PrusaSlicer-NonPlainar/tests/sla_print/sla_test_utils.cpp

474 lines
16 KiB
C++

#include "sla_test_utils.hpp"
#include "libslic3r/TriangleMeshSlicer.hpp"
#include "libslic3r/SLA/AGGRaster.hpp"
#include "libslic3r/SLA/DefaultSupportTree.hpp"
#include "libslic3r/SLA/BranchingTreeSLA.hpp"
#include <iomanip>
void test_support_model_collision(
const std::string &obj_filename,
const sla::SupportTreeConfig &input_supportcfg,
const sla::HollowingConfig &hollowingcfg,
const sla::DrainHoles &drainholes)
{
SupportByproducts byproducts;
sla::SupportTreeConfig supportcfg = input_supportcfg;
// Set head penetration to a small negative value which should ensure that
// the supports will not touch the model body.
supportcfg.head_penetration_mm = -0.2;
test_supports(obj_filename, supportcfg, hollowingcfg, drainholes, byproducts);
// Slice the support mesh given the slice grid of the model.
std::vector<ExPolygons> support_slices =
sla::slice(byproducts.suptree_builder.retrieve_mesh(sla::MeshType::Support),
byproducts.suptree_builder.retrieve_mesh(sla::MeshType::Pad),
byproducts.slicegrid, CLOSING_RADIUS, {});
// The slices originate from the same slice grid so the numbers must match
bool support_mesh_is_empty =
byproducts.suptree_builder.retrieve_mesh(sla::MeshType::Pad).empty() &&
byproducts.suptree_builder.retrieve_mesh(sla::MeshType::Support).empty();
if (support_mesh_is_empty)
REQUIRE(support_slices.empty());
else
REQUIRE(support_slices.size() == byproducts.model_slices.size());
bool notouch = true;
for (size_t n = 0; notouch && n < support_slices.size(); ++n) {
const ExPolygons &sup_slice = support_slices[n];
const ExPolygons &mod_slice = byproducts.model_slices[n];
Polygons intersections = intersection(sup_slice, mod_slice);
double pinhead_r = scaled(input_supportcfg.head_front_radius_mm);
// TODO:: make it strict without a threshold of PI * pihead_radius ^ 2
notouch = notouch && area(intersections) < PI * pinhead_r * pinhead_r;
}
if (!notouch)
export_failed_case(support_slices, byproducts);
REQUIRE(notouch);
}
void export_failed_case(const std::vector<ExPolygons> &support_slices, const SupportByproducts &byproducts)
{
bool do_export_stl = false;
for (size_t n = 0; n < support_slices.size(); ++n) {
const ExPolygons &sup_slice = support_slices[n];
const ExPolygons &mod_slice = byproducts.model_slices[n];
Polygons intersections = intersection(sup_slice, mod_slice);
std::stringstream ss;
if (!intersections.empty()) {
ss << byproducts.obj_fname << std::setprecision(4) << n << ".svg";
SVG svg(ss.str());
svg.draw(sup_slice, "green");
svg.draw(mod_slice, "blue");
svg.draw(intersections, "red");
svg.Close();
}
do_export_stl = do_export_stl || !intersections.empty();
}
if (do_export_stl) {
indexed_triangle_set its;
byproducts.suptree_builder.retrieve_full_mesh(its);
TriangleMesh m{its};
m.merge(byproducts.input_mesh);
m.WriteOBJFile((Catch::getResultCapture().getCurrentTestName() + "_" +
byproducts.obj_fname).c_str());
}
}
void test_supports(const std::string &obj_filename,
const sla::SupportTreeConfig &supportcfg,
const sla::HollowingConfig &hollowingcfg,
const sla::DrainHoles &drainholes,
SupportByproducts &out)
{
using namespace Slic3r;
TriangleMesh mesh = load_model(obj_filename);
REQUIRE_FALSE(mesh.empty());
if (hollowingcfg.enabled) {
sla::InteriorPtr interior = sla::generate_interior(mesh.its, hollowingcfg);
REQUIRE(interior);
mesh.merge(TriangleMesh{sla::get_mesh(*interior)});
}
auto bb = mesh.bounding_box();
double zmin = bb.min.z();
double zmax = bb.max.z();
double gnd = zmin - supportcfg.object_elevation_mm;
auto layer_h = 0.05f;
out.slicegrid = grid(float(gnd), float(zmax), layer_h);
out.model_slices = slice_mesh_ex(mesh.its, out.slicegrid, CLOSING_RADIUS);
sla::cut_drainholes(out.model_slices, out.slicegrid, CLOSING_RADIUS, drainholes, []{});
// Create the special index-triangle mesh with spatial indexing which
// is the input of the support point and support mesh generators
AABBMesh emesh{mesh};
#ifdef SLIC3R_HOLE_RAYCASTER
if (hollowingcfg.enabled)
emesh.load_holes(drainholes);
#endif
// TODO: do the cgal hole cutting...
// Create the support point generator
sla::SupportPointGenerator::Config autogencfg;
autogencfg.head_diameter = float(2 * supportcfg.head_front_radius_mm);
sla::SupportPointGenerator point_gen{emesh, autogencfg, [] {}, [](int) {}};
point_gen.seed(0); // Make the test repeatable
point_gen.execute(out.model_slices, out.slicegrid);
// Get the calculated support points.
std::vector<sla::SupportPoint> support_points = point_gen.output();
int validityflags = ASSUME_NO_REPAIR;
// If there is no elevation, support points shall be removed from the
// bottom of the object.
if (std::abs(supportcfg.object_elevation_mm) < EPSILON) {
sla::remove_bottom_points(support_points, zmin + supportcfg.base_height_mm);
} else {
// Should be support points at least on the bottom of the model
REQUIRE_FALSE(support_points.empty());
// Also the support mesh should not be empty.
validityflags |= ASSUME_NO_EMPTY;
}
// Generate the actual support tree
sla::SupportTreeBuilder treebuilder;
sla::SupportableMesh sm{emesh, support_points, supportcfg};
switch (sm.cfg.tree_type) {
case sla::SupportTreeType::Default: {
sla::DefaultSupportTree::execute(treebuilder, sm);
check_support_tree_integrity(treebuilder, supportcfg, sla::ground_level(sm));
break;
}
case sla::SupportTreeType::Branching: {
create_branching_tree(treebuilder, sm);
// TODO: check_support_tree_integrity(treebuilder, supportcfg);
break;
}
default:;
}
TriangleMesh output_mesh{treebuilder.retrieve_mesh(sla::MeshType::Support)};
check_validity(output_mesh, validityflags);
// Quick check if the dimensions and placement of supports are correct
auto obb = output_mesh.bounding_box();
double allowed_zmin = zmin - supportcfg.object_elevation_mm;
if (std::abs(supportcfg.object_elevation_mm) < EPSILON)
allowed_zmin = zmin - 2 * supportcfg.head_back_radius_mm;
REQUIRE(obb.min.z() >= Approx(allowed_zmin));
REQUIRE(obb.max.z() <= Approx(zmax));
// Move out the support tree into the byproducts, we can examine it further
// in various tests.
out.obj_fname = std::move(obj_filename);
out.suptree_builder = std::move(treebuilder);
out.input_mesh = std::move(mesh);
}
void check_support_tree_integrity(const sla::SupportTreeBuilder &stree,
const sla::SupportTreeConfig &cfg,
double gnd)
{
double H1 = cfg.max_solo_pillar_height_mm;
double H2 = cfg.max_dual_pillar_height_mm;
for (const sla::Head &head : stree.heads()) {
REQUIRE((!head.is_valid() || head.pillar_id != sla::SupportTreeNode::ID_UNSET ||
head.bridge_id != sla::SupportTreeNode::ID_UNSET));
}
for (const sla::Pillar &pillar : stree.pillars()) {
if (std::abs(pillar.endpoint().z() - gnd) < EPSILON) {
double h = pillar.height;
if (h > H1) REQUIRE(pillar.links >= 1);
else if(h > H2) { REQUIRE(pillar.links >= 2); }
}
REQUIRE(pillar.links <= cfg.pillar_cascade_neighbors);
REQUIRE(pillar.bridges <= cfg.max_bridges_on_pillar);
}
double max_bridgelen = 0.;
auto chck_bridge = [&cfg](const sla::Bridge &bridge, double &max_brlen) {
Vec3d n = bridge.endp - bridge.startp;
double d = sla::distance(n);
max_brlen = std::max(d, max_brlen);
double z = n.z();
double polar = std::acos(z / d);
double slope = -polar + PI / 2.;
REQUIRE(std::abs(slope) >= cfg.bridge_slope - EPSILON);
};
for (auto &bridge : stree.bridges()) chck_bridge(bridge, max_bridgelen);
REQUIRE(max_bridgelen <= Approx(cfg.max_bridge_length_mm));
max_bridgelen = 0;
for (auto &bridge : stree.crossbridges()) chck_bridge(bridge, max_bridgelen);
double md = cfg.max_pillar_link_distance_mm / std::cos(-cfg.bridge_slope);
REQUIRE(max_bridgelen <= md);
}
void test_pad(const std::string &obj_filename, const sla::PadConfig &padcfg, PadByproducts &out)
{
REQUIRE(padcfg.validate().empty());
TriangleMesh mesh = load_model(obj_filename);
REQUIRE_FALSE(mesh.empty());
// Create pad skeleton only from the model
Slic3r::sla::pad_blueprint(mesh.its, out.model_contours);
test_concave_hull(out.model_contours);
REQUIRE_FALSE(out.model_contours.empty());
// Create the pad geometry for the model contours only
indexed_triangle_set out_its;
Slic3r::sla::create_pad({}, out.model_contours, out_its, padcfg);
out.mesh = TriangleMesh{out_its};
check_validity(out.mesh);
auto bb = out.mesh.bounding_box();
REQUIRE(bb.max.z() - bb.min.z() == Approx(padcfg.full_height()));
}
static void _test_concave_hull(const Polygons &hull, const ExPolygons &polys)
{
REQUIRE(polys.size() >=hull.size());
double polys_area = 0;
for (const ExPolygon &p : polys) polys_area += p.area();
double cchull_area = 0;
for (const Slic3r::Polygon &p : hull) cchull_area += p.area();
REQUIRE(cchull_area >= Approx(polys_area));
size_t cchull_holes = 0;
for (const Slic3r::Polygon &p : hull)
cchull_holes += p.is_clockwise() ? 1 : 0;
REQUIRE(cchull_holes == 0);
Polygons diff_poly = diff(to_polygons(polys), hull);
if (!diff_poly.empty()) {
BOOST_LOG_TRIVIAL(warning)
<< "Concave hull diff with original shape is not completely empty."
<< "See pad_chull.svg for details.";
SVG svg("pad_chull.svg");
svg.draw(polys, "green");
svg.draw(hull, "red");
svg.draw(diff_poly, "blue");
}
double diff_area = area(diff_poly);
REQUIRE(std::abs(diff_area) < std::pow(scaled(2 * EPSILON), 2));
}
void test_concave_hull(const ExPolygons &polys) {
sla::PadConfig pcfg;
Slic3r::sla::ConcaveHull cchull{polys, pcfg.max_merge_dist_mm, []{}};
_test_concave_hull(cchull.polygons(), polys);
coord_t delta = scaled(pcfg.brim_size_mm + pcfg.wing_distance());
ExPolygons wafflex = sla::offset_waffle_style_ex(cchull, delta);
Polygons waffl = sla::offset_waffle_style(cchull, delta);
_test_concave_hull(to_polygons(wafflex), polys);
_test_concave_hull(waffl, polys);
}
//FIXME this functionality is gone after TriangleMesh refactoring to get rid of admesh.
void check_validity(const TriangleMesh &input_mesh, int flags)
{
/*
TriangleMesh mesh{input_mesh};
if (flags & ASSUME_NO_EMPTY) {
REQUIRE_FALSE(mesh.empty());
} else if (mesh.empty())
return; // If it can be empty and it is, there is nothing left to do.
bool do_update_shared_vertices = false;
mesh.repair(do_update_shared_vertices);
if (flags & ASSUME_NO_REPAIR) {
REQUIRE_FALSE(mesh.repaired());
}
if (flags & ASSUME_MANIFOLD) {
if (!mesh.is_manifold()) mesh.WriteOBJFile("non_manifold.obj");
REQUIRE(mesh.is_manifold());
}
*/
}
void check_raster_transformations(sla::RasterBase::Orientation o, sla::RasterBase::TMirroring mirroring)
{
double disp_w = 120., disp_h = 68.;
sla::Resolution res{2560, 1440};
sla::PixelDim pixdim{disp_w / res.width_px, disp_h / res.height_px};
auto bb = BoundingBox({0, 0}, {scaled(disp_w), scaled(disp_h)});
sla::RasterBase::Trafo trafo{o, mirroring};
trafo.center_x = bb.center().x();
trafo.center_y = bb.center().y();
double gamma = 1.;
sla::RasterGrayscaleAAGammaPower raster{res, pixdim, trafo, gamma};
// create box of size 32x32 pixels (not 1x1 to avoid antialiasing errors)
coord_t pw = 32 * coord_t(std::ceil(scaled<double>(pixdim.w_mm)));
coord_t ph = 32 * coord_t(std::ceil(scaled<double>(pixdim.h_mm)));
ExPolygon box;
box.contour.points = {{-pw, -ph}, {pw, -ph}, {pw, ph}, {-pw, ph}};
double tr_x = scaled<double>(20.), tr_y = tr_x;
box.translate(tr_x, tr_y);
ExPolygon expected_box = box;
// Now calculate the position of the translated box according to output
// trafo.
if (o == sla::RasterBase::Orientation::roPortrait) expected_box.rotate(PI / 2.);
if (mirroring[X])
for (auto &p : expected_box.contour.points) p.x() = -p.x();
if (mirroring[Y])
for (auto &p : expected_box.contour.points) p.y() = -p.y();
raster.draw(box);
Point expected_coords = expected_box.contour.bounding_box().center();
double rx = unscaled(expected_coords.x() + bb.center().x()) / pixdim.w_mm;
double ry = unscaled(expected_coords.y() + bb.center().y()) / pixdim.h_mm;
auto w = size_t(std::floor(rx));
auto h = res.height_px - size_t(std::floor(ry));
REQUIRE((w < res.width_px && h < res.height_px));
auto px = raster.read_pixel(w, h);
if (px != FullWhite) {
std::fstream outf("out.png", std::ios::out);
outf << raster.encode(sla::PNGRasterEncoder());
}
REQUIRE(px == FullWhite);
}
ExPolygon square_with_hole(double v)
{
ExPolygon poly;
coord_t V = scaled(v / 2.);
poly.contour.points = {{-V, -V}, {V, -V}, {V, V}, {-V, V}};
poly.holes.emplace_back();
V = V / 2;
poly.holes.front().points = {{-V, V}, {V, V}, {V, -V}, {-V, -V}};
return poly;
}
long raster_pxsum(const sla::RasterGrayscaleAA &raster)
{
auto res = raster.resolution();
long a = 0;
for (size_t x = 0; x < res.width_px; ++x)
for (size_t y = 0; y < res.height_px; ++y)
a += raster.read_pixel(x, y);
return a;
}
double raster_white_area(const sla::RasterGrayscaleAA &raster)
{
if (raster.resolution().pixels() == 0) return NaNd;
auto res = raster.resolution();
double a = 0;
for (size_t x = 0; x < res.width_px; ++x)
for (size_t y = 0; y < res.height_px; ++y) {
auto px = raster.read_pixel(x, y);
a += pixel_area(px, raster.pixel_dimensions());
}
return a;
}
double predict_error(const ExPolygon &p, const sla::PixelDim &pd)
{
auto lines = p.lines();
double pix_err = pixel_area(FullWhite, pd) / 2.;
// Worst case is when a line is parallel to the shorter axis of one pixel,
// when the line will be composed of the max number of pixels
double pix_l = std::min(pd.h_mm, pd.w_mm);
double error = 0.;
for (auto &l : lines)
error += (unscaled(l.length()) / pix_l) * pix_err;
return error;
}
sla::SupportPoints calc_support_pts(
const TriangleMesh & mesh,
const sla::SupportPointGenerator::Config &cfg)
{
// Prepare the slice grid and the slices
auto bb = cast<float>(mesh.bounding_box());
std::vector<float> heights = grid(bb.min.z(), bb.max.z(), 0.1f);
std::vector<ExPolygons> slices = slice_mesh_ex(mesh.its, heights, CLOSING_RADIUS);
// Prepare the support point calculator
AABBMesh emesh{mesh};
sla::SupportPointGenerator spgen{emesh, cfg, []{}, [](int){}};
// Calculate the support points
spgen.seed(0);
spgen.execute(slices, heights);
return spgen.output();
}