
Sphere and Cylinder are scaled to the same volume as Box Newly entered modifier meshes are rotated parallell to the world coordinates. If the instance coordinate system is rotated and scaled, it is not possible to create an unskewed modifier to world transformation. In that case the best possible transformation is found to minimize least squares error of the 8 corners of the new modifier mesh bounding box using Levenberg-Marquardt algorithm. FIXME: 1) The Levenberg-Marquardt non-linear least squares does not converge nicely, it may require some tuning. 2) Above all, if 1) is called, then often the skew of the modifier mesh is so high, that it is likely more useful to display the modifier with zero rotation and inverse scaling, so that the modifier will be of correct size, but not parallel to the world coordinates.
266 lines
9.9 KiB
C++
266 lines
9.9 KiB
C++
#ifndef slic3r_Geometry_hpp_
|
|
#define slic3r_Geometry_hpp_
|
|
|
|
#include "libslic3r.h"
|
|
#include "BoundingBox.hpp"
|
|
#include "ExPolygon.hpp"
|
|
#include "Polygon.hpp"
|
|
#include "Polyline.hpp"
|
|
|
|
#include "boost/polygon/voronoi.hpp"
|
|
using boost::polygon::voronoi_builder;
|
|
using boost::polygon::voronoi_diagram;
|
|
|
|
namespace Slic3r { namespace Geometry {
|
|
|
|
// Generic result of an orientation predicate.
|
|
enum Orientation
|
|
{
|
|
ORIENTATION_CCW = 1,
|
|
ORIENTATION_CW = -1,
|
|
ORIENTATION_COLINEAR = 0
|
|
};
|
|
|
|
// Return orientation of the three points (clockwise, counter-clockwise, colinear)
|
|
// The predicate is exact for the coord_t type, using 64bit signed integers for the temporaries.
|
|
// which means, the coord_t types must not have some of the topmost bits utilized.
|
|
// As the points are limited to 30 bits + signum,
|
|
// the temporaries u, v, w are limited to 61 bits + signum,
|
|
// and d is limited to 63 bits + signum and we are good.
|
|
static inline Orientation orient(const Point &a, const Point &b, const Point &c)
|
|
{
|
|
// BOOST_STATIC_ASSERT(sizeof(coord_t) * 2 == sizeof(int64_t));
|
|
int64_t u = int64_t(b(0)) * int64_t(c(1)) - int64_t(b(1)) * int64_t(c(0));
|
|
int64_t v = int64_t(a(0)) * int64_t(c(1)) - int64_t(a(1)) * int64_t(c(0));
|
|
int64_t w = int64_t(a(0)) * int64_t(b(1)) - int64_t(a(1)) * int64_t(b(0));
|
|
int64_t d = u - v + w;
|
|
return (d > 0) ? ORIENTATION_CCW : ((d == 0) ? ORIENTATION_COLINEAR : ORIENTATION_CW);
|
|
}
|
|
|
|
// Return orientation of the polygon by checking orientation of the left bottom corner of the polygon
|
|
// using exact arithmetics. The input polygon must not contain duplicate points
|
|
// (or at least the left bottom corner point must not have duplicates).
|
|
static inline bool is_ccw(const Polygon &poly)
|
|
{
|
|
// The polygon shall be at least a triangle.
|
|
assert(poly.points.size() >= 3);
|
|
if (poly.points.size() < 3)
|
|
return true;
|
|
|
|
// 1) Find the lowest lexicographical point.
|
|
unsigned int imin = 0;
|
|
for (unsigned int i = 1; i < poly.points.size(); ++ i) {
|
|
const Point &pmin = poly.points[imin];
|
|
const Point &p = poly.points[i];
|
|
if (p(0) < pmin(0) || (p(0) == pmin(0) && p(1) < pmin(1)))
|
|
imin = i;
|
|
}
|
|
|
|
// 2) Detect the orientation of the corner imin.
|
|
size_t iPrev = ((imin == 0) ? poly.points.size() : imin) - 1;
|
|
size_t iNext = ((imin + 1 == poly.points.size()) ? 0 : imin + 1);
|
|
Orientation o = orient(poly.points[iPrev], poly.points[imin], poly.points[iNext]);
|
|
// The lowest bottom point must not be collinear if the polygon does not contain duplicate points
|
|
// or overlapping segments.
|
|
assert(o != ORIENTATION_COLINEAR);
|
|
return o == ORIENTATION_CCW;
|
|
}
|
|
|
|
inline bool ray_ray_intersection(const Vec2d &p1, const Vec2d &v1, const Vec2d &p2, const Vec2d &v2, Vec2d &res)
|
|
{
|
|
double denom = v1(0) * v2(1) - v2(0) * v1(1);
|
|
if (std::abs(denom) < EPSILON)
|
|
return false;
|
|
double t = (v2(0) * (p1(1) - p2(1)) - v2(1) * (p1(0) - p2(0))) / denom;
|
|
res(0) = p1(0) + t * v1(0);
|
|
res(1) = p1(1) + t * v1(1);
|
|
return true;
|
|
}
|
|
|
|
inline bool segment_segment_intersection(const Vec2d &p1, const Vec2d &v1, const Vec2d &p2, const Vec2d &v2, Vec2d &res)
|
|
{
|
|
double denom = v1(0) * v2(1) - v2(0) * v1(1);
|
|
if (std::abs(denom) < EPSILON)
|
|
// Lines are collinear.
|
|
return false;
|
|
double s12_x = p1(0) - p2(0);
|
|
double s12_y = p1(1) - p2(1);
|
|
double s_numer = v1(0) * s12_y - v1(1) * s12_x;
|
|
bool denom_is_positive = false;
|
|
if (denom < 0.) {
|
|
denom_is_positive = true;
|
|
denom = - denom;
|
|
s_numer = - s_numer;
|
|
}
|
|
if (s_numer < 0.)
|
|
// Intersection outside of the 1st segment.
|
|
return false;
|
|
double t_numer = v2(0) * s12_y - v2(1) * s12_x;
|
|
if (! denom_is_positive)
|
|
t_numer = - t_numer;
|
|
if (t_numer < 0. || s_numer > denom || t_numer > denom)
|
|
// Intersection outside of the 1st or 2nd segment.
|
|
return false;
|
|
// Intersection inside both of the segments.
|
|
double t = t_numer / denom;
|
|
res(0) = p1(0) + t * v1(0);
|
|
res(1) = p1(1) + t * v1(1);
|
|
return true;
|
|
}
|
|
|
|
Pointf3s convex_hull(Pointf3s points);
|
|
Polygon convex_hull(Points points);
|
|
Polygon convex_hull(const Polygons &polygons);
|
|
|
|
void chained_path(const Points &points, std::vector<Points::size_type> &retval, Point start_near);
|
|
void chained_path(const Points &points, std::vector<Points::size_type> &retval);
|
|
template<class T> void chained_path_items(Points &points, T &items, T &retval);
|
|
bool directions_parallel(double angle1, double angle2, double max_diff = 0);
|
|
template<class T> bool contains(const std::vector<T> &vector, const Point &point);
|
|
template<typename T> T rad2deg(T angle) { return T(180.0) * angle / T(PI); }
|
|
double rad2deg_dir(double angle);
|
|
template<typename T> T deg2rad(T angle) { return T(PI) * angle / T(180.0); }
|
|
template<typename T> T angle_to_0_2PI(T angle)
|
|
{
|
|
static const T TWO_PI = T(2) * T(PI);
|
|
while (angle < T(0))
|
|
{
|
|
angle += TWO_PI;
|
|
}
|
|
while (TWO_PI < angle)
|
|
{
|
|
angle -= TWO_PI;
|
|
}
|
|
|
|
return angle;
|
|
}
|
|
void simplify_polygons(const Polygons &polygons, double tolerance, Polygons* retval);
|
|
|
|
double linint(double value, double oldmin, double oldmax, double newmin, double newmax);
|
|
bool arrange(
|
|
// input
|
|
size_t num_parts, const Vec2d &part_size, coordf_t gap, const BoundingBoxf* bed_bounding_box,
|
|
// output
|
|
Pointfs &positions);
|
|
|
|
class MedialAxis {
|
|
public:
|
|
Lines lines;
|
|
const ExPolygon* expolygon;
|
|
double max_width;
|
|
double min_width;
|
|
MedialAxis(double _max_width, double _min_width, const ExPolygon* _expolygon = NULL)
|
|
: expolygon(_expolygon), max_width(_max_width), min_width(_min_width) {};
|
|
void build(ThickPolylines* polylines);
|
|
void build(Polylines* polylines);
|
|
|
|
private:
|
|
class VD : public voronoi_diagram<double> {
|
|
public:
|
|
typedef double coord_type;
|
|
typedef boost::polygon::point_data<coordinate_type> point_type;
|
|
typedef boost::polygon::segment_data<coordinate_type> segment_type;
|
|
typedef boost::polygon::rectangle_data<coordinate_type> rect_type;
|
|
};
|
|
VD vd;
|
|
std::set<const VD::edge_type*> edges, valid_edges;
|
|
std::map<const VD::edge_type*, std::pair<coordf_t,coordf_t> > thickness;
|
|
void process_edge_neighbors(const VD::edge_type* edge, ThickPolyline* polyline);
|
|
bool validate_edge(const VD::edge_type* edge);
|
|
const Line& retrieve_segment(const VD::cell_type* cell) const;
|
|
const Point& retrieve_endpoint(const VD::cell_type* cell) const;
|
|
};
|
|
|
|
// Sets the given transform by assembling the given transformations in the following order:
|
|
// 1) mirror
|
|
// 2) scale
|
|
// 3) rotate X
|
|
// 4) rotate Y
|
|
// 5) rotate Z
|
|
// 6) translate
|
|
void assemble_transform(Transform3d& transform, const Vec3d& translation = Vec3d::Zero(), const Vec3d& rotation = Vec3d::Zero(), const Vec3d& scale = Vec3d::Ones(), const Vec3d& mirror = Vec3d::Ones());
|
|
|
|
// Returns the transform obtained by assembling the given transformations in the following order:
|
|
// 1) mirror
|
|
// 2) scale
|
|
// 3) rotate X
|
|
// 4) rotate Y
|
|
// 5) rotate Z
|
|
// 6) translate
|
|
Transform3d assemble_transform(const Vec3d& translation = Vec3d::Zero(), const Vec3d& rotation = Vec3d::Zero(), const Vec3d& scale = Vec3d::Ones(), const Vec3d& mirror = Vec3d::Ones());
|
|
|
|
// Returns the euler angles extracted from the given rotation matrix
|
|
// Warning -> The matrix should not contain any scale or shear !!!
|
|
Vec3d extract_euler_angles(const Eigen::Matrix<double, 3, 3, Eigen::DontAlign>& rotation_matrix);
|
|
|
|
// Returns the euler angles extracted from the given affine transform
|
|
// Warning -> The transform should not contain any shear !!!
|
|
Vec3d extract_euler_angles(const Transform3d& transform);
|
|
|
|
class Transformation
|
|
{
|
|
struct Flags
|
|
{
|
|
bool dont_translate;
|
|
bool dont_rotate;
|
|
bool dont_scale;
|
|
bool dont_mirror;
|
|
|
|
Flags();
|
|
|
|
bool needs_update(bool dont_translate, bool dont_rotate, bool dont_scale, bool dont_mirror) const;
|
|
void set(bool dont_translate, bool dont_rotate, bool dont_scale, bool dont_mirror);
|
|
};
|
|
|
|
Vec3d m_offset; // In unscaled coordinates
|
|
Vec3d m_rotation; // Rotation around the three axes, in radians around mesh center point
|
|
Vec3d m_scaling_factor; // Scaling factors along the three axes
|
|
Vec3d m_mirror; // Mirroring along the three axes
|
|
|
|
mutable Transform3d m_matrix;
|
|
mutable Flags m_flags;
|
|
mutable bool m_dirty;
|
|
|
|
public:
|
|
Transformation();
|
|
explicit Transformation(const Transform3d& transform);
|
|
|
|
const Vec3d& get_offset() const { return m_offset; }
|
|
double get_offset(Axis axis) const { return m_offset(axis); }
|
|
|
|
void set_offset(const Vec3d& offset);
|
|
void set_offset(Axis axis, double offset);
|
|
|
|
const Vec3d& get_rotation() const { return m_rotation; }
|
|
double get_rotation(Axis axis) const { return m_rotation(axis); }
|
|
|
|
void set_rotation(const Vec3d& rotation);
|
|
void set_rotation(Axis axis, double rotation);
|
|
|
|
const Vec3d& get_scaling_factor() const { return m_scaling_factor; }
|
|
double get_scaling_factor(Axis axis) const { return m_scaling_factor(axis); }
|
|
|
|
void set_scaling_factor(const Vec3d& scaling_factor);
|
|
void set_scaling_factor(Axis axis, double scaling_factor);
|
|
bool is_scaling_uniform() const { return std::abs(m_scaling_factor.x() - m_scaling_factor.y()) < 1e-8 && std::abs(m_scaling_factor.x() - m_scaling_factor.z()) < 1e-8; }
|
|
|
|
const Vec3d& get_mirror() const { return m_mirror; }
|
|
double get_mirror(Axis axis) const { return m_mirror(axis); }
|
|
|
|
void set_mirror(const Vec3d& mirror);
|
|
void set_mirror(Axis axis, double mirror);
|
|
|
|
void set_from_transform(const Transform3d& transform);
|
|
|
|
#if ENABLE_VOLUMES_CENTERING_FIXES
|
|
void reset();
|
|
#endif // ENABLE_VOLUMES_CENTERING_FIXES
|
|
|
|
const Transform3d& get_matrix(bool dont_translate = false, bool dont_rotate = false, bool dont_scale = false, bool dont_mirror = false) const;
|
|
|
|
Transformation operator * (const Transformation& other) const;
|
|
};
|
|
|
|
} }
|
|
|
|
#endif
|