
[this, &object, &layer_caches]
|
||
(const tbb::blocked_range<size_t>& range) {
|
||
for (size_t support_layer_id = range.begin(); support_layer_id < range.end(); ++ support_layer_id) {
|
||
SupportLayer &support_layer = *object.support_layers[support_layer_id];
|
||
LayerCache &layer_cache = layer_caches[support_layer_id];
|
||
for (LayerCacheItem &layer_cache_item : layer_cache.overlaps) {
|
||
modulate_extrusion_by_overlapping_layers(layer_cache_item.layer_extruded->extrusions, *layer_cache_item.layer_extruded->layer, layer_cache_item.overlapping);
|
||
support_layer.support_fills.append(std::move(layer_cache_item.layer_extruded->extrusions));
|
||
}
|
||
}
|
||
});
|
||
}
|
||
|
||
/*
|
||
void PrintObjectSupportMaterial::clip_by_pillars(
|
||
const PrintObject &object,
|
||
LayersPtr &bottom_contacts,
|
||
LayersPtr &top_contacts,
|
||
LayersPtr &intermediate_contacts);
|
||
|
||
{
|
||
// this prevents supplying an empty point set to BoundingBox constructor
|
||
if (top_contacts.empty())
|
||
return;
|
||
|
||
coord_t pillar_size = scale_(PILLAR_SIZE);
|
||
coord_t pillar_spacing = scale_(PILLAR_SPACING);
|
||
|
||
// A regular grid of pillars, filling the 2D bounding box.
|
||
Polygons grid;
|
||
{
|
||
// Rectangle with a side of 2.5x2.5mm.
|
||
Polygon pillar;
|
||
pillar.points.push_back(Point(0, 0));
|
||
pillar.points.push_back(Point(pillar_size, 0));
|
||
pillar.points.push_back(Point(pillar_size, pillar_size));
|
||
pillar.points.push_back(Point(0, pillar_size));
|
||
|
||
// 2D bounding box of the projection of all contact polygons.
|
||
BoundingBox bbox;
|
||
for (LayersPtr::const_iterator it = top_contacts.begin(); it != top_contacts.end(); ++ it)
|
||
bbox.merge(get_extents((*it)->polygons));
|
||
grid.reserve(size_t(ceil(bb.size().x / pillar_spacing)) * size_t(ceil(bb.size().y / pillar_spacing)));
|
||
for (coord_t x = bb.min.x; x <= bb.max.x - pillar_size; x += pillar_spacing) {
|
||
for (coord_t y = bb.min.y; y <= bb.max.y - pillar_size; y += pillar_spacing) {
|
||
grid.push_back(pillar);
|
||
for (size_t i = 0; i < pillar.points.size(); ++ i)
|
||
grid.back().points[i].translate(Point(x, y));
|
||
}
|
||
}
|
||
}
|
||
|
||
// add pillars to every layer
|
||
for my $i (0..n_support_z) {
|
||
$shape->[$i] = [ @$grid ];
|
||
}
|
||
|
||
// build capitals
|
||
for my $i (0..n_support_z) {
|
||
my $z = $support_z->[$i];
|
||
|
||
my $capitals = intersection(
|
||
$grid,
|
||
$contact->{$z} // [],
|
||
);
|
||
|
||
// work on one pillar at time (if any) to prevent the capitals from being merged
|
||
// but store the contact area supported by the capital because we need to make
|
||
// sure nothing is left
|
||
my $contact_supported_by_capitals = [];
|
||
foreach my $capital (@$capitals) {
|
||
// enlarge capital tops
|
||
$capital = offset([$capital], +($pillar_spacing - $pillar_size)/2);
|
||
push @$contact_supported_by_capitals, @$capital;
|
||
|
||
for (my $j = $i-1; $j >= 0; $j--) {
|
||
my $jz = $support_z->[$j];
|
||
$capital = offset($capital, -$self->interface_flow->scaled_width/2);
|
||
last if !@$capitals;
|
||
push @{ $shape->[$j] }, @$capital;
|
||
}
|
||
}
|
||
|
||
// Capitals will not generally cover the whole contact area because there will be
|
||
// remainders. For now we handle this situation by projecting such unsupported
|
||
// areas to the ground, just like we would do with a normal support.
|
||
my $contact_not_supported_by_capitals = diff(
|
||
$contact->{$z} // [],
|
||
$contact_supported_by_capitals,
|
||
);
|
||
if (@$contact_not_supported_by_capitals) {
|
||
for (my $j = $i-1; $j >= 0; $j--) {
|
||
push @{ $shape->[$j] }, @$contact_not_supported_by_capitals;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
sub clip_with_shape {
|
||
my ($self, $support, $shape) = @_;
|
||
|
||
foreach my $i (keys %$support) {
|
||
// don't clip bottom layer with shape so that we
|
||
// can generate a continuous base flange
|
||
// also don't clip raft layers
|
||
next if $i == 0;
|
||
next if $i < $self->object_config->raft_layers;
|
||
$support->{$i} = intersection(
|
||
$support->{$i},
|
||
$shape->[$i],
|
||
);
|
||
}
|
||
}
|
||
*/
|
||
|
||
} // namespace Slic3r
|