413 lines
14 KiB
C++
413 lines
14 KiB
C++
#include "sla_test_utils.hpp"
|
|
#include "libslic3r/SLA/AGGRaster.hpp"
|
|
|
|
void test_support_model_collision(const std::string &obj_filename,
|
|
const sla::SupportTreeConfig &input_supportcfg,
|
|
const sla::HollowingConfig &hollowingcfg,
|
|
const sla::DrainHoles &drainholes)
|
|
{
|
|
SupportByproducts byproducts;
|
|
|
|
sla::SupportTreeConfig supportcfg = input_supportcfg;
|
|
|
|
// Set head penetration to a small negative value which should ensure that
|
|
// the supports will not touch the model body.
|
|
supportcfg.head_penetration_mm = -0.15;
|
|
|
|
test_supports(obj_filename, supportcfg, hollowingcfg, drainholes, byproducts);
|
|
|
|
// Slice the support mesh given the slice grid of the model.
|
|
std::vector<ExPolygons> support_slices =
|
|
byproducts.supporttree.slice(byproducts.slicegrid, CLOSING_RADIUS);
|
|
|
|
// The slices originate from the same slice grid so the numbers must match
|
|
|
|
bool support_mesh_is_empty =
|
|
byproducts.supporttree.retrieve_mesh(sla::MeshType::Pad).empty() &&
|
|
byproducts.supporttree.retrieve_mesh(sla::MeshType::Support).empty();
|
|
|
|
if (support_mesh_is_empty)
|
|
REQUIRE(support_slices.empty());
|
|
else
|
|
REQUIRE(support_slices.size() == byproducts.model_slices.size());
|
|
|
|
bool notouch = true;
|
|
for (size_t n = 0; notouch && n < support_slices.size(); ++n) {
|
|
const ExPolygons &sup_slice = support_slices[n];
|
|
const ExPolygons &mod_slice = byproducts.model_slices[n];
|
|
|
|
Polygons intersections = intersection(sup_slice, mod_slice);
|
|
|
|
notouch = notouch && intersections.empty();
|
|
}
|
|
|
|
/*if (!notouch) */export_failed_case(support_slices, byproducts);
|
|
|
|
REQUIRE(notouch);
|
|
}
|
|
|
|
void export_failed_case(const std::vector<ExPolygons> &support_slices, const SupportByproducts &byproducts)
|
|
{
|
|
for (size_t n = 0; n < support_slices.size(); ++n) {
|
|
const ExPolygons &sup_slice = support_slices[n];
|
|
const ExPolygons &mod_slice = byproducts.model_slices[n];
|
|
Polygons intersections = intersection(sup_slice, mod_slice);
|
|
|
|
std::stringstream ss;
|
|
if (!intersections.empty()) {
|
|
ss << byproducts.obj_fname << std::setprecision(4) << n << ".svg";
|
|
SVG svg(ss.str());
|
|
svg.draw(sup_slice, "green");
|
|
svg.draw(mod_slice, "blue");
|
|
svg.draw(intersections, "red");
|
|
svg.Close();
|
|
}
|
|
}
|
|
|
|
TriangleMesh m;
|
|
byproducts.supporttree.retrieve_full_mesh(m);
|
|
m.merge(byproducts.input_mesh);
|
|
m.repair();
|
|
m.require_shared_vertices();
|
|
m.WriteOBJFile((Catch::getResultCapture().getCurrentTestName() + "_" +
|
|
byproducts.obj_fname).c_str());
|
|
}
|
|
|
|
void test_supports(const std::string &obj_filename,
|
|
const sla::SupportTreeConfig &supportcfg,
|
|
const sla::HollowingConfig &hollowingcfg,
|
|
const sla::DrainHoles &drainholes,
|
|
SupportByproducts &out)
|
|
{
|
|
using namespace Slic3r;
|
|
TriangleMesh mesh = load_model(obj_filename);
|
|
|
|
REQUIRE_FALSE(mesh.empty());
|
|
|
|
if (hollowingcfg.enabled) {
|
|
auto inside = sla::generate_interior(mesh, hollowingcfg);
|
|
REQUIRE(inside);
|
|
mesh.merge(*inside);
|
|
mesh.require_shared_vertices();
|
|
}
|
|
|
|
TriangleMeshSlicer slicer{&mesh};
|
|
|
|
auto bb = mesh.bounding_box();
|
|
double zmin = bb.min.z();
|
|
double zmax = bb.max.z();
|
|
double gnd = zmin - supportcfg.object_elevation_mm;
|
|
auto layer_h = 0.05f;
|
|
|
|
out.slicegrid = grid(float(gnd), float(zmax), layer_h);
|
|
slicer.slice(out.slicegrid, SlicingMode::Regular, CLOSING_RADIUS, &out.model_slices, []{});
|
|
sla::cut_drainholes(out.model_slices, out.slicegrid, CLOSING_RADIUS, drainholes, []{});
|
|
|
|
// Create the special index-triangle mesh with spatial indexing which
|
|
// is the input of the support point and support mesh generators
|
|
sla::IndexedMesh emesh{mesh};
|
|
|
|
#ifdef SLIC3R_HOLE_RAYCASTER
|
|
if (hollowingcfg.enabled)
|
|
emesh.load_holes(drainholes);
|
|
#endif
|
|
|
|
// TODO: do the cgal hole cutting...
|
|
|
|
// Create the support point generator
|
|
sla::SupportPointGenerator::Config autogencfg;
|
|
autogencfg.head_diameter = float(2 * supportcfg.head_front_radius_mm);
|
|
sla::SupportPointGenerator point_gen{emesh, autogencfg, [] {}, [](int) {}};
|
|
|
|
point_gen.seed(0); // Make the test repeatable
|
|
point_gen.execute(out.model_slices, out.slicegrid);
|
|
|
|
// Get the calculated support points.
|
|
std::vector<sla::SupportPoint> support_points = point_gen.output();
|
|
|
|
int validityflags = ASSUME_NO_REPAIR;
|
|
|
|
// If there is no elevation, support points shall be removed from the
|
|
// bottom of the object.
|
|
if (std::abs(supportcfg.object_elevation_mm) < EPSILON) {
|
|
sla::remove_bottom_points(support_points, zmin + supportcfg.base_height_mm);
|
|
} else {
|
|
// Should be support points at least on the bottom of the model
|
|
REQUIRE_FALSE(support_points.empty());
|
|
|
|
// Also the support mesh should not be empty.
|
|
validityflags |= ASSUME_NO_EMPTY;
|
|
}
|
|
|
|
// Generate the actual support tree
|
|
sla::SupportTreeBuilder treebuilder;
|
|
sla::SupportableMesh sm{emesh, support_points, supportcfg};
|
|
sla::SupportTreeBuildsteps::execute(treebuilder, sm);
|
|
|
|
check_support_tree_integrity(treebuilder, supportcfg);
|
|
|
|
const TriangleMesh &output_mesh = treebuilder.retrieve_mesh();
|
|
|
|
check_validity(output_mesh, validityflags);
|
|
|
|
// Quick check if the dimensions and placement of supports are correct
|
|
auto obb = output_mesh.bounding_box();
|
|
|
|
double allowed_zmin = zmin - supportcfg.object_elevation_mm;
|
|
|
|
if (std::abs(supportcfg.object_elevation_mm) < EPSILON)
|
|
allowed_zmin = zmin - 2 * supportcfg.head_back_radius_mm;
|
|
|
|
REQUIRE(obb.min.z() >= Approx(allowed_zmin));
|
|
REQUIRE(obb.max.z() <= Approx(zmax));
|
|
|
|
// Move out the support tree into the byproducts, we can examine it further
|
|
// in various tests.
|
|
out.obj_fname = std::move(obj_filename);
|
|
out.supporttree = std::move(treebuilder);
|
|
out.input_mesh = std::move(mesh);
|
|
}
|
|
|
|
void check_support_tree_integrity(const sla::SupportTreeBuilder &stree,
|
|
const sla::SupportTreeConfig &cfg)
|
|
{
|
|
double gnd = stree.ground_level;
|
|
double H1 = cfg.max_solo_pillar_height_mm;
|
|
double H2 = cfg.max_dual_pillar_height_mm;
|
|
|
|
for (const sla::Head &head : stree.heads()) {
|
|
REQUIRE((!head.is_valid() || head.pillar_id != sla::SupportTreeNode::ID_UNSET ||
|
|
head.bridge_id != sla::SupportTreeNode::ID_UNSET));
|
|
}
|
|
|
|
for (const sla::Pillar &pillar : stree.pillars()) {
|
|
if (std::abs(pillar.endpoint().z() - gnd) < EPSILON) {
|
|
double h = pillar.height;
|
|
|
|
if (h > H1) REQUIRE(pillar.links >= 1);
|
|
else if(h > H2) { REQUIRE(pillar.links >= 2); }
|
|
}
|
|
|
|
REQUIRE(pillar.links <= cfg.pillar_cascade_neighbors);
|
|
REQUIRE(pillar.bridges <= cfg.max_bridges_on_pillar);
|
|
}
|
|
|
|
double max_bridgelen = 0.;
|
|
auto chck_bridge = [&cfg](const sla::Bridge &bridge, double &max_brlen) {
|
|
Vec3d n = bridge.endp - bridge.startp;
|
|
double d = sla::distance(n);
|
|
max_brlen = std::max(d, max_brlen);
|
|
|
|
double z = n.z();
|
|
double polar = std::acos(z / d);
|
|
double slope = -polar + PI / 2.;
|
|
REQUIRE(std::abs(slope) >= cfg.bridge_slope - EPSILON);
|
|
};
|
|
|
|
for (auto &bridge : stree.bridges()) chck_bridge(bridge, max_bridgelen);
|
|
REQUIRE(max_bridgelen <= cfg.max_bridge_length_mm);
|
|
|
|
max_bridgelen = 0;
|
|
for (auto &bridge : stree.crossbridges()) chck_bridge(bridge, max_bridgelen);
|
|
|
|
double md = cfg.max_pillar_link_distance_mm / std::cos(-cfg.bridge_slope);
|
|
REQUIRE(max_bridgelen <= md);
|
|
}
|
|
|
|
void test_pad(const std::string &obj_filename, const sla::PadConfig &padcfg, PadByproducts &out)
|
|
{
|
|
REQUIRE(padcfg.validate().empty());
|
|
|
|
TriangleMesh mesh = load_model(obj_filename);
|
|
|
|
REQUIRE_FALSE(mesh.empty());
|
|
|
|
// Create pad skeleton only from the model
|
|
Slic3r::sla::pad_blueprint(mesh, out.model_contours);
|
|
|
|
test_concave_hull(out.model_contours);
|
|
|
|
REQUIRE_FALSE(out.model_contours.empty());
|
|
|
|
// Create the pad geometry for the model contours only
|
|
Slic3r::sla::create_pad({}, out.model_contours, out.mesh, padcfg);
|
|
|
|
check_validity(out.mesh);
|
|
|
|
auto bb = out.mesh.bounding_box();
|
|
REQUIRE(bb.max.z() - bb.min.z() == Approx(padcfg.full_height()));
|
|
}
|
|
|
|
static void _test_concave_hull(const Polygons &hull, const ExPolygons &polys)
|
|
{
|
|
REQUIRE(polys.size() >=hull.size());
|
|
|
|
double polys_area = 0;
|
|
for (const ExPolygon &p : polys) polys_area += p.area();
|
|
|
|
double cchull_area = 0;
|
|
for (const Slic3r::Polygon &p : hull) cchull_area += p.area();
|
|
|
|
REQUIRE(cchull_area >= Approx(polys_area));
|
|
|
|
size_t cchull_holes = 0;
|
|
for (const Slic3r::Polygon &p : hull)
|
|
cchull_holes += p.is_clockwise() ? 1 : 0;
|
|
|
|
REQUIRE(cchull_holes == 0);
|
|
|
|
Polygons intr = diff(to_polygons(polys), hull);
|
|
REQUIRE(intr.empty());
|
|
}
|
|
|
|
void test_concave_hull(const ExPolygons &polys) {
|
|
sla::PadConfig pcfg;
|
|
|
|
Slic3r::sla::ConcaveHull cchull{polys, pcfg.max_merge_dist_mm, []{}};
|
|
|
|
_test_concave_hull(cchull.polygons(), polys);
|
|
|
|
coord_t delta = scaled(pcfg.brim_size_mm + pcfg.wing_distance());
|
|
ExPolygons wafflex = sla::offset_waffle_style_ex(cchull, delta);
|
|
Polygons waffl = sla::offset_waffle_style(cchull, delta);
|
|
|
|
_test_concave_hull(to_polygons(wafflex), polys);
|
|
_test_concave_hull(waffl, polys);
|
|
}
|
|
|
|
void check_validity(const TriangleMesh &input_mesh, int flags)
|
|
{
|
|
TriangleMesh mesh{input_mesh};
|
|
|
|
if (flags & ASSUME_NO_EMPTY) {
|
|
REQUIRE_FALSE(mesh.empty());
|
|
} else if (mesh.empty())
|
|
return; // If it can be empty and it is, there is nothing left to do.
|
|
|
|
REQUIRE(stl_validate(&mesh.stl));
|
|
|
|
bool do_update_shared_vertices = false;
|
|
mesh.repair(do_update_shared_vertices);
|
|
|
|
if (flags & ASSUME_NO_REPAIR) {
|
|
REQUIRE_FALSE(mesh.needed_repair());
|
|
}
|
|
|
|
if (flags & ASSUME_MANIFOLD) {
|
|
mesh.require_shared_vertices();
|
|
if (!mesh.is_manifold()) mesh.WriteOBJFile("non_manifold.obj");
|
|
REQUIRE(mesh.is_manifold());
|
|
}
|
|
}
|
|
|
|
void check_raster_transformations(sla::RasterBase::Orientation o, sla::RasterBase::TMirroring mirroring)
|
|
{
|
|
double disp_w = 120., disp_h = 68.;
|
|
sla::RasterBase::Resolution res{2560, 1440};
|
|
sla::RasterBase::PixelDim pixdim{disp_w / res.width_px, disp_h / res.height_px};
|
|
|
|
auto bb = BoundingBox({0, 0}, {scaled(disp_w), scaled(disp_h)});
|
|
sla::RasterBase::Trafo trafo{o, mirroring};
|
|
trafo.center_x = bb.center().x();
|
|
trafo.center_y = bb.center().y();
|
|
double gamma = 1.;
|
|
|
|
sla::RasterGrayscaleAAGammaPower raster{res, pixdim, trafo, gamma};
|
|
|
|
// create box of size 32x32 pixels (not 1x1 to avoid antialiasing errors)
|
|
coord_t pw = 32 * coord_t(std::ceil(scaled<double>(pixdim.w_mm)));
|
|
coord_t ph = 32 * coord_t(std::ceil(scaled<double>(pixdim.h_mm)));
|
|
ExPolygon box;
|
|
box.contour.points = {{-pw, -ph}, {pw, -ph}, {pw, ph}, {-pw, ph}};
|
|
|
|
double tr_x = scaled<double>(20.), tr_y = tr_x;
|
|
|
|
box.translate(tr_x, tr_y);
|
|
ExPolygon expected_box = box;
|
|
|
|
// Now calculate the position of the translated box according to output
|
|
// trafo.
|
|
if (o == sla::RasterBase::Orientation::roPortrait) expected_box.rotate(PI / 2.);
|
|
|
|
if (mirroring[X])
|
|
for (auto &p : expected_box.contour.points) p.x() = -p.x();
|
|
|
|
if (mirroring[Y])
|
|
for (auto &p : expected_box.contour.points) p.y() = -p.y();
|
|
|
|
raster.draw(box);
|
|
|
|
Point expected_coords = expected_box.contour.bounding_box().center();
|
|
double rx = unscaled(expected_coords.x() + bb.center().x()) / pixdim.w_mm;
|
|
double ry = unscaled(expected_coords.y() + bb.center().y()) / pixdim.h_mm;
|
|
auto w = size_t(std::floor(rx));
|
|
auto h = res.height_px - size_t(std::floor(ry));
|
|
|
|
REQUIRE((w < res.width_px && h < res.height_px));
|
|
|
|
auto px = raster.read_pixel(w, h);
|
|
|
|
if (px != FullWhite) {
|
|
std::fstream outf("out.png", std::ios::out);
|
|
|
|
outf << raster.encode(sla::PNGRasterEncoder());
|
|
}
|
|
|
|
REQUIRE(px == FullWhite);
|
|
}
|
|
|
|
ExPolygon square_with_hole(double v)
|
|
{
|
|
ExPolygon poly;
|
|
coord_t V = scaled(v / 2.);
|
|
|
|
poly.contour.points = {{-V, -V}, {V, -V}, {V, V}, {-V, V}};
|
|
poly.holes.emplace_back();
|
|
V = V / 2;
|
|
poly.holes.front().points = {{-V, V}, {V, V}, {V, -V}, {-V, -V}};
|
|
return poly;
|
|
}
|
|
|
|
long raster_pxsum(const sla::RasterGrayscaleAA &raster)
|
|
{
|
|
auto res = raster.resolution();
|
|
long a = 0;
|
|
|
|
for (size_t x = 0; x < res.width_px; ++x)
|
|
for (size_t y = 0; y < res.height_px; ++y)
|
|
a += raster.read_pixel(x, y);
|
|
|
|
return a;
|
|
}
|
|
|
|
double raster_white_area(const sla::RasterGrayscaleAA &raster)
|
|
{
|
|
if (raster.resolution().pixels() == 0) return std::nan("");
|
|
|
|
auto res = raster.resolution();
|
|
double a = 0;
|
|
|
|
for (size_t x = 0; x < res.width_px; ++x)
|
|
for (size_t y = 0; y < res.height_px; ++y) {
|
|
auto px = raster.read_pixel(x, y);
|
|
a += pixel_area(px, raster.pixel_dimensions());
|
|
}
|
|
|
|
return a;
|
|
}
|
|
|
|
double predict_error(const ExPolygon &p, const sla::RasterBase::PixelDim &pd)
|
|
{
|
|
auto lines = p.lines();
|
|
double pix_err = pixel_area(FullWhite, pd) / 2.;
|
|
|
|
// Worst case is when a line is parallel to the shorter axis of one pixel,
|
|
// when the line will be composed of the max number of pixels
|
|
double pix_l = std::min(pd.h_mm, pd.w_mm);
|
|
|
|
double error = 0.;
|
|
for (auto &l : lines)
|
|
error += (unscaled(l.length()) / pix_l) * pix_err;
|
|
|
|
return error;
|
|
}
|