307 lines
12 KiB
C++
307 lines
12 KiB
C++
// This is an excerpt of from the Clipper library by Angus Johnson, see the license below,
|
|
// implementing a 64 x 64 -> 128bit multiply, and 128bit addition, subtraction and compare
|
|
// operations, to be used with exact geometric predicates.
|
|
// The code has been extended by Vojtech Bubnik to use 128 bit intrinsic types
|
|
// and/or 64x64->128 intrinsic functions where possible.
|
|
|
|
/*******************************************************************************
|
|
* *
|
|
* Author : Angus Johnson *
|
|
* Version : 6.2.9 *
|
|
* Date : 16 February 2015 *
|
|
* Website : http://www.angusj.com *
|
|
* Copyright : Angus Johnson 2010-2015 *
|
|
* *
|
|
* License: *
|
|
* Use, modification & distribution is subject to Boost Software License Ver 1. *
|
|
* http://www.boost.org/LICENSE_1_0.txt *
|
|
* *
|
|
* Attributions: *
|
|
* The code in this library is an extension of Bala Vatti's clipping algorithm: *
|
|
* "A generic solution to polygon clipping" *
|
|
* Communications of the ACM, Vol 35, Issue 7 (July 1992) pp 56-63. *
|
|
* http://portal.acm.org/citation.cfm?id=129906 *
|
|
* *
|
|
* Computer graphics and geometric modeling: implementation and algorithms *
|
|
* By Max K. Agoston *
|
|
* Springer; 1 edition (January 4, 2005) *
|
|
* http://books.google.com/books?q=vatti+clipping+agoston *
|
|
* *
|
|
* See also: *
|
|
* "Polygon Offsetting by Computing Winding Numbers" *
|
|
* Paper no. DETC2005-85513 pp. 565-575 *
|
|
* ASME 2005 International Design Engineering Technical Conferences *
|
|
* and Computers and Information in Engineering Conference (IDETC/CIE2005) *
|
|
* September 24-28, 2005 , Long Beach, California, USA *
|
|
* http://www.me.berkeley.edu/~mcmains/pubs/DAC05OffsetPolygon.pdf *
|
|
* *
|
|
*******************************************************************************/
|
|
|
|
#ifndef SLIC3R_INT128_HPP
|
|
#define SLIC3R_INT128_HPP
|
|
// #define SLIC3R_DEBUG
|
|
|
|
// Make assert active if SLIC3R_DEBUG
|
|
#ifdef SLIC3R_DEBUG
|
|
#undef NDEBUG
|
|
#define DEBUG
|
|
#define _DEBUG
|
|
#undef assert
|
|
#endif
|
|
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <cmath>
|
|
|
|
#if ! defined(_MSC_VER) && defined(__SIZEOF_INT128__)
|
|
#define HAS_INTRINSIC_128_TYPE
|
|
#endif
|
|
|
|
#if defined(_MSC_VER) && defined(_WIN64)
|
|
#include <intrin.h>
|
|
#pragma intrinsic(_mul128)
|
|
#endif
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Int128 class (enables safe math on signed 64bit integers)
|
|
// eg Int128 val1((int64_t)9223372036854775807); //ie 2^63 -1
|
|
// Int128 val2((int64_t)9223372036854775807);
|
|
// Int128 val3 = val1 * val2;
|
|
//------------------------------------------------------------------------------
|
|
|
|
class Int128
|
|
{
|
|
|
|
#ifdef HAS_INTRINSIC_128_TYPE
|
|
|
|
/******************************************** Using the intrinsic 128bit x 128bit multiply ************************************************/
|
|
|
|
public:
|
|
__int128 value;
|
|
|
|
Int128(int64_t lo = 0) : value(lo) {}
|
|
Int128(const Int128 &v) : value(v.value) {}
|
|
|
|
Int128& operator=(const int64_t &rhs) { value = rhs; return *this; }
|
|
|
|
uint64_t lo() const { return uint64_t(value); }
|
|
int64_t hi() const { return int64_t(value >> 64); }
|
|
int sign() const { return (value > 0) - (value < 0); }
|
|
|
|
bool operator==(const Int128 &rhs) const { return value == rhs.value; }
|
|
bool operator!=(const Int128 &rhs) const { return value != rhs.value; }
|
|
bool operator> (const Int128 &rhs) const { return value > rhs.value; }
|
|
bool operator< (const Int128 &rhs) const { return value < rhs.value; }
|
|
bool operator>=(const Int128 &rhs) const { return value >= rhs.value; }
|
|
bool operator<=(const Int128 &rhs) const { return value <= rhs.value; }
|
|
|
|
Int128& operator+=(const Int128 &rhs) { value += rhs.value; return *this; }
|
|
Int128 operator+ (const Int128 &rhs) const { return Int128(value + rhs.value); }
|
|
Int128& operator-=(const Int128 &rhs) { value -= rhs.value; return *this; }
|
|
Int128 operator -(const Int128 &rhs) const { return Int128(value - rhs.value); }
|
|
Int128 operator -() const { return Int128(- value); }
|
|
|
|
operator double() const { return double(value); }
|
|
|
|
static inline Int128 multiply(int64_t lhs, int64_t rhs) { return Int128(__int128(lhs) * __int128(rhs)); }
|
|
|
|
#if defined(__clang__)
|
|
// When Clang is used with enabled UndefinedBehaviorSanitizer, it produces "undefined reference to '__muloti4'" when __int128 is used.
|
|
// Because of that, UndefinedBehaviorSanitizer is disabled for this function.
|
|
__attribute__((no_sanitize("undefined")))
|
|
#endif
|
|
// Evaluate signum of a 2x2 determinant.
|
|
static int sign_determinant_2x2(int64_t a11, int64_t a12, int64_t a21, int64_t a22)
|
|
{
|
|
__int128 det = __int128(a11) * __int128(a22) - __int128(a12) * __int128(a21);
|
|
return (det > 0) - (det < 0);
|
|
}
|
|
|
|
// Compare two rational numbers.
|
|
static int compare_rationals(int64_t p1, int64_t q1, int64_t p2, int64_t q2)
|
|
{
|
|
int invert = ((q1 < 0) == (q2 < 0)) ? 1 : -1;
|
|
__int128 det = __int128(p1) * __int128(q2) - __int128(p2) * __int128(q1);
|
|
return ((det > 0) - (det < 0)) * invert;
|
|
}
|
|
|
|
#else /* HAS_INTRINSIC_128_TYPE */
|
|
|
|
/******************************************** Splitting the 128bit number into two 64bit words *********************************************/
|
|
|
|
Int128(int64_t lo = 0) : m_lo((uint64_t)lo), m_hi((lo < 0) ? -1 : 0) {}
|
|
Int128(const Int128 &val) : m_lo(val.m_lo), m_hi(val.m_hi) {}
|
|
Int128(const int64_t& hi, const uint64_t& lo) : m_lo(lo), m_hi(hi) {}
|
|
|
|
Int128& operator = (const int64_t &val)
|
|
{
|
|
m_lo = (uint64_t)val;
|
|
m_hi = (val < 0) ? -1 : 0;
|
|
return *this;
|
|
}
|
|
|
|
uint64_t lo() const { return m_lo; }
|
|
int64_t hi() const { return m_hi; }
|
|
int sign() const { return (m_hi == 0) ? (m_lo > 0) : (m_hi > 0) - (m_hi < 0); }
|
|
|
|
bool operator == (const Int128 &val) const { return m_hi == val.m_hi && m_lo == val.m_lo; }
|
|
bool operator != (const Int128 &val) const { return ! (*this == val); }
|
|
bool operator > (const Int128 &val) const { return (m_hi == val.m_hi) ? m_lo > val.m_lo : m_hi > val.m_hi; }
|
|
bool operator < (const Int128 &val) const { return (m_hi == val.m_hi) ? m_lo < val.m_lo : m_hi < val.m_hi; }
|
|
bool operator >= (const Int128 &val) const { return ! (*this < val); }
|
|
bool operator <= (const Int128 &val) const { return ! (*this > val); }
|
|
|
|
Int128& operator += (const Int128 &rhs)
|
|
{
|
|
m_hi += rhs.m_hi;
|
|
m_lo += rhs.m_lo;
|
|
if (m_lo < rhs.m_lo) m_hi++;
|
|
return *this;
|
|
}
|
|
|
|
Int128 operator + (const Int128 &rhs) const
|
|
{
|
|
Int128 result(*this);
|
|
result+= rhs;
|
|
return result;
|
|
}
|
|
|
|
Int128& operator -= (const Int128 &rhs)
|
|
{
|
|
*this += -rhs;
|
|
return *this;
|
|
}
|
|
|
|
Int128 operator - (const Int128 &rhs) const
|
|
{
|
|
Int128 result(*this);
|
|
result -= rhs;
|
|
return result;
|
|
}
|
|
|
|
Int128 operator-() const { return (m_lo == 0) ? Int128(-m_hi, 0) : Int128(~m_hi, ~m_lo + 1); }
|
|
|
|
operator double() const
|
|
{
|
|
const double shift64 = 18446744073709551616.0; //2^64
|
|
return (m_hi < 0) ?
|
|
((m_lo == 0) ?
|
|
(double)m_hi * shift64 :
|
|
-(double)(~m_lo + ~m_hi * shift64)) :
|
|
(double)(m_lo + m_hi * shift64);
|
|
}
|
|
|
|
static inline Int128 multiply(int64_t lhs, int64_t rhs)
|
|
{
|
|
#if defined(_MSC_VER) && defined(_WIN64)
|
|
// On Visual Studio 64bit, use the _mul128() intrinsic function.
|
|
Int128 result;
|
|
result.m_lo = (uint64_t)_mul128(lhs, rhs, &result.m_hi);
|
|
return result;
|
|
#else
|
|
// This branch should only be executed in case there is neither __int16 type nor _mul128 intrinsic
|
|
// function available. This is mostly on 32bit operating systems.
|
|
// Use a pure C implementation of _mul128().
|
|
|
|
int negate = (lhs < 0) != (rhs < 0);
|
|
|
|
if (lhs < 0)
|
|
lhs = -lhs;
|
|
uint64_t int1Hi = uint64_t(lhs) >> 32;
|
|
uint64_t int1Lo = uint64_t(lhs & 0xFFFFFFFF);
|
|
|
|
if (rhs < 0)
|
|
rhs = -rhs;
|
|
uint64_t int2Hi = uint64_t(rhs) >> 32;
|
|
uint64_t int2Lo = uint64_t(rhs & 0xFFFFFFFF);
|
|
|
|
//because the high (sign) bits in both int1Hi & int2Hi have been zeroed,
|
|
//there's no risk of 64 bit overflow in the following assignment
|
|
//(ie: $7FFFFFFF*$FFFFFFFF + $7FFFFFFF*$FFFFFFFF < 64bits)
|
|
uint64_t a = int1Hi * int2Hi;
|
|
uint64_t b = int1Lo * int2Lo;
|
|
//Result = A shl 64 + C shl 32 + B ...
|
|
uint64_t c = int1Hi * int2Lo + int1Lo * int2Hi;
|
|
|
|
Int128 tmp;
|
|
tmp.m_hi = int64_t(a + (c >> 32));
|
|
tmp.m_lo = int64_t(c << 32);
|
|
tmp.m_lo += int64_t(b);
|
|
if (tmp.m_lo < b)
|
|
++ tmp.m_hi;
|
|
if (negate)
|
|
tmp = - tmp;
|
|
return tmp;
|
|
#endif
|
|
}
|
|
|
|
// Evaluate signum of a 2x2 determinant.
|
|
static int sign_determinant_2x2(int64_t a11, int64_t a12, int64_t a21, int64_t a22)
|
|
{
|
|
return (Int128::multiply(a11, a22) - Int128::multiply(a12, a21)).sign();
|
|
}
|
|
|
|
// Compare two rational numbers.
|
|
static int compare_rationals(int64_t p1, int64_t q1, int64_t p2, int64_t q2)
|
|
{
|
|
int invert = ((q1 < 0) == (q2 < 0)) ? 1 : -1;
|
|
Int128 det = Int128::multiply(p1, q2) - Int128::multiply(p2, q1);
|
|
return det.sign() * invert;
|
|
}
|
|
|
|
private:
|
|
uint64_t m_lo;
|
|
int64_t m_hi;
|
|
|
|
|
|
#endif /* HAS_INTRINSIC_128_TYPE */
|
|
|
|
|
|
/******************************************** Common methods ************************************************/
|
|
|
|
public:
|
|
|
|
// Evaluate signum of a 2x2 determinant, use a numeric filter to avoid 128 bit multiply if possible.
|
|
static int sign_determinant_2x2_filtered(int64_t a11, int64_t a12, int64_t a21, int64_t a22)
|
|
{
|
|
// First try to calculate the determinant over the upper 31 bits.
|
|
// Round p1, p2, q1, q2 to 31 bits.
|
|
int64_t a11s = (a11 + (1 << 31)) >> 32;
|
|
int64_t a12s = (a12 + (1 << 31)) >> 32;
|
|
int64_t a21s = (a21 + (1 << 31)) >> 32;
|
|
int64_t a22s = (a22 + (1 << 31)) >> 32;
|
|
// Result fits 63 bits, it is an approximate of the determinant divided by 2^64.
|
|
int64_t det = a11s * a22s - a12s * a21s;
|
|
// Maximum absolute of the remainder of the exact determinant, divided by 2^64.
|
|
int64_t err = ((std::abs(a11s) + std::abs(a12s) + std::abs(a21s) + std::abs(a22s)) << 1) + 1;
|
|
assert(std::abs(det) <= err || ((det > 0) ? 1 : -1) == sign_determinant_2x2(a11, a12, a21, a22));
|
|
return (std::abs(det) > err) ?
|
|
((det > 0) ? 1 : -1) :
|
|
sign_determinant_2x2(a11, a12, a21, a22);
|
|
}
|
|
|
|
// Compare two rational numbers, use a numeric filter to avoid 128 bit multiply if possible.
|
|
static int compare_rationals_filtered(int64_t p1, int64_t q1, int64_t p2, int64_t q2)
|
|
{
|
|
// First try to calculate the determinant over the upper 31 bits.
|
|
// Round p1, p2, q1, q2 to 31 bits.
|
|
int invert = ((q1 < 0) == (q2 < 0)) ? 1 : -1;
|
|
int64_t q1s = (q1 + (1 << 31)) >> 32;
|
|
int64_t q2s = (q2 + (1 << 31)) >> 32;
|
|
if (q1s != 0 && q2s != 0) {
|
|
int64_t p1s = (p1 + (1 << 31)) >> 32;
|
|
int64_t p2s = (p2 + (1 << 31)) >> 32;
|
|
// Result fits 63 bits, it is an approximate of the determinant divided by 2^64.
|
|
int64_t det = p1s * q2s - p2s * q1s;
|
|
// Maximum absolute of the remainder of the exact determinant, divided by 2^64.
|
|
int64_t err = ((std::abs(p1s) + std::abs(q1s) + std::abs(p2s) + std::abs(q2s)) << 1) + 1;
|
|
assert(std::abs(det) <= err || ((det > 0) ? 1 : -1) * invert == compare_rationals(p1, q1, p2, q2));
|
|
if (std::abs(det) > err)
|
|
return ((det > 0) ? 1 : -1) * invert;
|
|
}
|
|
return sign_determinant_2x2(p1, q1, p2, q2) * invert;
|
|
}
|
|
};
|
|
|
|
#endif // SLIC3R_INT128_HPP
|