PrusaSlicer-NonPlainar/src/libslic3r/Model.hpp
2021-07-13 11:08:52 +02:00

1191 lines
57 KiB
C++

#ifndef slic3r_Model_hpp_
#define slic3r_Model_hpp_
#include "libslic3r.h"
#include "enum_bitmask.hpp"
#include "Geometry.hpp"
#include "ObjectID.hpp"
#include "Point.hpp"
#include "PrintConfig.hpp"
#include "Slicing.hpp"
#include "SLA/SupportPoint.hpp"
#include "SLA/Hollowing.hpp"
#include "TriangleMesh.hpp"
#include "Arrange.hpp"
#include "CustomGCode.hpp"
#include "enum_bitmask.hpp"
#include <map>
#include <memory>
#include <string>
#include <utility>
#include <vector>
namespace cereal {
class BinaryInputArchive;
class BinaryOutputArchive;
template <class T> void load_optional(BinaryInputArchive &ar, std::shared_ptr<const T> &ptr);
template <class T> void save_optional(BinaryOutputArchive &ar, const std::shared_ptr<const T> &ptr);
template <class T> void load_by_value(BinaryInputArchive &ar, T &obj);
template <class T> void save_by_value(BinaryOutputArchive &ar, const T &obj);
}
namespace Slic3r {
enum class ConversionType;
class Model;
class ModelInstance;
class ModelMaterial;
class ModelObject;
class ModelVolume;
class ModelWipeTower;
class Print;
class SLAPrint;
class TriangleSelector;
namespace UndoRedo {
class StackImpl;
}
class ModelConfigObject : public ObjectBase, public ModelConfig
{
private:
friend class cereal::access;
friend class UndoRedo::StackImpl;
friend class ModelObject;
friend class ModelVolume;
friend class ModelMaterial;
// Constructors to be only called by derived classes.
// Default constructor to assign a unique ID.
explicit ModelConfigObject() = default;
// Constructor with ignored int parameter to assign an invalid ID, to be replaced
// by an existing ID copied from elsewhere.
explicit ModelConfigObject(int) : ObjectBase(-1) {}
// Copy constructor copies the ID.
explicit ModelConfigObject(const ModelConfigObject &cfg) = default;
// Move constructor copies the ID.
explicit ModelConfigObject(ModelConfigObject &&cfg) = default;
Timestamp timestamp() const throw() override { return this->ModelConfig::timestamp(); }
bool object_id_and_timestamp_match(const ModelConfigObject &rhs) const throw() { return this->id() == rhs.id() && this->timestamp() == rhs.timestamp(); }
// called by ModelObject::assign_copy()
ModelConfigObject& operator=(const ModelConfigObject &rhs) = default;
ModelConfigObject& operator=(ModelConfigObject &&rhs) = default;
template<class Archive> void serialize(Archive &ar) {
ar(cereal::base_class<ModelConfig>(this));
}
};
namespace Internal {
template<typename T>
class StaticSerializationWrapper
{
public:
StaticSerializationWrapper(T &wrap) : wrapped(wrap) {}
private:
friend class cereal::access;
friend class UndoRedo::StackImpl;
template<class Archive> void load(Archive &ar) { cereal::load_by_value(ar, wrapped); }
template<class Archive> void save(Archive &ar) const { cereal::save_by_value(ar, wrapped); }
T& wrapped;
};
}
typedef std::string t_model_material_id;
typedef std::string t_model_material_attribute;
typedef std::map<t_model_material_attribute, std::string> t_model_material_attributes;
typedef std::map<t_model_material_id, ModelMaterial*> ModelMaterialMap;
typedef std::vector<ModelObject*> ModelObjectPtrs;
typedef std::vector<ModelVolume*> ModelVolumePtrs;
typedef std::vector<ModelInstance*> ModelInstancePtrs;
#define OBJECTBASE_DERIVED_COPY_MOVE_CLONE(TYPE) \
/* Copy a model, copy the IDs. The Print::apply() will call the TYPE::copy() method */ \
/* to make a private copy for background processing. */ \
static TYPE* new_copy(const TYPE &rhs) { auto *ret = new TYPE(rhs); assert(ret->id() == rhs.id()); return ret; } \
static TYPE* new_copy(TYPE &&rhs) { auto *ret = new TYPE(std::move(rhs)); assert(ret->id() == rhs.id()); return ret; } \
static TYPE make_copy(const TYPE &rhs) { TYPE ret(rhs); assert(ret.id() == rhs.id()); return ret; } \
static TYPE make_copy(TYPE &&rhs) { TYPE ret(std::move(rhs)); assert(ret.id() == rhs.id()); return ret; } \
TYPE& assign_copy(const TYPE &rhs); \
TYPE& assign_copy(TYPE &&rhs); \
/* Copy a TYPE, generate new IDs. The front end will use this call. */ \
static TYPE* new_clone(const TYPE &rhs) { \
/* Default constructor assigning an invalid ID. */ \
auto obj = new TYPE(-1); \
obj->assign_clone(rhs); \
assert(obj->id().valid() && obj->id() != rhs.id()); \
return obj; \
} \
TYPE make_clone(const TYPE &rhs) { \
/* Default constructor assigning an invalid ID. */ \
TYPE obj(-1); \
obj.assign_clone(rhs); \
assert(obj.id().valid() && obj.id() != rhs.id()); \
return obj; \
} \
TYPE& assign_clone(const TYPE &rhs) { \
this->assign_copy(rhs); \
assert(this->id().valid() && this->id() == rhs.id()); \
this->assign_new_unique_ids_recursive(); \
assert(this->id().valid() && this->id() != rhs.id()); \
return *this; \
}
// Material, which may be shared across multiple ModelObjects of a single Model.
class ModelMaterial final : public ObjectBase
{
public:
// Attributes are defined by the AMF file format, but they don't seem to be used by Slic3r for any purpose.
t_model_material_attributes attributes;
// Dynamic configuration storage for the object specific configuration values, overriding the global configuration.
ModelConfigObject config;
Model* get_model() const { return m_model; }
void apply(const t_model_material_attributes &attributes)
{ this->attributes.insert(attributes.begin(), attributes.end()); }
private:
// Parent, owning this material.
Model *m_model;
// To be accessed by the Model.
friend class Model;
// Constructor, which assigns a new unique ID to the material and to its config.
ModelMaterial(Model *model) : m_model(model) { assert(this->id().valid()); }
// Copy constructor copies the IDs of the ModelMaterial and its config, and m_model!
ModelMaterial(const ModelMaterial &rhs) = default;
void set_model(Model *model) { m_model = model; }
void set_new_unique_id() { ObjectBase::set_new_unique_id(); this->config.set_new_unique_id(); }
// To be accessed by the serialization and Undo/Redo code.
friend class cereal::access;
friend class UndoRedo::StackImpl;
// Create an object for deserialization, don't allocate IDs for ModelMaterial and its config.
ModelMaterial() : ObjectBase(-1), config(-1), m_model(nullptr) { assert(this->id().invalid()); assert(this->config.id().invalid()); }
template<class Archive> void serialize(Archive &ar) {
assert(this->id().invalid()); assert(this->config.id().invalid());
Internal::StaticSerializationWrapper<ModelConfigObject> config_wrapper(config);
ar(attributes, config_wrapper);
// assert(this->id().valid()); assert(this->config.id().valid());
}
// Disabled methods.
ModelMaterial(ModelMaterial &&rhs) = delete;
ModelMaterial& operator=(const ModelMaterial &rhs) = delete;
ModelMaterial& operator=(ModelMaterial &&rhs) = delete;
};
class LayerHeightProfile final : public ObjectWithTimestamp {
public:
// Assign the content if the timestamp differs, don't assign an ObjectID.
void assign(const LayerHeightProfile &rhs) { if (! this->timestamp_matches(rhs)) { m_data = rhs.m_data; this->copy_timestamp(rhs); } }
void assign(LayerHeightProfile &&rhs) { if (! this->timestamp_matches(rhs)) { m_data = std::move(rhs.m_data); this->copy_timestamp(rhs); } }
std::vector<coordf_t> get() const throw() { return m_data; }
bool empty() const throw() { return m_data.empty(); }
void set(const std::vector<coordf_t> &data) { if (m_data != data) { m_data = data; this->touch(); } }
void set(std::vector<coordf_t> &&data) { if (m_data != data) { m_data = std::move(data); this->touch(); } }
void clear() { m_data.clear(); this->touch(); }
template<class Archive> void serialize(Archive &ar)
{
ar(cereal::base_class<ObjectWithTimestamp>(this), m_data);
}
private:
// Constructors to be only called by derived classes.
// Default constructor to assign a unique ID.
explicit LayerHeightProfile() = default;
// Constructor with ignored int parameter to assign an invalid ID, to be replaced
// by an existing ID copied from elsewhere.
explicit LayerHeightProfile(int) : ObjectWithTimestamp(-1) {}
// Copy constructor copies the ID.
explicit LayerHeightProfile(const LayerHeightProfile &rhs) = default;
// Move constructor copies the ID.
explicit LayerHeightProfile(LayerHeightProfile &&rhs) = default;
// called by ModelObject::assign_copy()
LayerHeightProfile& operator=(const LayerHeightProfile &rhs) = default;
LayerHeightProfile& operator=(LayerHeightProfile &&rhs) = default;
std::vector<coordf_t> m_data;
// to access set_new_unique_id() when copy / pasting an object
friend class ModelObject;
};
// Declared outside of ModelVolume, so it could be forward declared.
enum class ModelVolumeType : int {
INVALID = -1,
MODEL_PART = 0,
NEGATIVE_VOLUME,
PARAMETER_MODIFIER,
SUPPORT_BLOCKER,
SUPPORT_ENFORCER,
};
enum class ModelObjectCutAttribute : int { KeepUpper, KeepLower, FlipLower };
using ModelObjectCutAttributes = enum_bitmask<ModelObjectCutAttribute>;
ENABLE_ENUM_BITMASK_OPERATORS(ModelObjectCutAttribute);
// A printable object, possibly having multiple print volumes (each with its own set of parameters and materials),
// and possibly having multiple modifier volumes, each modifier volume with its set of parameters and materials.
// Each ModelObject may be instantiated mutliple times, each instance having different placement on the print bed,
// different rotation and different uniform scaling.
class ModelObject final : public ObjectBase
{
public:
std::string name;
std::string input_file; // XXX: consider fs::path
// Instances of this ModelObject. Each instance defines a shift on the print bed, rotation around the Z axis and a uniform scaling.
// Instances are owned by this ModelObject.
ModelInstancePtrs instances;
// Printable and modifier volumes, each with its material ID and a set of override parameters.
// ModelVolumes are owned by this ModelObject.
ModelVolumePtrs volumes;
// Configuration parameters specific to a single ModelObject, overriding the global Slic3r settings.
ModelConfigObject config;
// Variation of a layer thickness for spans of Z coordinates + optional parameter overrides.
t_layer_config_ranges layer_config_ranges;
// Profile of increasing z to a layer height, to be linearly interpolated when calculating the layers.
// The pairs of <z, layer_height> are packed into a 1D array.
LayerHeightProfile layer_height_profile;
// Whether or not this object is printable
bool printable;
// This vector holds position of selected support points for SLA. The data are
// saved in mesh coordinates to allow using them for several instances.
// The format is (x, y, z, point_size, supports_island)
sla::SupportPoints sla_support_points;
// To keep track of where the points came from (used for synchronization between
// the SLA gizmo and the backend).
sla::PointsStatus sla_points_status = sla::PointsStatus::NoPoints;
// Holes to be drilled into the object so resin can flow out
sla::DrainHoles sla_drain_holes;
/* This vector accumulates the total translation applied to the object by the
center_around_origin() method. Callers might want to apply the same translation
to new volumes before adding them to this object in order to preserve alignment
when user expects that. */
Vec3d origin_translation;
Model* get_model() { return m_model; }
const Model* get_model() const { return m_model; }
ModelVolume* add_volume(const TriangleMesh &mesh);
ModelVolume* add_volume(TriangleMesh &&mesh, ModelVolumeType type = ModelVolumeType::MODEL_PART);
ModelVolume* add_volume(const ModelVolume &volume, ModelVolumeType type = ModelVolumeType::INVALID);
ModelVolume* add_volume(const ModelVolume &volume, TriangleMesh &&mesh);
void delete_volume(size_t idx);
void clear_volumes();
void sort_volumes(bool full_sort);
bool is_multiparts() const { return volumes.size() > 1; }
ModelInstance* add_instance();
ModelInstance* add_instance(const ModelInstance &instance);
ModelInstance* add_instance(const Vec3d &offset, const Vec3d &scaling_factor, const Vec3d &rotation, const Vec3d &mirror);
void delete_instance(size_t idx);
void delete_last_instance();
void clear_instances();
// Returns the bounding box of the transformed instances.
// This bounding box is approximate and not snug.
// This bounding box is being cached.
const BoundingBoxf3& bounding_box() const;
void invalidate_bounding_box() { m_bounding_box_valid = false; m_raw_bounding_box_valid = false; m_raw_mesh_bounding_box_valid = false; }
// A mesh containing all transformed instances of this object.
TriangleMesh mesh() const;
// Non-transformed (non-rotated, non-scaled, non-translated) sum of non-modifier object volumes.
// Currently used by ModelObject::mesh() and to calculate the 2D envelope for 2D plater.
TriangleMesh raw_mesh() const;
// The same as above, but producing a lightweight indexed_triangle_set.
indexed_triangle_set raw_indexed_triangle_set() const;
// A transformed snug bounding box around the non-modifier object volumes, without the translation applied.
// This bounding box is only used for the actual slicing.
const BoundingBoxf3& raw_bounding_box() const;
// A snug bounding box around the transformed non-modifier object volumes.
BoundingBoxf3 instance_bounding_box(size_t instance_idx, bool dont_translate = false) const;
// A snug bounding box of non-transformed (non-rotated, non-scaled, non-translated) sum of non-modifier object volumes.
const BoundingBoxf3& raw_mesh_bounding_box() const;
// A snug bounding box of non-transformed (non-rotated, non-scaled, non-translated) sum of all object volumes.
BoundingBoxf3 full_raw_mesh_bounding_box() const;
// Calculate 2D convex hull of of a projection of the transformed printable volumes into the XY plane.
// This method is cheap in that it does not make any unnecessary copy of the volume meshes.
// This method is used by the auto arrange function.
Polygon convex_hull_2d(const Transform3d &trafo_instance) const;
void center_around_origin(bool include_modifiers = true);
#if ENABLE_ALLOW_NEGATIVE_Z
void ensure_on_bed(bool allow_negative_z = false);
#else
void ensure_on_bed();
#endif // ENABLE_ALLOW_NEGATIVE_Z
void translate_instances(const Vec3d& vector);
void translate_instance(size_t instance_idx, const Vec3d& vector);
void translate(const Vec3d &vector) { this->translate(vector(0), vector(1), vector(2)); }
void translate(double x, double y, double z);
void scale(const Vec3d &versor);
void scale(const double s) { this->scale(Vec3d(s, s, s)); }
void scale(double x, double y, double z) { this->scale(Vec3d(x, y, z)); }
/// Scale the current ModelObject to fit by altering the scaling factor of ModelInstances.
/// It operates on the total size by duplicating the object according to all the instances.
/// \param size Sizef3 the size vector
void scale_to_fit(const Vec3d &size);
void rotate(double angle, Axis axis);
void rotate(double angle, const Vec3d& axis);
void mirror(Axis axis);
// This method could only be called before the meshes of this ModelVolumes are not shared!
void scale_mesh_after_creation(const Vec3d& versor);
void convert_units(ModelObjectPtrs&new_objects, ConversionType conv_type, std::vector<int> volume_idxs);
size_t materials_count() const;
size_t facets_count() const;
bool needed_repair() const;
ModelObjectPtrs cut(size_t instance, coordf_t z, ModelObjectCutAttributes attributes);
void split(ModelObjectPtrs* new_objects);
void merge();
// Support for non-uniform scaling of instances. If an instance is rotated by angles, which are not multiples of ninety degrees,
// then the scaling in world coordinate system is not representable by the Geometry::Transformation structure.
// This situation is solved by baking in the instance transformation into the mesh vertices.
// Rotation and mirroring is being baked in. In case the instance scaling was non-uniform, it is baked in as well.
void bake_xy_rotation_into_meshes(size_t instance_idx);
double get_min_z() const;
double get_instance_min_z(size_t instance_idx) const;
// Called by Print::validate() from the UI thread.
unsigned int check_instances_print_volume_state(const BoundingBoxf3& print_volume);
// Print object statistics to console.
void print_info() const;
std::string get_export_filename() const;
// Get full stl statistics for all object's meshes
stl_stats get_object_stl_stats() const;
// Get count of errors in the mesh( or all object's meshes, if volume index isn't defined)
int get_mesh_errors_count(const int vol_idx = -1) const;
private:
friend class Model;
// This constructor assigns new ID to this ModelObject and its config.
explicit ModelObject(Model* model) : m_model(model), printable(true), origin_translation(Vec3d::Zero()),
m_bounding_box_valid(false), m_raw_bounding_box_valid(false), m_raw_mesh_bounding_box_valid(false)
{
assert(this->id().valid());
assert(this->config.id().valid());
assert(this->layer_height_profile.id().valid());
}
explicit ModelObject(int) : ObjectBase(-1), config(-1), layer_height_profile(-1), m_model(nullptr), printable(true), origin_translation(Vec3d::Zero()), m_bounding_box_valid(false), m_raw_bounding_box_valid(false), m_raw_mesh_bounding_box_valid(false)
{
assert(this->id().invalid());
assert(this->config.id().invalid());
assert(this->layer_height_profile.id().invalid());
}
~ModelObject();
void assign_new_unique_ids_recursive() override;
// To be able to return an object from own copy / clone methods. Hopefully the compiler will do the "Copy elision"
// (Omits copy and move(since C++11) constructors, resulting in zero - copy pass - by - value semantics).
ModelObject(const ModelObject &rhs) : ObjectBase(-1), config(-1), layer_height_profile(-1), m_model(rhs.m_model) {
assert(this->id().invalid());
assert(this->config.id().invalid());
assert(this->layer_height_profile.id().invalid());
assert(rhs.id() != rhs.config.id());
assert(rhs.id() != rhs.layer_height_profile.id());
this->assign_copy(rhs);
assert(this->id().valid());
assert(this->config.id().valid());
assert(this->layer_height_profile.id().valid());
assert(this->id() != this->config.id());
assert(this->id() != this->layer_height_profile.id());
assert(this->id() == rhs.id());
assert(this->config.id() == rhs.config.id());
assert(this->layer_height_profile.id() == rhs.layer_height_profile.id());
}
explicit ModelObject(ModelObject &&rhs) : ObjectBase(-1), config(-1), layer_height_profile(-1) {
assert(this->id().invalid());
assert(this->config.id().invalid());
assert(this->layer_height_profile.id().invalid());
assert(rhs.id() != rhs.config.id());
assert(rhs.id() != rhs.layer_height_profile.id());
this->assign_copy(std::move(rhs));
assert(this->id().valid());
assert(this->config.id().valid());
assert(this->layer_height_profile.id().valid());
assert(this->id() != this->config.id());
assert(this->id() != this->layer_height_profile.id());
assert(this->id() == rhs.id());
assert(this->config.id() == rhs.config.id());
assert(this->layer_height_profile.id() == rhs.layer_height_profile.id());
}
ModelObject& operator=(const ModelObject &rhs) {
this->assign_copy(rhs);
m_model = rhs.m_model;
assert(this->id().valid());
assert(this->config.id().valid());
assert(this->layer_height_profile.id().valid());
assert(this->id() != this->config.id());
assert(this->id() != this->layer_height_profile.id());
assert(this->id() == rhs.id());
assert(this->config.id() == rhs.config.id());
assert(this->layer_height_profile.id() == rhs.layer_height_profile.id());
return *this;
}
ModelObject& operator=(ModelObject &&rhs) {
this->assign_copy(std::move(rhs));
m_model = rhs.m_model;
assert(this->id().valid());
assert(this->config.id().valid());
assert(this->layer_height_profile.id().valid());
assert(this->id() != this->config.id());
assert(this->id() != this->layer_height_profile.id());
assert(this->id() == rhs.id());
assert(this->config.id() == rhs.config.id());
assert(this->layer_height_profile.id() == rhs.layer_height_profile.id());
return *this;
}
void set_new_unique_id() {
ObjectBase::set_new_unique_id();
this->config.set_new_unique_id();
this->layer_height_profile.set_new_unique_id();
}
OBJECTBASE_DERIVED_COPY_MOVE_CLONE(ModelObject)
// Parent object, owning this ModelObject. Set to nullptr here, so the macros above will have it initialized.
Model *m_model = nullptr;
// Bounding box, cached.
mutable BoundingBoxf3 m_bounding_box;
mutable bool m_bounding_box_valid;
mutable BoundingBoxf3 m_raw_bounding_box;
mutable bool m_raw_bounding_box_valid;
mutable BoundingBoxf3 m_raw_mesh_bounding_box;
mutable bool m_raw_mesh_bounding_box_valid;
// Called by Print::apply() to set the model pointer after making a copy.
friend class Print;
friend class SLAPrint;
void set_model(Model *model) { m_model = model; }
// Undo / Redo through the cereal serialization library
friend class cereal::access;
friend class UndoRedo::StackImpl;
// Used for deserialization -> Don't allocate any IDs for the ModelObject or its config.
ModelObject() :
ObjectBase(-1), config(-1), layer_height_profile(-1),
m_model(nullptr), m_bounding_box_valid(false), m_raw_bounding_box_valid(false), m_raw_mesh_bounding_box_valid(false) {
assert(this->id().invalid());
assert(this->config.id().invalid());
assert(this->layer_height_profile.id().invalid());
}
template<class Archive> void serialize(Archive &ar) {
ar(cereal::base_class<ObjectBase>(this));
Internal::StaticSerializationWrapper<ModelConfigObject> config_wrapper(config);
Internal::StaticSerializationWrapper<LayerHeightProfile> layer_heigth_profile_wrapper(layer_height_profile);
ar(name, input_file, instances, volumes, config_wrapper, layer_config_ranges, layer_heigth_profile_wrapper,
sla_support_points, sla_points_status, sla_drain_holes, printable, origin_translation,
m_bounding_box, m_bounding_box_valid, m_raw_bounding_box, m_raw_bounding_box_valid, m_raw_mesh_bounding_box, m_raw_mesh_bounding_box_valid);
}
};
enum class EnforcerBlockerType : int8_t {
// Maximum is 3. The value is serialized in TriangleSelector into 2 bits.
NONE = 0,
ENFORCER = 1,
BLOCKER = 2,
// Maximum is 15. The value is serialized in TriangleSelector into 6 bits using a 2 bit prefix code.
Extruder1 = ENFORCER,
Extruder2 = BLOCKER,
Extruder3,
Extruder4,
Extruder5,
Extruder6,
Extruder7,
Extruder8,
Extruder9,
Extruder10,
Extruder11,
Extruder12,
Extruder13,
Extruder14,
Extruder15,
};
enum class ConversionType : int {
CONV_TO_INCH,
CONV_FROM_INCH,
CONV_TO_METER,
CONV_FROM_METER,
};
class FacetsAnnotation final : public ObjectWithTimestamp {
public:
// Assign the content if the timestamp differs, don't assign an ObjectID.
void assign(const FacetsAnnotation& rhs) { if (! this->timestamp_matches(rhs)) { m_data = rhs.m_data; this->copy_timestamp(rhs); } }
void assign(FacetsAnnotation&& rhs) { if (! this->timestamp_matches(rhs)) { m_data = std::move(rhs.m_data); this->copy_timestamp(rhs); } }
const std::pair<std::vector<std::pair<int, int>>, std::vector<bool>>& get_data() const throw() { return m_data; }
bool set(const TriangleSelector& selector);
indexed_triangle_set get_facets(const ModelVolume& mv, EnforcerBlockerType type) const;
indexed_triangle_set get_facets_strict(const ModelVolume& mv, EnforcerBlockerType type) const;
bool has_facets(const ModelVolume& mv, EnforcerBlockerType type) const;
bool empty() const { return m_data.first.empty(); }
void clear();
// Serialize triangle into string, for serialization into 3MF/AMF.
std::string get_triangle_as_string(int i) const;
// Before deserialization, reserve space for n_triangles.
void reserve(int n_triangles) { m_data.first.reserve(n_triangles); }
// Deserialize triangles one by one, with strictly increasing triangle_id.
void set_triangle_from_string(int triangle_id, const std::string& str);
// After deserializing the last triangle, shrink data to fit.
void shrink_to_fit() { m_data.first.shrink_to_fit(); m_data.second.shrink_to_fit(); }
private:
// Constructors to be only called by derived classes.
// Default constructor to assign a unique ID.
explicit FacetsAnnotation() = default;
// Constructor with ignored int parameter to assign an invalid ID, to be replaced
// by an existing ID copied from elsewhere.
explicit FacetsAnnotation(int) : ObjectWithTimestamp(-1) {}
// Copy constructor copies the ID.
explicit FacetsAnnotation(const FacetsAnnotation &rhs) = default;
// Move constructor copies the ID.
explicit FacetsAnnotation(FacetsAnnotation &&rhs) = default;
// called by ModelVolume::assign_copy()
FacetsAnnotation& operator=(const FacetsAnnotation &rhs) = default;
FacetsAnnotation& operator=(FacetsAnnotation &&rhs) = default;
friend class cereal::access;
friend class UndoRedo::StackImpl;
template<class Archive> void serialize(Archive &ar)
{
ar(cereal::base_class<ObjectWithTimestamp>(this), m_data);
}
std::pair<std::vector<std::pair<int, int>>, std::vector<bool>> m_data;
// To access set_new_unique_id() when copy / pasting a ModelVolume.
friend class ModelVolume;
};
// An object STL, or a modifier volume, over which a different set of parameters shall be applied.
// ModelVolume instances are owned by a ModelObject.
class ModelVolume final : public ObjectBase
{
public:
std::string name;
// struct used by reload from disk command to recover data from disk
struct Source
{
std::string input_file;
int object_idx{ -1 };
int volume_idx{ -1 };
Vec3d mesh_offset{ Vec3d::Zero() };
Geometry::Transformation transform;
bool is_converted_from_inches = false;
bool is_converted_from_meters = false;
template<class Archive> void serialize(Archive& ar) {
//FIXME Vojtech: Serialize / deserialize only if the Source is set.
// likely testing input_file or object_idx would be sufficient.
ar(input_file, object_idx, volume_idx, mesh_offset, transform, is_converted_from_inches, is_converted_from_meters);
}
};
Source source;
// The triangular model.
const TriangleMesh& mesh() const { return *m_mesh.get(); }
void set_mesh(const TriangleMesh &mesh) { m_mesh = std::make_shared<const TriangleMesh>(mesh); }
void set_mesh(TriangleMesh &&mesh) { m_mesh = std::make_shared<const TriangleMesh>(std::move(mesh)); }
void set_mesh(std::shared_ptr<const TriangleMesh> &mesh) { m_mesh = mesh; }
void set_mesh(std::unique_ptr<const TriangleMesh> &&mesh) { m_mesh = std::move(mesh); }
void reset_mesh() { m_mesh = std::make_shared<const TriangleMesh>(); }
// Configuration parameters specific to an object model geometry or a modifier volume,
// overriding the global Slic3r settings and the ModelObject settings.
ModelConfigObject config;
// List of mesh facets to be supported/unsupported.
FacetsAnnotation supported_facets;
// List of seam enforcers/blockers.
FacetsAnnotation seam_facets;
// List of mesh facets painted for MMU segmentation.
FacetsAnnotation mmu_segmentation_facets;
// A parent object owning this modifier volume.
ModelObject* get_object() const { return this->object; }
ModelVolumeType type() const { return m_type; }
void set_type(const ModelVolumeType t) { m_type = t; }
bool is_model_part() const { return m_type == ModelVolumeType::MODEL_PART; }
bool is_negative_volume() const { return m_type == ModelVolumeType::NEGATIVE_VOLUME; }
bool is_modifier() const { return m_type == ModelVolumeType::PARAMETER_MODIFIER; }
bool is_support_enforcer() const { return m_type == ModelVolumeType::SUPPORT_ENFORCER; }
bool is_support_blocker() const { return m_type == ModelVolumeType::SUPPORT_BLOCKER; }
bool is_support_modifier() const { return m_type == ModelVolumeType::SUPPORT_BLOCKER || m_type == ModelVolumeType::SUPPORT_ENFORCER; }
t_model_material_id material_id() const { return m_material_id; }
void set_material_id(t_model_material_id material_id);
ModelMaterial* material() const;
void set_material(t_model_material_id material_id, const ModelMaterial &material);
// Extract the current extruder ID based on this ModelVolume's config and the parent ModelObject's config.
// Extruder ID is only valid for FFF. Returns -1 for SLA or if the extruder ID is not applicable (support volumes).
int extruder_id() const;
bool is_splittable() const;
// Split this volume, append the result to the object owning this volume.
// Return the number of volumes created from this one.
// This is useful to assign different materials to different volumes of an object.
size_t split(unsigned int max_extruders);
void translate(double x, double y, double z) { translate(Vec3d(x, y, z)); }
void translate(const Vec3d& displacement);
void scale(const Vec3d& scaling_factors);
void scale(double x, double y, double z) { scale(Vec3d(x, y, z)); }
void scale(double s) { scale(Vec3d(s, s, s)); }
void rotate(double angle, Axis axis);
void rotate(double angle, const Vec3d& axis);
void mirror(Axis axis);
// This method could only be called before the meshes of this ModelVolumes are not shared!
void scale_geometry_after_creation(const Vec3d& versor);
// Translates the mesh and the convex hull so that the origin of their vertices is in the center of this volume's bounding box.
// Attention! This method may only be called just after ModelVolume creation! It must not be called once the TriangleMesh of this ModelVolume is shared!
void center_geometry_after_creation(bool update_source_offset = true);
void calculate_convex_hull();
const TriangleMesh& get_convex_hull() const;
std::shared_ptr<const TriangleMesh> get_convex_hull_shared_ptr() const { return m_convex_hull; }
// Get count of errors in the mesh
int get_mesh_errors_count() const;
// Helpers for loading / storing into AMF / 3MF files.
static ModelVolumeType type_from_string(const std::string &s);
static std::string type_to_string(const ModelVolumeType t);
const Geometry::Transformation& get_transformation() const { return m_transformation; }
void set_transformation(const Geometry::Transformation& transformation) { m_transformation = transformation; }
void set_transformation(const Transform3d &trafo) { m_transformation.set_from_transform(trafo); }
const Vec3d& get_offset() const { return m_transformation.get_offset(); }
double get_offset(Axis axis) const { return m_transformation.get_offset(axis); }
void set_offset(const Vec3d& offset) { m_transformation.set_offset(offset); }
void set_offset(Axis axis, double offset) { m_transformation.set_offset(axis, offset); }
const Vec3d& get_rotation() const { return m_transformation.get_rotation(); }
double get_rotation(Axis axis) const { return m_transformation.get_rotation(axis); }
void set_rotation(const Vec3d& rotation) { m_transformation.set_rotation(rotation); }
void set_rotation(Axis axis, double rotation) { m_transformation.set_rotation(axis, rotation); }
Vec3d get_scaling_factor() const { return m_transformation.get_scaling_factor(); }
double get_scaling_factor(Axis axis) const { return m_transformation.get_scaling_factor(axis); }
void set_scaling_factor(const Vec3d& scaling_factor) { m_transformation.set_scaling_factor(scaling_factor); }
void set_scaling_factor(Axis axis, double scaling_factor) { m_transformation.set_scaling_factor(axis, scaling_factor); }
const Vec3d& get_mirror() const { return m_transformation.get_mirror(); }
double get_mirror(Axis axis) const { return m_transformation.get_mirror(axis); }
bool is_left_handed() const { return m_transformation.is_left_handed(); }
void set_mirror(const Vec3d& mirror) { m_transformation.set_mirror(mirror); }
void set_mirror(Axis axis, double mirror) { m_transformation.set_mirror(axis, mirror); }
void convert_from_imperial_units();
void convert_from_meters();
const Transform3d& get_matrix(bool dont_translate = false, bool dont_rotate = false, bool dont_scale = false, bool dont_mirror = false) const { return m_transformation.get_matrix(dont_translate, dont_rotate, dont_scale, dont_mirror); }
void set_new_unique_id() {
ObjectBase::set_new_unique_id();
this->config.set_new_unique_id();
this->supported_facets.set_new_unique_id();
this->seam_facets.set_new_unique_id();
this->mmu_segmentation_facets.set_new_unique_id();
}
protected:
friend class Print;
friend class SLAPrint;
friend class Model;
friend class ModelObject;
friend void model_volume_list_update_supports(ModelObject& model_object_dst, const ModelObject& model_object_new);
// Copies IDs of both the ModelVolume and its config.
explicit ModelVolume(const ModelVolume &rhs) = default;
void set_model_object(ModelObject *model_object) { object = model_object; }
void assign_new_unique_ids_recursive() override;
void transform_this_mesh(const Transform3d& t, bool fix_left_handed);
void transform_this_mesh(const Matrix3d& m, bool fix_left_handed);
private:
// Parent object owning this ModelVolume.
ModelObject* object;
// The triangular model.
std::shared_ptr<const TriangleMesh> m_mesh;
// Is it an object to be printed, or a modifier volume?
ModelVolumeType m_type;
t_model_material_id m_material_id;
// The convex hull of this model's mesh.
std::shared_ptr<const TriangleMesh> m_convex_hull;
Geometry::Transformation m_transformation;
// flag to optimize the checking if the volume is splittable
// -1 -> is unknown value (before first cheking)
// 0 -> is not splittable
// 1 -> is splittable
mutable int m_is_splittable{ -1 };
ModelVolume(ModelObject *object, const TriangleMesh &mesh, ModelVolumeType type = ModelVolumeType::MODEL_PART) : m_mesh(new TriangleMesh(mesh)), m_type(type), object(object)
{
assert(this->id().valid());
assert(this->config.id().valid());
assert(this->supported_facets.id().valid());
assert(this->seam_facets.id().valid());
assert(this->mmu_segmentation_facets.id().valid());
assert(this->id() != this->config.id());
assert(this->id() != this->supported_facets.id());
assert(this->id() != this->seam_facets.id());
assert(this->id() != this->mmu_segmentation_facets.id());
if (mesh.stl.stats.number_of_facets > 1)
calculate_convex_hull();
}
ModelVolume(ModelObject *object, TriangleMesh &&mesh, TriangleMesh &&convex_hull, ModelVolumeType type = ModelVolumeType::MODEL_PART) :
m_mesh(new TriangleMesh(std::move(mesh))), m_convex_hull(new TriangleMesh(std::move(convex_hull))), m_type(type), object(object) {
assert(this->id().valid());
assert(this->config.id().valid());
assert(this->supported_facets.id().valid());
assert(this->seam_facets.id().valid());
assert(this->mmu_segmentation_facets.id().valid());
assert(this->id() != this->config.id());
assert(this->id() != this->supported_facets.id());
assert(this->id() != this->seam_facets.id());
assert(this->id() != this->mmu_segmentation_facets.id());
}
// Copying an existing volume, therefore this volume will get a copy of the ID assigned.
ModelVolume(ModelObject *object, const ModelVolume &other) :
ObjectBase(other),
name(other.name), source(other.source), m_mesh(other.m_mesh), m_convex_hull(other.m_convex_hull),
config(other.config), m_type(other.m_type), object(object), m_transformation(other.m_transformation),
supported_facets(other.supported_facets), seam_facets(other.seam_facets), mmu_segmentation_facets(other.mmu_segmentation_facets)
{
assert(this->id().valid());
assert(this->config.id().valid());
assert(this->supported_facets.id().valid());
assert(this->seam_facets.id().valid());
assert(this->mmu_segmentation_facets.id().valid());
assert(this->id() != this->config.id());
assert(this->id() != this->supported_facets.id());
assert(this->id() != this->seam_facets.id());
assert(this->id() != this->mmu_segmentation_facets.id());
assert(this->id() == other.id());
assert(this->config.id() == other.config.id());
assert(this->supported_facets.id() == other.supported_facets.id());
assert(this->seam_facets.id() == other.seam_facets.id());
assert(this->mmu_segmentation_facets.id() == other.mmu_segmentation_facets.id());
this->set_material_id(other.material_id());
}
// Providing a new mesh, therefore this volume will get a new unique ID assigned.
ModelVolume(ModelObject *object, const ModelVolume &other, const TriangleMesh &&mesh) :
name(other.name), source(other.source), m_mesh(new TriangleMesh(std::move(mesh))), config(other.config), m_type(other.m_type), object(object), m_transformation(other.m_transformation)
{
assert(this->id().valid());
assert(this->config.id().valid());
assert(this->supported_facets.id().valid());
assert(this->seam_facets.id().valid());
assert(this->mmu_segmentation_facets.id().valid());
assert(this->id() != this->config.id());
assert(this->id() != this->supported_facets.id());
assert(this->id() != this->seam_facets.id());
assert(this->id() != this->mmu_segmentation_facets.id());
assert(this->id() != other.id());
assert(this->config.id() == other.config.id());
this->set_material_id(other.material_id());
this->config.set_new_unique_id();
if (mesh.stl.stats.number_of_facets > 1)
calculate_convex_hull();
assert(this->config.id().valid());
assert(this->config.id() != other.config.id());
assert(this->supported_facets.id() != other.supported_facets.id());
assert(this->seam_facets.id() != other.seam_facets.id());
assert(this->mmu_segmentation_facets.id() != other.mmu_segmentation_facets.id());
assert(this->id() != this->config.id());
assert(this->supported_facets.empty());
assert(this->seam_facets.empty());
assert(this->mmu_segmentation_facets.empty());
}
ModelVolume& operator=(ModelVolume &rhs) = delete;
friend class cereal::access;
friend class UndoRedo::StackImpl;
// Used for deserialization, therefore no IDs are allocated.
ModelVolume() : ObjectBase(-1), config(-1), supported_facets(-1), seam_facets(-1), mmu_segmentation_facets(-1), object(nullptr) {
assert(this->id().invalid());
assert(this->config.id().invalid());
assert(this->supported_facets.id().invalid());
assert(this->seam_facets.id().invalid());
assert(this->mmu_segmentation_facets.id().invalid());
}
template<class Archive> void load(Archive &ar) {
bool has_convex_hull;
ar(name, source, m_mesh, m_type, m_material_id, m_transformation, m_is_splittable, has_convex_hull);
cereal::load_by_value(ar, supported_facets);
cereal::load_by_value(ar, seam_facets);
cereal::load_by_value(ar, mmu_segmentation_facets);
cereal::load_by_value(ar, config);
assert(m_mesh);
if (has_convex_hull) {
cereal::load_optional(ar, m_convex_hull);
if (! m_convex_hull && ! m_mesh->empty())
// The convex hull was released from the Undo / Redo stack to conserve memory. Recalculate it.
this->calculate_convex_hull();
} else
m_convex_hull.reset();
}
template<class Archive> void save(Archive &ar) const {
bool has_convex_hull = m_convex_hull.get() != nullptr;
ar(name, source, m_mesh, m_type, m_material_id, m_transformation, m_is_splittable, has_convex_hull);
cereal::save_by_value(ar, supported_facets);
cereal::save_by_value(ar, seam_facets);
cereal::save_by_value(ar, mmu_segmentation_facets);
cereal::save_by_value(ar, config);
if (has_convex_hull)
cereal::save_optional(ar, m_convex_hull);
}
};
inline void model_volumes_sort_by_id(ModelVolumePtrs &model_volumes)
{
std::sort(model_volumes.begin(), model_volumes.end(), [](const ModelVolume *l, const ModelVolume *r) { return l->id() < r->id(); });
}
inline const ModelVolume* model_volume_find_by_id(const ModelVolumePtrs &model_volumes, const ObjectID id)
{
auto it = lower_bound_by_predicate(model_volumes.begin(), model_volumes.end(), [id](const ModelVolume *mv) { return mv->id() < id; });
return it != model_volumes.end() && (*it)->id() == id ? *it : nullptr;
}
enum ModelInstanceEPrintVolumeState : unsigned char
{
ModelInstancePVS_Inside,
ModelInstancePVS_Partly_Outside,
ModelInstancePVS_Fully_Outside,
ModelInstanceNum_BedStates
};
// A single instance of a ModelObject.
// Knows the affine transformation of an object.
class ModelInstance final : public ObjectBase
{
private:
Geometry::Transformation m_transformation;
public:
// flag showing the position of this instance with respect to the print volume (set by Print::validate() using ModelObject::check_instances_print_volume_state())
ModelInstanceEPrintVolumeState print_volume_state;
// Whether or not this instance is printable
bool printable;
ModelObject* get_object() const { return this->object; }
const Geometry::Transformation& get_transformation() const { return m_transformation; }
void set_transformation(const Geometry::Transformation& transformation) { m_transformation = transformation; }
const Vec3d& get_offset() const { return m_transformation.get_offset(); }
double get_offset(Axis axis) const { return m_transformation.get_offset(axis); }
void set_offset(const Vec3d& offset) { m_transformation.set_offset(offset); }
void set_offset(Axis axis, double offset) { m_transformation.set_offset(axis, offset); }
const Vec3d& get_rotation() const { return m_transformation.get_rotation(); }
double get_rotation(Axis axis) const { return m_transformation.get_rotation(axis); }
void set_rotation(const Vec3d& rotation) { m_transformation.set_rotation(rotation); }
void set_rotation(Axis axis, double rotation) { m_transformation.set_rotation(axis, rotation); }
const Vec3d& get_scaling_factor() const { return m_transformation.get_scaling_factor(); }
double get_scaling_factor(Axis axis) const { return m_transformation.get_scaling_factor(axis); }
void set_scaling_factor(const Vec3d& scaling_factor) { m_transformation.set_scaling_factor(scaling_factor); }
void set_scaling_factor(Axis axis, double scaling_factor) { m_transformation.set_scaling_factor(axis, scaling_factor); }
const Vec3d& get_mirror() const { return m_transformation.get_mirror(); }
double get_mirror(Axis axis) const { return m_transformation.get_mirror(axis); }
bool is_left_handed() const { return m_transformation.is_left_handed(); }
void set_mirror(const Vec3d& mirror) { m_transformation.set_mirror(mirror); }
void set_mirror(Axis axis, double mirror) { m_transformation.set_mirror(axis, mirror); }
// To be called on an external mesh
void transform_mesh(TriangleMesh* mesh, bool dont_translate = false) const;
// Calculate a bounding box of a transformed mesh. To be called on an external mesh.
BoundingBoxf3 transform_mesh_bounding_box(const TriangleMesh& mesh, bool dont_translate = false) const;
// Transform an external bounding box.
BoundingBoxf3 transform_bounding_box(const BoundingBoxf3 &bbox, bool dont_translate = false) const;
// Transform an external vector.
Vec3d transform_vector(const Vec3d& v, bool dont_translate = false) const;
// To be called on an external polygon. It does not translate the polygon, only rotates and scales.
void transform_polygon(Polygon* polygon) const;
const Transform3d& get_matrix(bool dont_translate = false, bool dont_rotate = false, bool dont_scale = false, bool dont_mirror = false) const { return m_transformation.get_matrix(dont_translate, dont_rotate, dont_scale, dont_mirror); }
bool is_printable() const { return object->printable && printable && (print_volume_state == ModelInstancePVS_Inside); }
// Getting the input polygon for arrange
arrangement::ArrangePolygon get_arrange_polygon() const;
// Apply the arrange result on the ModelInstance
void apply_arrange_result(const Vec2d& offs, double rotation)
{
// write the transformation data into the model instance
set_rotation(Z, rotation);
set_offset(X, unscale<double>(offs(X)));
set_offset(Y, unscale<double>(offs(Y)));
this->object->invalidate_bounding_box();
}
protected:
friend class Print;
friend class SLAPrint;
friend class Model;
friend class ModelObject;
explicit ModelInstance(const ModelInstance &rhs) = default;
void set_model_object(ModelObject *model_object) { object = model_object; }
private:
// Parent object, owning this instance.
ModelObject* object;
// Constructor, which assigns a new unique ID.
explicit ModelInstance(ModelObject* object) : print_volume_state(ModelInstancePVS_Inside), printable(true), object(object) { assert(this->id().valid()); }
// Constructor, which assigns a new unique ID.
explicit ModelInstance(ModelObject *object, const ModelInstance &other) :
m_transformation(other.m_transformation), print_volume_state(ModelInstancePVS_Inside), printable(other.printable), object(object) { assert(this->id().valid() && this->id() != other.id()); }
explicit ModelInstance(ModelInstance &&rhs) = delete;
ModelInstance& operator=(const ModelInstance &rhs) = delete;
ModelInstance& operator=(ModelInstance &&rhs) = delete;
friend class cereal::access;
friend class UndoRedo::StackImpl;
// Used for deserialization, therefore no IDs are allocated.
ModelInstance() : ObjectBase(-1), object(nullptr) { assert(this->id().invalid()); }
template<class Archive> void serialize(Archive &ar) {
ar(m_transformation, print_volume_state, printable);
}
};
class ModelWipeTower final : public ObjectBase
{
public:
Vec2d position;
double rotation;
private:
friend class cereal::access;
friend class UndoRedo::StackImpl;
friend class Model;
// Constructors to be only called by derived classes.
// Default constructor to assign a unique ID.
explicit ModelWipeTower() {}
// Constructor with ignored int parameter to assign an invalid ID, to be replaced
// by an existing ID copied from elsewhere.
explicit ModelWipeTower(int) : ObjectBase(-1) {}
// Copy constructor copies the ID.
explicit ModelWipeTower(const ModelWipeTower &cfg) = default;
// Disabled methods.
ModelWipeTower(ModelWipeTower &&rhs) = delete;
ModelWipeTower& operator=(const ModelWipeTower &rhs) = delete;
ModelWipeTower& operator=(ModelWipeTower &&rhs) = delete;
// For serialization / deserialization of ModelWipeTower composed into another class into the Undo / Redo stack as a separate object.
template<typename Archive> void serialize(Archive &ar) { ar(position, rotation); }
};
// The print bed content.
// Description of a triangular model with multiple materials, multiple instances with various affine transformations
// and with multiple modifier meshes.
// A model groups multiple objects, each object having possibly multiple instances,
// all objects may share mutliple materials.
class Model final : public ObjectBase
{
public:
// Materials are owned by a model and referenced by objects through t_model_material_id.
// Single material may be shared by multiple models.
ModelMaterialMap materials;
// Objects are owned by a model. Each model may have multiple instances, each instance having its own transformation (shift, scale, rotation).
ModelObjectPtrs objects;
// Wipe tower object.
ModelWipeTower wipe_tower;
// Extensions for color print
CustomGCode::Info custom_gcode_per_print_z;
// Default constructor assigns a new ID to the model.
Model() { assert(this->id().valid()); }
~Model() { this->clear_objects(); this->clear_materials(); }
/* To be able to return an object from own copy / clone methods. Hopefully the compiler will do the "Copy elision" */
/* (Omits copy and move(since C++11) constructors, resulting in zero - copy pass - by - value semantics). */
Model(const Model &rhs) : ObjectBase(-1) { assert(this->id().invalid()); this->assign_copy(rhs); assert(this->id().valid()); assert(this->id() == rhs.id()); }
explicit Model(Model &&rhs) : ObjectBase(-1) { assert(this->id().invalid()); this->assign_copy(std::move(rhs)); assert(this->id().valid()); assert(this->id() == rhs.id()); }
Model& operator=(const Model &rhs) { this->assign_copy(rhs); assert(this->id().valid()); assert(this->id() == rhs.id()); return *this; }
Model& operator=(Model &&rhs) { this->assign_copy(std::move(rhs)); assert(this->id().valid()); assert(this->id() == rhs.id()); return *this; }
OBJECTBASE_DERIVED_COPY_MOVE_CLONE(Model)
enum class LoadAttribute : int {
AddDefaultInstances,
CheckVersion
};
using LoadAttributes = enum_bitmask<LoadAttribute>;
static Model read_from_file(
const std::string& input_file,
DynamicPrintConfig* config = nullptr, ConfigSubstitutionContext* config_substitutions = nullptr,
LoadAttributes options = LoadAttribute::AddDefaultInstances);
static Model read_from_archive(
const std::string& input_file,
DynamicPrintConfig* config, ConfigSubstitutionContext* config_substitutions,
LoadAttributes options = LoadAttribute::AddDefaultInstances);
// Add a new ModelObject to this Model, generate a new ID for this ModelObject.
ModelObject* add_object();
ModelObject* add_object(const char *name, const char *path, const TriangleMesh &mesh);
ModelObject* add_object(const char *name, const char *path, TriangleMesh &&mesh);
ModelObject* add_object(const ModelObject &other);
void delete_object(size_t idx);
bool delete_object(ObjectID id);
bool delete_object(ModelObject* object);
void clear_objects();
ModelMaterial* add_material(t_model_material_id material_id);
ModelMaterial* add_material(t_model_material_id material_id, const ModelMaterial &other);
ModelMaterial* get_material(t_model_material_id material_id) {
ModelMaterialMap::iterator i = this->materials.find(material_id);
return (i == this->materials.end()) ? nullptr : i->second;
}
void delete_material(t_model_material_id material_id);
void clear_materials();
bool add_default_instances();
// Returns approximate axis aligned bounding box of this model
BoundingBoxf3 bounding_box() const;
// Set the print_volume_state of PrintObject::instances,
// return total number of printable objects.
unsigned int update_print_volume_state(const BoundingBoxf3 &print_volume);
// Returns true if any ModelObject was modified.
bool center_instances_around_point(const Vec2d &point);
void translate(coordf_t x, coordf_t y, coordf_t z) { for (ModelObject *o : this->objects) o->translate(x, y, z); }
TriangleMesh mesh() const;
// Croaks if the duplicated objects do not fit the print bed.
void duplicate_objects_grid(size_t x, size_t y, coordf_t dist);
bool looks_like_multipart_object() const;
void convert_multipart_object(unsigned int max_extruders);
bool looks_like_imperial_units() const;
void convert_from_imperial_units(bool only_small_volumes);
bool looks_like_saved_in_meters() const;
void convert_from_meters(bool only_small_volumes);
// Ensures that the min z of the model is not negative
void adjust_min_z();
void print_info() const { for (const ModelObject *o : this->objects) o->print_info(); }
// Propose an output file name & path based on the first printable object's name and source input file's path.
std::string propose_export_file_name_and_path() const;
// Propose an output path, replace extension. The new_extension shall contain the initial dot.
std::string propose_export_file_name_and_path(const std::string &new_extension) const;
private:
explicit Model(int) : ObjectBase(-1) { assert(this->id().invalid()); }
void assign_new_unique_ids_recursive();
void update_links_bottom_up_recursive();
friend class cereal::access;
friend class UndoRedo::StackImpl;
template<class Archive> void serialize(Archive &ar) {
Internal::StaticSerializationWrapper<ModelWipeTower> wipe_tower_wrapper(wipe_tower);
ar(materials, objects, wipe_tower_wrapper);
}
};
ENABLE_ENUM_BITMASK_OPERATORS(Model::LoadAttribute)
#undef OBJECTBASE_DERIVED_COPY_MOVE_CLONE
#undef OBJECTBASE_DERIVED_PRIVATE_COPY_MOVE
// Test whether the two models contain the same number of ModelObjects with the same set of IDs
// ordered in the same order. In that case it is not necessary to kill the background processing.
bool model_object_list_equal(const Model &model_old, const Model &model_new);
// Test whether the new model is just an extension of the old model (new objects were added
// to the end of the original list. In that case it is not necessary to kill the background processing.
bool model_object_list_extended(const Model &model_old, const Model &model_new);
// Test whether the new ModelObject contains a different set of volumes (or sorted in a different order)
// than the old ModelObject.
bool model_volume_list_changed(const ModelObject &model_object_old, const ModelObject &model_object_new, const ModelVolumeType type);
bool model_volume_list_changed(const ModelObject &model_object_old, const ModelObject &model_object_new, const std::initializer_list<ModelVolumeType> &types);
// Test whether the now ModelObject has newer custom supports data than the old one.
// The function assumes that volumes list is synchronized.
bool model_custom_supports_data_changed(const ModelObject& mo, const ModelObject& mo_new);
// Test whether the now ModelObject has newer custom seam data than the old one.
// The function assumes that volumes list is synchronized.
bool model_custom_seam_data_changed(const ModelObject& mo, const ModelObject& mo_new);
// Test whether the now ModelObject has newer MMU segmentation data than the old one.
// The function assumes that volumes list is synchronized.
extern bool model_mmu_segmentation_data_changed(const ModelObject& mo, const ModelObject& mo_new);
// If the model has multi-part objects, then it is currently not supported by the SLA mode.
// Either the model cannot be loaded, or a SLA printer has to be activated.
bool model_has_multi_part_objects(const Model &model);
// If the model has advanced features, then it cannot be processed in simple mode.
bool model_has_advanced_features(const Model &model);
#ifndef NDEBUG
// Verify whether the IDs of Model / ModelObject / ModelVolume / ModelInstance / ModelMaterial are valid and unique.
void check_model_ids_validity(const Model &model);
void check_model_ids_equal(const Model &model1, const Model &model2);
#endif /* NDEBUG */
#if ENABLE_ALLOW_NEGATIVE_Z
static const float SINKING_Z_THRESHOLD = -0.001f;
#endif // ENABLE_ALLOW_NEGATIVE_Z
} // namespace Slic3r
namespace cereal
{
template <class Archive> struct specialize<Archive, Slic3r::ModelVolume, cereal::specialization::member_load_save> {};
template <class Archive> struct specialize<Archive, Slic3r::ModelConfigObject, cereal::specialization::member_serialize> {};
}
#endif /* slic3r_Model_hpp_ */