PrusaSlicer-NonPlainar/sandboxes/opencsg/Engine.hpp
2019-12-19 16:10:34 +01:00

472 lines
14 KiB
C++

#ifndef SLIC3R_OCSG_EXMP_ENGINE_HPP
#define SLIC3R_OCSG_EXMP_ENGINE_HPP_HPP
#include <vector>
#include <memory>
#include <chrono>
#include <libslic3r/Geometry.hpp>
#include <libslic3r/Model.hpp>
#include <libslic3r/TriangleMesh.hpp>
#include <libslic3r/SLA/Hollowing.hpp>
#include <opencsg/opencsg.h>
namespace Slic3r {
class SLAPrint;
namespace GL {
// Simple shorthands for smart pointers
template<class T> using shptr = std::shared_ptr<T>;
template<class T> using uqptr = std::unique_ptr<T>;
template<class T> using wkptr = std::weak_ptr<T>;
template<class T, class A = std::allocator<T>> using vector = std::vector<T, A>;
// remove empty weak pointers from a vector
template<class L> void cleanup(vector<std::weak_ptr<L>> &listeners) {
auto it = std::remove_if(listeners.begin(), listeners.end(),
[](auto &l) { return !l.lock(); });
listeners.erase(it, listeners.end());
}
// Call a class method on each element of a vector of objects (weak pointers)
// of the same type.
template<class F, class L, class...Args>
void call(F &&f, vector<std::weak_ptr<L>> &listeners, Args&&... args) {
for (auto &l : listeners)
if (auto p = l.lock()) ((p.get())->*f)(std::forward<Args>(args)...);
}
// A representation of a mouse input for the engine.
class MouseInput
{
public:
enum WheelAxis { waVertical, waHorizontal };
// Interface to implement if an object wants to receive notifications
// about mouse events.
class Listener {
public:
virtual ~Listener();
virtual void on_left_click_down() {}
virtual void on_left_click_up() {}
virtual void on_right_click_down() {}
virtual void on_right_click_up() {}
virtual void on_double_click() {}
virtual void on_scroll(long /*v*/, long /*delta*/, WheelAxis ) {}
virtual void on_moved_to(long /*x*/, long /*y*/) {}
};
private:
vector<wkptr<Listener>> m_listeners;
public:
virtual ~MouseInput() = default;
virtual void left_click_down()
{
call(&Listener::on_left_click_down, m_listeners);
}
virtual void left_click_up()
{
call(&Listener::on_left_click_up, m_listeners);
}
virtual void right_click_down()
{
call(&Listener::on_right_click_down, m_listeners);
}
virtual void right_click_up()
{
call(&Listener::on_right_click_up, m_listeners);
}
virtual void double_click()
{
call(&Listener::on_double_click, m_listeners);
}
virtual void scroll(long v, long d, WheelAxis wa)
{
call(&Listener::on_scroll, m_listeners, v, d, wa);
}
virtual void move_to(long x, long y)
{
call(&Listener::on_moved_to, m_listeners, x, y);
}
void add_listener(shptr<Listener> listener)
{
m_listeners.emplace_back(listener);
cleanup(m_listeners);
}
};
// This is a stripped down version of Slic3r::IndexedVertexArray
class IndexedVertexArray {
public:
~IndexedVertexArray() { release_geometry(); }
// Vertices and their normals, interleaved to be used by void
// glInterleavedArrays(GL_N3F_V3F, 0, x)
vector<float> vertices_and_normals_interleaved;
vector<int> triangle_indices;
vector<int> quad_indices;
// When the geometry data is loaded into the graphics card as Vertex
// Buffer Objects, the above mentioned std::vectors are cleared and the
// following variables keep their original length.
size_t vertices_and_normals_interleaved_size{ 0 };
size_t triangle_indices_size{ 0 };
size_t quad_indices_size{ 0 };
// IDs of the Vertex Array Objects, into which the geometry has been loaded.
// Zero if the VBOs are not sent to GPU yet.
unsigned int vertices_and_normals_interleaved_VBO_id{ 0 };
unsigned int triangle_indices_VBO_id{ 0 };
unsigned int quad_indices_VBO_id{ 0 };
void push_geometry(float x, float y, float z, float nx, float ny, float nz);
inline void push_geometry(
double x, double y, double z, double nx, double ny, double nz)
{
push_geometry(float(x), float(y), float(z), float(nx), float(ny), float(nz));
}
inline void push_geometry(const Vec3d &p, const Vec3d &n)
{
push_geometry(p(0), p(1), p(2), n(0), n(1), n(2));
}
void push_triangle(int idx1, int idx2, int idx3);
void load_mesh(const TriangleMesh &mesh);
inline bool has_VBOs() const
{
return vertices_and_normals_interleaved_VBO_id != 0;
}
// Finalize the initialization of the geometry & indices,
// upload the geometry and indices to OpenGL VBO objects
// and shrink the allocated data, possibly relasing it if it has been
// loaded into the VBOs.
void finalize_geometry();
// Release the geometry data, release OpenGL VBOs.
void release_geometry();
void render() const;
// Is there any geometry data stored?
bool empty() const { return vertices_and_normals_interleaved_size == 0; }
void clear();
// Shrink the internal storage to tighly fit the data stored.
void shrink_to_fit();
};
// Try to enable or disable multisampling.
bool enable_multisampling(bool e = true);
// A primitive that can be used with OpenCSG rendering algorithms.
// Does a similar job to GLVolume.
class Primitive : public OpenCSG::Primitive
{
IndexedVertexArray m_geom;
Geometry::Transformation m_trafo;
public:
using OpenCSG::Primitive::Primitive;
Primitive() : OpenCSG::Primitive(OpenCSG::Intersection, 1) {}
void render() override;
void translation(const Vec3d &offset) { m_trafo.set_offset(offset); }
void rotation(const Vec3d &rot) { m_trafo.set_rotation(rot); }
void scale(const Vec3d &scaleing) { m_trafo.set_scaling_factor(scaleing); }
void scale(double s) { scale({s, s, s}); }
inline void load_mesh(const TriangleMesh &mesh)
{
m_geom.load_mesh(mesh);
m_geom.finalize_geometry();
}
};
// A simple representation of a camera in a 3D scene
class Camera {
protected:
Vec2f m_rot = {0., 0.};
Vec3d m_referene = {0., 0., 0.};
double m_zoom = 0.;
double m_clip_z = 0.;
public:
virtual ~Camera() = default;
virtual void view();
virtual void set_screen(long width, long height) = 0;
void set_rotation(const Vec2f &rotation) { m_rot = rotation; }
void rotate(const Vec2f &rotation) { m_rot += rotation; }
void set_zoom(double z) { m_zoom = z; }
void set_reference_point(const Vec3d &p) { m_referene = p; }
void set_clip_z(double z) { m_clip_z = z; }
};
// Reset a camera object
inline void reset(Camera &cam)
{
cam.set_rotation({0., 0.});
cam.set_zoom(0.);
cam.set_reference_point({0., 0., 0.});
cam.set_clip_z(0.);
}
// Specialization of a camera which shows in perspective projection
class PerspectiveCamera: public Camera {
public:
void set_screen(long width, long height) override;
};
// A simple counter of FPS. Subscribed objects will receive updates of the
// current fps.
class FpsCounter {
vector<std::function<void(double)>> m_listeners;
using Clock = std::chrono::high_resolution_clock;
using Duration = Clock::duration;
using TimePoint = Clock::time_point;
int m_frames = 0;
TimePoint m_last = Clock::now(), m_window = m_last;
double m_resolution = 0.1, m_window_size = 1.0;
double m_fps = 0.;
static double to_sec(Duration d)
{
return d.count() * double(Duration::period::num) / Duration::period::den;
}
public:
void update();
void add_listener(std::function<void(double)> lst)
{
m_listeners.emplace_back(lst);
}
void clear_listeners() { m_listeners = {}; }
void set_notification_interval(double seconds);
void set_measure_window_size(double seconds);
double get_notification_interval() const { return m_resolution; }
double get_mesure_window_size() const { return m_window_size; }
};
// Collection of the used OpenCSG library settings.
class CSGSettings {
public:
static const constexpr unsigned DEFAULT_CONVEXITY = 10;
private:
OpenCSG::Algorithm m_csgalg = OpenCSG::Algorithm::Automatic;
OpenCSG::DepthComplexityAlgorithm m_depth_algo = OpenCSG::NoDepthComplexitySampling;
OpenCSG::Optimization m_optim = OpenCSG::OptimizationDefault;
bool m_enable = true;
unsigned int m_convexity = DEFAULT_CONVEXITY;
public:
int get_algo() const { return int(m_csgalg); }
void set_algo(OpenCSG::Algorithm alg) { m_csgalg = alg; }
int get_depth_algo() const { return int(m_depth_algo); }
void set_depth_algo(OpenCSG::DepthComplexityAlgorithm alg) { m_depth_algo = alg; }
int get_optimization() const { return int(m_optim); }
void set_optimization(OpenCSG::Optimization o) { m_optim = o; }
void enable_csg(bool en = true) { m_enable = en; }
bool is_enabled() const { return m_enable; }
unsigned get_convexity() const { return m_convexity; }
void set_convexity(unsigned c) { m_convexity = c; }
};
// The scene is a wrapper around SLAPrint which holds the data to be visualized.
class Scene
{
uqptr<SLAPrint> m_print;
public:
// Subscribers will be notified if the model is changed. This might be a
// display which will have to load the meshes and repaint itself when
// the scene data changes.
// eg. We load a new 3mf through the UI, this will notify the controller
// associated with the scene and all the displays that the controller is
// connected with.
class Listener {
public:
virtual ~Listener() = default;
virtual void on_scene_updated(const Scene &scene) = 0;
};
Scene();
~Scene();
void set_print(uqptr<SLAPrint> &&print);
const SLAPrint * get_print() const { return m_print.get(); }
BoundingBoxf3 get_bounding_box() const;
void add_listener(shptr<Listener> listener)
{
m_listeners.emplace_back(listener);
cleanup(m_listeners);
}
private:
vector<wkptr<Listener>> m_listeners;
};
// The basic Display. This is almost just an interface but will do all the
// initialization and show the fps values. Overriding the render_scene is
// needed to show the scene content. The specific method of displaying the
// scene is up the the particular implementation (OpenCSG or other screen space
// boolean algorithms)
class Display : public Scene::Listener
{
protected:
Vec2i m_size;
bool m_initialized = false;
shptr<Camera> m_camera;
FpsCounter m_fps_counter;
public:
explicit Display(shptr<Camera> camera = nullptr)
: m_camera(camera ? camera : std::make_shared<PerspectiveCamera>())
{}
~Display() override;
Camera * camera() { return m_camera.get(); }
virtual void swap_buffers() = 0;
virtual void set_active(long width, long height);
virtual void set_screen_size(long width, long height);
Vec2i get_screen_size() const { return m_size; }
virtual void repaint();
bool is_initialized() const { return m_initialized; }
virtual void clear_screen();
virtual void render_scene() {}
template<class _FpsCounter> void set_fps_counter(_FpsCounter &&fpsc)
{
m_fps_counter = std::forward<_FpsCounter>(fpsc);
}
const FpsCounter &get_fps_counter() const { return m_fps_counter; }
FpsCounter &get_fps_counter() { return m_fps_counter; }
};
// Special dispaly using OpenCSG for rendering the scene.
class CSGDisplay : public Display {
protected:
CSGSettings m_csgsettings;
// Cache the renderable primitives. These will be fetched when the scene
// is modified.
struct SceneCache {
vector<shptr<Primitive>> primitives;
vector<Primitive *> primitives_free;
vector<OpenCSG::Primitive *> primitives_csg;
void clear();
shptr<Primitive> add_mesh(const TriangleMesh &mesh);
shptr<Primitive> add_mesh(const TriangleMesh &mesh,
OpenCSG::Operation op,
unsigned covexity);
} m_scene_cache;
public:
// Receive or apply the new settings.
const CSGSettings & get_csgsettings() const { return m_csgsettings; }
void apply_csgsettings(const CSGSettings &settings);
void render_scene() override;
void on_scene_updated(const Scene &scene) override;
};
// The controller is a hub which dispatches mouse events to the connected
// displays. It keeps track of the mouse wheel position, the states whether
// the mouse is being held, dragged, etc... All the connected displays will
// mirror the camera movement (if there is more than one display).
class Controller : public std::enable_shared_from_this<Controller>,
public MouseInput::Listener,
public Scene::Listener
{
long m_wheel_pos = 0;
Vec2i m_mouse_pos, m_mouse_pos_rprev, m_mouse_pos_lprev;
bool m_left_btn = false, m_right_btn = false;
shptr<Scene> m_scene;
vector<wkptr<Display>> m_displays;
// Call a method of Camera on all the cameras of the attached displays
template<class F, class...Args>
void call_cameras(F &&f, Args&&... args) {
for (wkptr<Display> &l : m_displays)
if (auto disp = l.lock()) if (disp->camera())
(disp->camera()->*f)(std::forward<Args>(args)...);
}
public:
// Set the scene that will be controlled.
void set_scene(shptr<Scene> scene)
{
m_scene = scene;
m_scene->add_listener(shared_from_this());
}
const Scene * get_scene() const { return m_scene.get(); }
void add_display(shptr<Display> disp)
{
m_displays.emplace_back(disp);
cleanup(m_displays);
}
void on_scene_updated(const Scene &scene) override;
void on_left_click_down() override { m_left_btn = true; }
void on_left_click_up() override { m_left_btn = false; }
void on_right_click_down() override { m_right_btn = true; }
void on_right_click_up() override { m_right_btn = false; }
void on_scroll(long v, long d, MouseInput::WheelAxis wa) override;
void on_moved_to(long x, long y) override;
void move_clip_plane(double z) { call_cameras(&Camera::set_clip_z, z); }
};
}} // namespace Slic3r::GL
#endif // SLIC3R_OCSG_EXMP_ENGINE_HPP