1f29a2593b
One warning was also fixed
1547 lines
59 KiB
C++
1547 lines
59 KiB
C++
#include "libslic3r.h"
|
|
#include "Exception.hpp"
|
|
#include "Geometry.hpp"
|
|
#include "ClipperUtils.hpp"
|
|
#include "ExPolygon.hpp"
|
|
#include "Line.hpp"
|
|
#include "clipper.hpp"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cmath>
|
|
#include <list>
|
|
#include <map>
|
|
#include <numeric>
|
|
#include <set>
|
|
#include <utility>
|
|
#include <stack>
|
|
#include <vector>
|
|
|
|
#include <boost/algorithm/string/classification.hpp>
|
|
#include <boost/algorithm/string/split.hpp>
|
|
#include <boost/log/trivial.hpp>
|
|
|
|
#ifdef SLIC3R_DEBUG
|
|
#include "SVG.hpp"
|
|
#endif
|
|
|
|
#ifdef SLIC3R_DEBUG
|
|
namespace boost { namespace polygon {
|
|
|
|
// The following code for the visualization of the boost Voronoi diagram is based on:
|
|
//
|
|
// Boost.Polygon library voronoi_graphic_utils.hpp header file
|
|
// Copyright Andrii Sydorchuk 2010-2012.
|
|
// Distributed under the Boost Software License, Version 1.0.
|
|
// (See accompanying file LICENSE_1_0.txt or copy at
|
|
// http://www.boost.org/LICENSE_1_0.txt)
|
|
template <typename CT>
|
|
class voronoi_visual_utils {
|
|
public:
|
|
// Discretize parabolic Voronoi edge.
|
|
// Parabolic Voronoi edges are always formed by one point and one segment
|
|
// from the initial input set.
|
|
//
|
|
// Args:
|
|
// point: input point.
|
|
// segment: input segment.
|
|
// max_dist: maximum discretization distance.
|
|
// discretization: point discretization of the given Voronoi edge.
|
|
//
|
|
// Template arguments:
|
|
// InCT: coordinate type of the input geometries (usually integer).
|
|
// Point: point type, should model point concept.
|
|
// Segment: segment type, should model segment concept.
|
|
//
|
|
// Important:
|
|
// discretization should contain both edge endpoints initially.
|
|
template <class InCT1, class InCT2,
|
|
template<class> class Point,
|
|
template<class> class Segment>
|
|
static
|
|
typename enable_if<
|
|
typename gtl_and<
|
|
typename gtl_if<
|
|
typename is_point_concept<
|
|
typename geometry_concept< Point<InCT1> >::type
|
|
>::type
|
|
>::type,
|
|
typename gtl_if<
|
|
typename is_segment_concept<
|
|
typename geometry_concept< Segment<InCT2> >::type
|
|
>::type
|
|
>::type
|
|
>::type,
|
|
void
|
|
>::type discretize(
|
|
const Point<InCT1>& point,
|
|
const Segment<InCT2>& segment,
|
|
const CT max_dist,
|
|
std::vector< Point<CT> >* discretization) {
|
|
// Apply the linear transformation to move start point of the segment to
|
|
// the point with coordinates (0, 0) and the direction of the segment to
|
|
// coincide the positive direction of the x-axis.
|
|
CT segm_vec_x = cast(x(high(segment))) - cast(x(low(segment)));
|
|
CT segm_vec_y = cast(y(high(segment))) - cast(y(low(segment)));
|
|
CT sqr_segment_length = segm_vec_x * segm_vec_x + segm_vec_y * segm_vec_y;
|
|
|
|
// Compute x-coordinates of the endpoints of the edge
|
|
// in the transformed space.
|
|
CT projection_start = sqr_segment_length *
|
|
get_point_projection((*discretization)[0], segment);
|
|
CT projection_end = sqr_segment_length *
|
|
get_point_projection((*discretization)[1], segment);
|
|
|
|
// Compute parabola parameters in the transformed space.
|
|
// Parabola has next representation:
|
|
// f(x) = ((x-rot_x)^2 + rot_y^2) / (2.0*rot_y).
|
|
CT point_vec_x = cast(x(point)) - cast(x(low(segment)));
|
|
CT point_vec_y = cast(y(point)) - cast(y(low(segment)));
|
|
CT rot_x = segm_vec_x * point_vec_x + segm_vec_y * point_vec_y;
|
|
CT rot_y = segm_vec_x * point_vec_y - segm_vec_y * point_vec_x;
|
|
|
|
// Save the last point.
|
|
Point<CT> last_point = (*discretization)[1];
|
|
discretization->pop_back();
|
|
|
|
// Use stack to avoid recursion.
|
|
std::stack<CT> point_stack;
|
|
point_stack.push(projection_end);
|
|
CT cur_x = projection_start;
|
|
CT cur_y = parabola_y(cur_x, rot_x, rot_y);
|
|
|
|
// Adjust max_dist parameter in the transformed space.
|
|
const CT max_dist_transformed = max_dist * max_dist * sqr_segment_length;
|
|
while (!point_stack.empty()) {
|
|
CT new_x = point_stack.top();
|
|
CT new_y = parabola_y(new_x, rot_x, rot_y);
|
|
|
|
// Compute coordinates of the point of the parabola that is
|
|
// furthest from the current line segment.
|
|
CT mid_x = (new_y - cur_y) / (new_x - cur_x) * rot_y + rot_x;
|
|
CT mid_y = parabola_y(mid_x, rot_x, rot_y);
|
|
|
|
// Compute maximum distance between the given parabolic arc
|
|
// and line segment that discretize it.
|
|
CT dist = (new_y - cur_y) * (mid_x - cur_x) -
|
|
(new_x - cur_x) * (mid_y - cur_y);
|
|
dist = dist * dist / ((new_y - cur_y) * (new_y - cur_y) +
|
|
(new_x - cur_x) * (new_x - cur_x));
|
|
if (dist <= max_dist_transformed) {
|
|
// Distance between parabola and line segment is less than max_dist.
|
|
point_stack.pop();
|
|
CT inter_x = (segm_vec_x * new_x - segm_vec_y * new_y) /
|
|
sqr_segment_length + cast(x(low(segment)));
|
|
CT inter_y = (segm_vec_x * new_y + segm_vec_y * new_x) /
|
|
sqr_segment_length + cast(y(low(segment)));
|
|
discretization->push_back(Point<CT>(inter_x, inter_y));
|
|
cur_x = new_x;
|
|
cur_y = new_y;
|
|
} else {
|
|
point_stack.push(mid_x);
|
|
}
|
|
}
|
|
|
|
// Update last point.
|
|
discretization->back() = last_point;
|
|
}
|
|
|
|
private:
|
|
// Compute y(x) = ((x - a) * (x - a) + b * b) / (2 * b).
|
|
static CT parabola_y(CT x, CT a, CT b) {
|
|
return ((x - a) * (x - a) + b * b) / (b + b);
|
|
}
|
|
|
|
// Get normalized length of the distance between:
|
|
// 1) point projection onto the segment
|
|
// 2) start point of the segment
|
|
// Return this length divided by the segment length. This is made to avoid
|
|
// sqrt computation during transformation from the initial space to the
|
|
// transformed one and vice versa. The assumption is made that projection of
|
|
// the point lies between the start-point and endpoint of the segment.
|
|
template <class InCT,
|
|
template<class> class Point,
|
|
template<class> class Segment>
|
|
static
|
|
typename enable_if<
|
|
typename gtl_and<
|
|
typename gtl_if<
|
|
typename is_point_concept<
|
|
typename geometry_concept< Point<int> >::type
|
|
>::type
|
|
>::type,
|
|
typename gtl_if<
|
|
typename is_segment_concept<
|
|
typename geometry_concept< Segment<long> >::type
|
|
>::type
|
|
>::type
|
|
>::type,
|
|
CT
|
|
>::type get_point_projection(
|
|
const Point<CT>& point, const Segment<InCT>& segment) {
|
|
CT segment_vec_x = cast(x(high(segment))) - cast(x(low(segment)));
|
|
CT segment_vec_y = cast(y(high(segment))) - cast(y(low(segment)));
|
|
CT point_vec_x = x(point) - cast(x(low(segment)));
|
|
CT point_vec_y = y(point) - cast(y(low(segment)));
|
|
CT sqr_segment_length =
|
|
segment_vec_x * segment_vec_x + segment_vec_y * segment_vec_y;
|
|
CT vec_dot = segment_vec_x * point_vec_x + segment_vec_y * point_vec_y;
|
|
return vec_dot / sqr_segment_length;
|
|
}
|
|
|
|
template <typename InCT>
|
|
static CT cast(const InCT& value) {
|
|
return static_cast<CT>(value);
|
|
}
|
|
};
|
|
|
|
} } // namespace boost::polygon
|
|
#endif
|
|
|
|
using namespace boost::polygon; // provides also high() and low()
|
|
|
|
namespace Slic3r { namespace Geometry {
|
|
|
|
// This implementation is based on Andrew's monotone chain 2D convex hull algorithm
|
|
Polygon convex_hull(Points pts)
|
|
{
|
|
std::sort(pts.begin(), pts.end(), [](const Point& a, const Point& b) { return a.x() < b.x() || (a.x() == b.x() && a.y() < b.y()); });
|
|
pts.erase(std::unique(pts.begin(), pts.end(), [](const Point& a, const Point& b) { return a.x() == b.x() && a.y() == b.y(); }), pts.end());
|
|
|
|
Polygon hull;
|
|
int n = (int)pts.size();
|
|
if (n >= 3) {
|
|
int k = 0;
|
|
hull.points.resize(2 * n);
|
|
// Build lower hull
|
|
for (int i = 0; i < n; ++ i) {
|
|
while (k >= 2 && pts[i].ccw(hull[k-2], hull[k-1]) <= 0)
|
|
-- k;
|
|
hull[k ++] = pts[i];
|
|
}
|
|
// Build upper hull
|
|
for (int i = n-2, t = k+1; i >= 0; i--) {
|
|
while (k >= t && pts[i].ccw(hull[k-2], hull[k-1]) <= 0)
|
|
-- k;
|
|
hull[k ++] = pts[i];
|
|
}
|
|
hull.points.resize(k);
|
|
assert(hull.points.front() == hull.points.back());
|
|
hull.points.pop_back();
|
|
}
|
|
return hull;
|
|
}
|
|
|
|
Pointf3s convex_hull(Pointf3s points)
|
|
{
|
|
assert(points.size() >= 3);
|
|
// sort input points
|
|
std::sort(points.begin(), points.end(), [](const Vec3d &a, const Vec3d &b){ return a.x() < b.x() || (a.x() == b.x() && a.y() < b.y()); });
|
|
|
|
int n = points.size(), k = 0;
|
|
Pointf3s hull;
|
|
|
|
if (n >= 3)
|
|
{
|
|
hull.resize(2 * n);
|
|
|
|
// Build lower hull
|
|
for (int i = 0; i < n; ++i)
|
|
{
|
|
Point p = Point::new_scale(points[i](0), points[i](1));
|
|
while (k >= 2)
|
|
{
|
|
Point k1 = Point::new_scale(hull[k - 1](0), hull[k - 1](1));
|
|
Point k2 = Point::new_scale(hull[k - 2](0), hull[k - 2](1));
|
|
|
|
if (p.ccw(k2, k1) <= 0)
|
|
--k;
|
|
else
|
|
break;
|
|
}
|
|
|
|
hull[k++] = points[i];
|
|
}
|
|
|
|
// Build upper hull
|
|
for (int i = n - 2, t = k + 1; i >= 0; --i)
|
|
{
|
|
Point p = Point::new_scale(points[i](0), points[i](1));
|
|
while (k >= t)
|
|
{
|
|
Point k1 = Point::new_scale(hull[k - 1](0), hull[k - 1](1));
|
|
Point k2 = Point::new_scale(hull[k - 2](0), hull[k - 2](1));
|
|
|
|
if (p.ccw(k2, k1) <= 0)
|
|
--k;
|
|
else
|
|
break;
|
|
}
|
|
|
|
hull[k++] = points[i];
|
|
}
|
|
|
|
hull.resize(k);
|
|
|
|
assert(hull.front() == hull.back());
|
|
hull.pop_back();
|
|
}
|
|
|
|
return hull;
|
|
}
|
|
|
|
Polygon convex_hull(const Polygons &polygons)
|
|
{
|
|
Points pp;
|
|
for (Polygons::const_iterator p = polygons.begin(); p != polygons.end(); ++p) {
|
|
pp.insert(pp.end(), p->points.begin(), p->points.end());
|
|
}
|
|
return convex_hull(std::move(pp));
|
|
}
|
|
|
|
bool directions_parallel(double angle1, double angle2, double max_diff)
|
|
{
|
|
double diff = fabs(angle1 - angle2);
|
|
max_diff += EPSILON;
|
|
return diff < max_diff || fabs(diff - PI) < max_diff;
|
|
}
|
|
|
|
template<class T>
|
|
bool contains(const std::vector<T> &vector, const Point &point)
|
|
{
|
|
for (typename std::vector<T>::const_iterator it = vector.begin(); it != vector.end(); ++it) {
|
|
if (it->contains(point)) return true;
|
|
}
|
|
return false;
|
|
}
|
|
template bool contains(const ExPolygons &vector, const Point &point);
|
|
|
|
double rad2deg_dir(double angle)
|
|
{
|
|
angle = (angle < PI) ? (-angle + PI/2.0) : (angle + PI/2.0);
|
|
if (angle < 0) angle += PI;
|
|
return rad2deg(angle);
|
|
}
|
|
|
|
Point circle_center_taubin_newton(const Points::const_iterator& input_begin, const Points::const_iterator& input_end, size_t cycles)
|
|
{
|
|
Vec2ds tmp;
|
|
tmp.reserve(std::distance(input_begin, input_end));
|
|
std::transform(input_begin, input_end, std::back_inserter(tmp), [] (const Point& in) { return unscale(in); } );
|
|
Vec2d center = circle_center_taubin_newton(tmp.cbegin(), tmp.end(), cycles);
|
|
return Point::new_scale(center.x(), center.y());
|
|
}
|
|
|
|
/// Adapted from work in "Circular and Linear Regression: Fitting circles and lines by least squares", pg 126
|
|
/// Returns a point corresponding to the center of a circle for which all of the points from input_begin to input_end
|
|
/// lie on.
|
|
Vec2d circle_center_taubin_newton(const Vec2ds::const_iterator& input_begin, const Vec2ds::const_iterator& input_end, size_t cycles)
|
|
{
|
|
// calculate the centroid of the data set
|
|
const Vec2d sum = std::accumulate(input_begin, input_end, Vec2d(0,0));
|
|
const size_t n = std::distance(input_begin, input_end);
|
|
const double n_flt = static_cast<double>(n);
|
|
const Vec2d centroid { sum / n_flt };
|
|
|
|
// Compute the normalized moments of the data set.
|
|
double Mxx = 0, Myy = 0, Mxy = 0, Mxz = 0, Myz = 0, Mzz = 0;
|
|
for (auto it = input_begin; it < input_end; ++it) {
|
|
// center/normalize the data.
|
|
double Xi {it->x() - centroid.x()};
|
|
double Yi {it->y() - centroid.y()};
|
|
double Zi {Xi*Xi + Yi*Yi};
|
|
Mxy += (Xi*Yi);
|
|
Mxx += (Xi*Xi);
|
|
Myy += (Yi*Yi);
|
|
Mxz += (Xi*Zi);
|
|
Myz += (Yi*Zi);
|
|
Mzz += (Zi*Zi);
|
|
}
|
|
|
|
// divide by number of points to get the moments
|
|
Mxx /= n_flt;
|
|
Myy /= n_flt;
|
|
Mxy /= n_flt;
|
|
Mxz /= n_flt;
|
|
Myz /= n_flt;
|
|
Mzz /= n_flt;
|
|
|
|
// Compute the coefficients of the characteristic polynomial for the circle
|
|
// eq 5.60
|
|
const double Mz {Mxx + Myy}; // xx + yy = z
|
|
const double Cov_xy {Mxx*Myy - Mxy*Mxy}; // this shows up a couple times so cache it here.
|
|
const double C3 {4.0*Mz};
|
|
const double C2 {-3.0*(Mz*Mz) - Mzz};
|
|
const double C1 {Mz*(Mzz - (Mz*Mz)) + 4.0*Mz*Cov_xy - (Mxz*Mxz) - (Myz*Myz)};
|
|
const double C0 {(Mxz*Mxz)*Myy + (Myz*Myz)*Mxx - 2.0*Mxz*Myz*Mxy - Cov_xy*(Mzz - (Mz*Mz))};
|
|
|
|
const double C22 = {C2 + C2};
|
|
const double C33 = {C3 + C3 + C3};
|
|
|
|
// solve the characteristic polynomial with Newton's method.
|
|
double xnew = 0.0;
|
|
double ynew = 1e20;
|
|
|
|
for (size_t i = 0; i < cycles; ++i) {
|
|
const double yold {ynew};
|
|
ynew = C0 + xnew * (C1 + xnew*(C2 + xnew * C3));
|
|
if (std::abs(ynew) > std::abs(yold)) {
|
|
BOOST_LOG_TRIVIAL(error) << "Geometry: Fit is going in the wrong direction.\n";
|
|
return Vec2d(std::nan(""), std::nan(""));
|
|
}
|
|
const double Dy {C1 + xnew*(C22 + xnew*C33)};
|
|
|
|
const double xold {xnew};
|
|
xnew = xold - (ynew / Dy);
|
|
|
|
if (std::abs((xnew-xold) / xnew) < 1e-12) i = cycles; // converged, we're done here
|
|
|
|
if (xnew < 0) {
|
|
// reset, we went negative
|
|
xnew = 0.0;
|
|
}
|
|
}
|
|
|
|
// compute the determinant and the circle's parameters now that we've solved.
|
|
double DET = xnew*xnew - xnew*Mz + Cov_xy;
|
|
|
|
Vec2d center(Mxz * (Myy - xnew) - Myz * Mxy, Myz * (Mxx - xnew) - Mxz*Mxy);
|
|
center /= (DET * 2.);
|
|
return center + centroid;
|
|
}
|
|
|
|
void simplify_polygons(const Polygons &polygons, double tolerance, Polygons* retval)
|
|
{
|
|
Polygons pp;
|
|
for (Polygons::const_iterator it = polygons.begin(); it != polygons.end(); ++it) {
|
|
Polygon p = *it;
|
|
p.points.push_back(p.points.front());
|
|
p.points = MultiPoint::_douglas_peucker(p.points, tolerance);
|
|
p.points.pop_back();
|
|
pp.push_back(p);
|
|
}
|
|
*retval = Slic3r::simplify_polygons(pp);
|
|
}
|
|
|
|
double linint(double value, double oldmin, double oldmax, double newmin, double newmax)
|
|
{
|
|
return (value - oldmin) * (newmax - newmin) / (oldmax - oldmin) + newmin;
|
|
}
|
|
|
|
#if 0
|
|
// Point with a weight, by which the points are sorted.
|
|
// If the points have the same weight, sort them lexicographically by their positions.
|
|
struct ArrangeItem {
|
|
ArrangeItem() {}
|
|
Vec2d pos;
|
|
coordf_t weight;
|
|
bool operator<(const ArrangeItem &other) const {
|
|
return weight < other.weight ||
|
|
((weight == other.weight) && (pos(1) < other.pos(1) || (pos(1) == other.pos(1) && pos(0) < other.pos(0))));
|
|
}
|
|
};
|
|
|
|
Pointfs arrange(size_t num_parts, const Vec2d &part_size, coordf_t gap, const BoundingBoxf* bed_bounding_box)
|
|
{
|
|
// Use actual part size (the largest) plus separation distance (half on each side) in spacing algorithm.
|
|
const Vec2d cell_size(part_size(0) + gap, part_size(1) + gap);
|
|
|
|
const BoundingBoxf bed_bbox = (bed_bounding_box != NULL && bed_bounding_box->defined) ?
|
|
*bed_bounding_box :
|
|
// Bogus bed size, large enough not to trigger the unsufficient bed size error.
|
|
BoundingBoxf(
|
|
Vec2d(0, 0),
|
|
Vec2d(cell_size(0) * num_parts, cell_size(1) * num_parts));
|
|
|
|
// This is how many cells we have available into which to put parts.
|
|
size_t cellw = size_t(floor((bed_bbox.size()(0) + gap) / cell_size(0)));
|
|
size_t cellh = size_t(floor((bed_bbox.size()(1) + gap) / cell_size(1)));
|
|
if (num_parts > cellw * cellh)
|
|
throw Slic3r::InvalidArgument("%zu parts won't fit in your print area!\n", num_parts);
|
|
|
|
// Get a bounding box of cellw x cellh cells, centered at the center of the bed.
|
|
Vec2d cells_size(cellw * cell_size(0) - gap, cellh * cell_size(1) - gap);
|
|
Vec2d cells_offset(bed_bbox.center() - 0.5 * cells_size);
|
|
BoundingBoxf cells_bb(cells_offset, cells_size + cells_offset);
|
|
|
|
// List of cells, sorted by distance from center.
|
|
std::vector<ArrangeItem> cellsorder(cellw * cellh, ArrangeItem());
|
|
for (size_t j = 0; j < cellh; ++ j) {
|
|
// Center of the jth row on the bed.
|
|
coordf_t cy = linint(j + 0.5, 0., double(cellh), cells_bb.min(1), cells_bb.max(1));
|
|
// Offset from the bed center.
|
|
coordf_t yd = cells_bb.center()(1) - cy;
|
|
for (size_t i = 0; i < cellw; ++ i) {
|
|
// Center of the ith column on the bed.
|
|
coordf_t cx = linint(i + 0.5, 0., double(cellw), cells_bb.min(0), cells_bb.max(0));
|
|
// Offset from the bed center.
|
|
coordf_t xd = cells_bb.center()(0) - cx;
|
|
// Cell with a distance from the bed center.
|
|
ArrangeItem &ci = cellsorder[j * cellw + i];
|
|
// Cell center
|
|
ci.pos(0) = cx;
|
|
ci.pos(1) = cy;
|
|
// Square distance of the cell center to the bed center.
|
|
ci.weight = xd * xd + yd * yd;
|
|
}
|
|
}
|
|
// Sort the cells lexicographically by their distances to the bed center and left to right / bttom to top.
|
|
std::sort(cellsorder.begin(), cellsorder.end());
|
|
cellsorder.erase(cellsorder.begin() + num_parts, cellsorder.end());
|
|
|
|
// Return the (left,top) corners of the cells.
|
|
Pointfs positions;
|
|
positions.reserve(num_parts);
|
|
for (std::vector<ArrangeItem>::const_iterator it = cellsorder.begin(); it != cellsorder.end(); ++ it)
|
|
positions.push_back(Vec2d(it->pos(0) - 0.5 * part_size(0), it->pos(1) - 0.5 * part_size(1)));
|
|
return positions;
|
|
}
|
|
#else
|
|
class ArrangeItem {
|
|
public:
|
|
Vec2d pos = Vec2d::Zero();
|
|
size_t index_x, index_y;
|
|
coordf_t dist;
|
|
};
|
|
class ArrangeItemIndex {
|
|
public:
|
|
coordf_t index;
|
|
ArrangeItem item;
|
|
ArrangeItemIndex(coordf_t _index, ArrangeItem _item) : index(_index), item(_item) {};
|
|
};
|
|
|
|
bool
|
|
arrange(size_t total_parts, const Vec2d &part_size, coordf_t dist, const BoundingBoxf* bb, Pointfs &positions)
|
|
{
|
|
positions.clear();
|
|
|
|
Vec2d part = part_size;
|
|
|
|
// use actual part size (the largest) plus separation distance (half on each side) in spacing algorithm
|
|
part(0) += dist;
|
|
part(1) += dist;
|
|
|
|
Vec2d area(Vec2d::Zero());
|
|
if (bb != NULL && bb->defined) {
|
|
area = bb->size();
|
|
} else {
|
|
// bogus area size, large enough not to trigger the error below
|
|
area(0) = part(0) * total_parts;
|
|
area(1) = part(1) * total_parts;
|
|
}
|
|
|
|
// this is how many cells we have available into which to put parts
|
|
size_t cellw = floor((area(0) + dist) / part(0));
|
|
size_t cellh = floor((area(1) + dist) / part(1));
|
|
if (total_parts > (cellw * cellh))
|
|
return false;
|
|
|
|
// total space used by cells
|
|
Vec2d cells(cellw * part(0), cellh * part(1));
|
|
|
|
// bounding box of total space used by cells
|
|
BoundingBoxf cells_bb;
|
|
cells_bb.merge(Vec2d(0,0)); // min
|
|
cells_bb.merge(cells); // max
|
|
|
|
// center bounding box to area
|
|
cells_bb.translate(
|
|
(area(0) - cells(0)) / 2,
|
|
(area(1) - cells(1)) / 2
|
|
);
|
|
|
|
// list of cells, sorted by distance from center
|
|
std::vector<ArrangeItemIndex> cellsorder;
|
|
|
|
// work out distance for all cells, sort into list
|
|
for (size_t i = 0; i <= cellw-1; ++i) {
|
|
for (size_t j = 0; j <= cellh-1; ++j) {
|
|
coordf_t cx = linint(i + 0.5, 0, cellw, cells_bb.min(0), cells_bb.max(0));
|
|
coordf_t cy = linint(j + 0.5, 0, cellh, cells_bb.min(1), cells_bb.max(1));
|
|
|
|
coordf_t xd = fabs((area(0) / 2) - cx);
|
|
coordf_t yd = fabs((area(1) / 2) - cy);
|
|
|
|
ArrangeItem c;
|
|
c.pos(0) = cx;
|
|
c.pos(1) = cy;
|
|
c.index_x = i;
|
|
c.index_y = j;
|
|
c.dist = xd * xd + yd * yd - fabs((cellw / 2) - (i + 0.5));
|
|
|
|
// binary insertion sort
|
|
{
|
|
coordf_t index = c.dist;
|
|
size_t low = 0;
|
|
size_t high = cellsorder.size();
|
|
while (low < high) {
|
|
size_t mid = (low + ((high - low) / 2)) | 0;
|
|
coordf_t midval = cellsorder[mid].index;
|
|
|
|
if (midval < index) {
|
|
low = mid + 1;
|
|
} else if (midval > index) {
|
|
high = mid;
|
|
} else {
|
|
cellsorder.insert(cellsorder.begin() + mid, ArrangeItemIndex(index, c));
|
|
goto ENDSORT;
|
|
}
|
|
}
|
|
cellsorder.insert(cellsorder.begin() + low, ArrangeItemIndex(index, c));
|
|
}
|
|
ENDSORT: ;
|
|
}
|
|
}
|
|
|
|
// the extents of cells actually used by objects
|
|
coordf_t lx = 0;
|
|
coordf_t ty = 0;
|
|
coordf_t rx = 0;
|
|
coordf_t by = 0;
|
|
|
|
// now find cells actually used by objects, map out the extents so we can position correctly
|
|
for (size_t i = 1; i <= total_parts; ++i) {
|
|
ArrangeItemIndex c = cellsorder[i - 1];
|
|
coordf_t cx = c.item.index_x;
|
|
coordf_t cy = c.item.index_y;
|
|
if (i == 1) {
|
|
lx = rx = cx;
|
|
ty = by = cy;
|
|
} else {
|
|
if (cx > rx) rx = cx;
|
|
if (cx < lx) lx = cx;
|
|
if (cy > by) by = cy;
|
|
if (cy < ty) ty = cy;
|
|
}
|
|
}
|
|
// now we actually place objects into cells, positioned such that the left and bottom borders are at 0
|
|
for (size_t i = 1; i <= total_parts; ++i) {
|
|
ArrangeItemIndex c = cellsorder.front();
|
|
cellsorder.erase(cellsorder.begin());
|
|
coordf_t cx = c.item.index_x - lx;
|
|
coordf_t cy = c.item.index_y - ty;
|
|
|
|
positions.push_back(Vec2d(cx * part(0), cy * part(1)));
|
|
}
|
|
|
|
if (bb != NULL && bb->defined) {
|
|
for (Pointfs::iterator p = positions.begin(); p != positions.end(); ++p) {
|
|
p->x() += bb->min(0);
|
|
p->y() += bb->min(1);
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
#ifdef SLIC3R_DEBUG
|
|
// The following code for the visualization of the boost Voronoi diagram is based on:
|
|
//
|
|
// Boost.Polygon library voronoi_visualizer.cpp file
|
|
// Copyright Andrii Sydorchuk 2010-2012.
|
|
// Distributed under the Boost Software License, Version 1.0.
|
|
// (See accompanying file LICENSE_1_0.txt or copy at
|
|
// http://www.boost.org/LICENSE_1_0.txt)
|
|
namespace Voronoi { namespace Internal {
|
|
|
|
typedef double coordinate_type;
|
|
typedef boost::polygon::point_data<coordinate_type> point_type;
|
|
typedef boost::polygon::segment_data<coordinate_type> segment_type;
|
|
typedef boost::polygon::rectangle_data<coordinate_type> rect_type;
|
|
typedef boost::polygon::voronoi_diagram<coordinate_type> VD;
|
|
typedef VD::cell_type cell_type;
|
|
typedef VD::cell_type::source_index_type source_index_type;
|
|
typedef VD::cell_type::source_category_type source_category_type;
|
|
typedef VD::edge_type edge_type;
|
|
typedef VD::cell_container_type cell_container_type;
|
|
typedef VD::cell_container_type vertex_container_type;
|
|
typedef VD::edge_container_type edge_container_type;
|
|
typedef VD::const_cell_iterator const_cell_iterator;
|
|
typedef VD::const_vertex_iterator const_vertex_iterator;
|
|
typedef VD::const_edge_iterator const_edge_iterator;
|
|
|
|
static const std::size_t EXTERNAL_COLOR = 1;
|
|
|
|
inline void color_exterior(const VD::edge_type* edge)
|
|
{
|
|
if (edge->color() == EXTERNAL_COLOR)
|
|
return;
|
|
edge->color(EXTERNAL_COLOR);
|
|
edge->twin()->color(EXTERNAL_COLOR);
|
|
const VD::vertex_type* v = edge->vertex1();
|
|
if (v == NULL || !edge->is_primary())
|
|
return;
|
|
v->color(EXTERNAL_COLOR);
|
|
const VD::edge_type* e = v->incident_edge();
|
|
do {
|
|
color_exterior(e);
|
|
e = e->rot_next();
|
|
} while (e != v->incident_edge());
|
|
}
|
|
|
|
inline point_type retrieve_point(const std::vector<segment_type> &segments, const cell_type& cell)
|
|
{
|
|
assert(cell.source_category() == SOURCE_CATEGORY_SEGMENT_START_POINT || cell.source_category() == SOURCE_CATEGORY_SEGMENT_END_POINT);
|
|
return (cell.source_category() == SOURCE_CATEGORY_SEGMENT_START_POINT) ? low(segments[cell.source_index()]) : high(segments[cell.source_index()]);
|
|
}
|
|
|
|
inline void clip_infinite_edge(const std::vector<segment_type> &segments, const edge_type& edge, coordinate_type bbox_max_size, std::vector<point_type>* clipped_edge)
|
|
{
|
|
const cell_type& cell1 = *edge.cell();
|
|
const cell_type& cell2 = *edge.twin()->cell();
|
|
point_type origin, direction;
|
|
// Infinite edges could not be created by two segment sites.
|
|
if (cell1.contains_point() && cell2.contains_point()) {
|
|
point_type p1 = retrieve_point(segments, cell1);
|
|
point_type p2 = retrieve_point(segments, cell2);
|
|
origin.x((p1.x() + p2.x()) * 0.5);
|
|
origin.y((p1.y() + p2.y()) * 0.5);
|
|
direction.x(p1.y() - p2.y());
|
|
direction.y(p2.x() - p1.x());
|
|
} else {
|
|
origin = cell1.contains_segment() ? retrieve_point(segments, cell2) : retrieve_point(segments, cell1);
|
|
segment_type segment = cell1.contains_segment() ? segments[cell1.source_index()] : segments[cell2.source_index()];
|
|
coordinate_type dx = high(segment).x() - low(segment).x();
|
|
coordinate_type dy = high(segment).y() - low(segment).y();
|
|
if ((low(segment) == origin) ^ cell1.contains_point()) {
|
|
direction.x(dy);
|
|
direction.y(-dx);
|
|
} else {
|
|
direction.x(-dy);
|
|
direction.y(dx);
|
|
}
|
|
}
|
|
coordinate_type koef = bbox_max_size / (std::max)(fabs(direction.x()), fabs(direction.y()));
|
|
if (edge.vertex0() == NULL) {
|
|
clipped_edge->push_back(point_type(
|
|
origin.x() - direction.x() * koef,
|
|
origin.y() - direction.y() * koef));
|
|
} else {
|
|
clipped_edge->push_back(
|
|
point_type(edge.vertex0()->x(), edge.vertex0()->y()));
|
|
}
|
|
if (edge.vertex1() == NULL) {
|
|
clipped_edge->push_back(point_type(
|
|
origin.x() + direction.x() * koef,
|
|
origin.y() + direction.y() * koef));
|
|
} else {
|
|
clipped_edge->push_back(
|
|
point_type(edge.vertex1()->x(), edge.vertex1()->y()));
|
|
}
|
|
}
|
|
|
|
inline void sample_curved_edge(const std::vector<segment_type> &segments, const edge_type& edge, std::vector<point_type> &sampled_edge, coordinate_type max_dist)
|
|
{
|
|
point_type point = edge.cell()->contains_point() ?
|
|
retrieve_point(segments, *edge.cell()) :
|
|
retrieve_point(segments, *edge.twin()->cell());
|
|
segment_type segment = edge.cell()->contains_point() ?
|
|
segments[edge.twin()->cell()->source_index()] :
|
|
segments[edge.cell()->source_index()];
|
|
::boost::polygon::voronoi_visual_utils<coordinate_type>::discretize(point, segment, max_dist, &sampled_edge);
|
|
}
|
|
|
|
} /* namespace Internal */ } // namespace Voronoi
|
|
|
|
static inline void dump_voronoi_to_svg(const Lines &lines, /* const */ boost::polygon::voronoi_diagram<double> &vd, const ThickPolylines *polylines, const char *path)
|
|
{
|
|
const double scale = 0.2;
|
|
const std::string inputSegmentPointColor = "lightseagreen";
|
|
const coord_t inputSegmentPointRadius = coord_t(0.09 * scale / SCALING_FACTOR);
|
|
const std::string inputSegmentColor = "lightseagreen";
|
|
const coord_t inputSegmentLineWidth = coord_t(0.03 * scale / SCALING_FACTOR);
|
|
|
|
const std::string voronoiPointColor = "black";
|
|
const coord_t voronoiPointRadius = coord_t(0.06 * scale / SCALING_FACTOR);
|
|
const std::string voronoiLineColorPrimary = "black";
|
|
const std::string voronoiLineColorSecondary = "green";
|
|
const std::string voronoiArcColor = "red";
|
|
const coord_t voronoiLineWidth = coord_t(0.02 * scale / SCALING_FACTOR);
|
|
|
|
const bool internalEdgesOnly = false;
|
|
const bool primaryEdgesOnly = false;
|
|
|
|
BoundingBox bbox = BoundingBox(lines);
|
|
bbox.min(0) -= coord_t(1. / SCALING_FACTOR);
|
|
bbox.min(1) -= coord_t(1. / SCALING_FACTOR);
|
|
bbox.max(0) += coord_t(1. / SCALING_FACTOR);
|
|
bbox.max(1) += coord_t(1. / SCALING_FACTOR);
|
|
|
|
::Slic3r::SVG svg(path, bbox);
|
|
|
|
if (polylines != NULL)
|
|
svg.draw(*polylines, "lime", "lime", voronoiLineWidth);
|
|
|
|
// bbox.scale(1.2);
|
|
// For clipping of half-lines to some reasonable value.
|
|
// The line will then be clipped by the SVG viewer anyway.
|
|
const double bbox_dim_max = double(bbox.max(0) - bbox.min(0)) + double(bbox.max(1) - bbox.min(1));
|
|
// For the discretization of the Voronoi parabolic segments.
|
|
const double discretization_step = 0.0005 * bbox_dim_max;
|
|
|
|
// Make a copy of the input segments with the double type.
|
|
std::vector<Voronoi::Internal::segment_type> segments;
|
|
for (Lines::const_iterator it = lines.begin(); it != lines.end(); ++ it)
|
|
segments.push_back(Voronoi::Internal::segment_type(
|
|
Voronoi::Internal::point_type(double(it->a(0)), double(it->a(1))),
|
|
Voronoi::Internal::point_type(double(it->b(0)), double(it->b(1)))));
|
|
|
|
// Color exterior edges.
|
|
for (boost::polygon::voronoi_diagram<double>::const_edge_iterator it = vd.edges().begin(); it != vd.edges().end(); ++it)
|
|
if (!it->is_finite())
|
|
Voronoi::Internal::color_exterior(&(*it));
|
|
|
|
// Draw the end points of the input polygon.
|
|
for (Lines::const_iterator it = lines.begin(); it != lines.end(); ++it) {
|
|
svg.draw(it->a, inputSegmentPointColor, inputSegmentPointRadius);
|
|
svg.draw(it->b, inputSegmentPointColor, inputSegmentPointRadius);
|
|
}
|
|
// Draw the input polygon.
|
|
for (Lines::const_iterator it = lines.begin(); it != lines.end(); ++it)
|
|
svg.draw(Line(Point(coord_t(it->a(0)), coord_t(it->a(1))), Point(coord_t(it->b(0)), coord_t(it->b(1)))), inputSegmentColor, inputSegmentLineWidth);
|
|
|
|
#if 1
|
|
// Draw voronoi vertices.
|
|
for (boost::polygon::voronoi_diagram<double>::const_vertex_iterator it = vd.vertices().begin(); it != vd.vertices().end(); ++it)
|
|
if (! internalEdgesOnly || it->color() != Voronoi::Internal::EXTERNAL_COLOR)
|
|
svg.draw(Point(coord_t(it->x()), coord_t(it->y())), voronoiPointColor, voronoiPointRadius);
|
|
|
|
for (boost::polygon::voronoi_diagram<double>::const_edge_iterator it = vd.edges().begin(); it != vd.edges().end(); ++it) {
|
|
if (primaryEdgesOnly && !it->is_primary())
|
|
continue;
|
|
if (internalEdgesOnly && (it->color() == Voronoi::Internal::EXTERNAL_COLOR))
|
|
continue;
|
|
std::vector<Voronoi::Internal::point_type> samples;
|
|
std::string color = voronoiLineColorPrimary;
|
|
if (!it->is_finite()) {
|
|
Voronoi::Internal::clip_infinite_edge(segments, *it, bbox_dim_max, &samples);
|
|
if (! it->is_primary())
|
|
color = voronoiLineColorSecondary;
|
|
} else {
|
|
// Store both points of the segment into samples. sample_curved_edge will split the initial line
|
|
// until the discretization_step is reached.
|
|
samples.push_back(Voronoi::Internal::point_type(it->vertex0()->x(), it->vertex0()->y()));
|
|
samples.push_back(Voronoi::Internal::point_type(it->vertex1()->x(), it->vertex1()->y()));
|
|
if (it->is_curved()) {
|
|
Voronoi::Internal::sample_curved_edge(segments, *it, samples, discretization_step);
|
|
color = voronoiArcColor;
|
|
} else if (! it->is_primary())
|
|
color = voronoiLineColorSecondary;
|
|
}
|
|
for (std::size_t i = 0; i + 1 < samples.size(); ++i)
|
|
svg.draw(Line(Point(coord_t(samples[i].x()), coord_t(samples[i].y())), Point(coord_t(samples[i+1].x()), coord_t(samples[i+1].y()))), color, voronoiLineWidth);
|
|
}
|
|
#endif
|
|
|
|
if (polylines != NULL)
|
|
svg.draw(*polylines, "blue", voronoiLineWidth);
|
|
|
|
svg.Close();
|
|
}
|
|
#endif /* SLIC3R_DEBUG */
|
|
|
|
// Euclidian distance of two boost::polygon points.
|
|
template<typename T>
|
|
T dist(const boost::polygon::point_data<T> &p1,const boost::polygon::point_data<T> &p2)
|
|
{
|
|
T dx = p2(0) - p1(0);
|
|
T dy = p2(1) - p1(1);
|
|
return sqrt(dx*dx+dy*dy);
|
|
}
|
|
|
|
// Find a foot point of "px" on a segment "seg".
|
|
template<typename segment_type, typename point_type>
|
|
inline point_type project_point_to_segment(segment_type &seg, point_type &px)
|
|
{
|
|
typedef typename point_type::coordinate_type T;
|
|
const point_type &p0 = low(seg);
|
|
const point_type &p1 = high(seg);
|
|
const point_type dir(p1(0)-p0(0), p1(1)-p0(1));
|
|
const point_type dproj(px(0)-p0(0), px(1)-p0(1));
|
|
const T t = (dir(0)*dproj(0) + dir(1)*dproj(1)) / (dir(0)*dir(0) + dir(1)*dir(1));
|
|
assert(t >= T(-1e-6) && t <= T(1. + 1e-6));
|
|
return point_type(p0(0) + t*dir(0), p0(1) + t*dir(1));
|
|
}
|
|
|
|
template<typename VD, typename SEGMENTS>
|
|
inline const typename VD::point_type retrieve_cell_point(const typename VD::cell_type& cell, const SEGMENTS &segments)
|
|
{
|
|
assert(cell.source_category() == SOURCE_CATEGORY_SEGMENT_START_POINT || cell.source_category() == SOURCE_CATEGORY_SEGMENT_END_POINT);
|
|
return (cell.source_category() == SOURCE_CATEGORY_SEGMENT_START_POINT) ? low(segments[cell.source_index()]) : high(segments[cell.source_index()]);
|
|
}
|
|
|
|
template<typename VD, typename SEGMENTS>
|
|
inline std::pair<typename VD::coord_type, typename VD::coord_type>
|
|
measure_edge_thickness(const VD &vd, const typename VD::edge_type& edge, const SEGMENTS &segments)
|
|
{
|
|
typedef typename VD::coord_type T;
|
|
const typename VD::point_type pa(edge.vertex0()->x(), edge.vertex0()->y());
|
|
const typename VD::point_type pb(edge.vertex1()->x(), edge.vertex1()->y());
|
|
const typename VD::cell_type &cell1 = *edge.cell();
|
|
const typename VD::cell_type &cell2 = *edge.twin()->cell();
|
|
if (cell1.contains_segment()) {
|
|
if (cell2.contains_segment()) {
|
|
// Both cells contain a linear segment, the left / right cells are symmetric.
|
|
// Project pa, pb to the left segment.
|
|
const typename VD::segment_type segment1 = segments[cell1.source_index()];
|
|
const typename VD::point_type p1a = project_point_to_segment(segment1, pa);
|
|
const typename VD::point_type p1b = project_point_to_segment(segment1, pb);
|
|
return std::pair<T, T>(T(2.)*dist(pa, p1a), T(2.)*dist(pb, p1b));
|
|
} else {
|
|
// 1st cell contains a linear segment, 2nd cell contains a point.
|
|
// The medial axis between the cells is a parabolic arc.
|
|
// Project pa, pb to the left segment.
|
|
const typename VD::point_type p2 = retrieve_cell_point<VD>(cell2, segments);
|
|
return std::pair<T, T>(T(2.)*dist(pa, p2), T(2.)*dist(pb, p2));
|
|
}
|
|
} else if (cell2.contains_segment()) {
|
|
// 1st cell contains a point, 2nd cell contains a linear segment.
|
|
// The medial axis between the cells is a parabolic arc.
|
|
const typename VD::point_type p1 = retrieve_cell_point<VD>(cell1, segments);
|
|
return std::pair<T, T>(T(2.)*dist(pa, p1), T(2.)*dist(pb, p1));
|
|
} else {
|
|
// Both cells contain a point. The left / right regions are triangular and symmetric.
|
|
const typename VD::point_type p1 = retrieve_cell_point<VD>(cell1, segments);
|
|
return std::pair<T, T>(T(2.)*dist(pa, p1), T(2.)*dist(pb, p1));
|
|
}
|
|
}
|
|
|
|
// Converts the Line instances of Lines vector to VD::segment_type.
|
|
template<typename VD>
|
|
class Lines2VDSegments
|
|
{
|
|
public:
|
|
Lines2VDSegments(const Lines &alines) : lines(alines) {}
|
|
typename VD::segment_type operator[](size_t idx) const {
|
|
return typename VD::segment_type(
|
|
typename VD::point_type(typename VD::coord_type(lines[idx].a(0)), typename VD::coord_type(lines[idx].a(1))),
|
|
typename VD::point_type(typename VD::coord_type(lines[idx].b(0)), typename VD::coord_type(lines[idx].b(1))));
|
|
}
|
|
private:
|
|
const Lines &lines;
|
|
};
|
|
|
|
void
|
|
MedialAxis::build(ThickPolylines* polylines)
|
|
{
|
|
construct_voronoi(this->lines.begin(), this->lines.end(), &this->vd);
|
|
|
|
/*
|
|
// DEBUG: dump all Voronoi edges
|
|
{
|
|
for (VD::const_edge_iterator edge = this->vd.edges().begin(); edge != this->vd.edges().end(); ++edge) {
|
|
if (edge->is_infinite()) continue;
|
|
|
|
ThickPolyline polyline;
|
|
polyline.points.push_back(Point( edge->vertex0()->x(), edge->vertex0()->y() ));
|
|
polyline.points.push_back(Point( edge->vertex1()->x(), edge->vertex1()->y() ));
|
|
polylines->push_back(polyline);
|
|
}
|
|
return;
|
|
}
|
|
*/
|
|
|
|
//typedef const VD::vertex_type vert_t;
|
|
typedef const VD::edge_type edge_t;
|
|
|
|
// collect valid edges (i.e. prune those not belonging to MAT)
|
|
// note: this keeps twins, so it inserts twice the number of the valid edges
|
|
this->valid_edges.clear();
|
|
{
|
|
std::set<const VD::edge_type*> seen_edges;
|
|
for (VD::const_edge_iterator edge = this->vd.edges().begin(); edge != this->vd.edges().end(); ++edge) {
|
|
// if we only process segments representing closed loops, none if the
|
|
// infinite edges (if any) would be part of our MAT anyway
|
|
if (edge->is_secondary() || edge->is_infinite()) continue;
|
|
|
|
// don't re-validate twins
|
|
if (seen_edges.find(&*edge) != seen_edges.end()) continue; // TODO: is this needed?
|
|
seen_edges.insert(&*edge);
|
|
seen_edges.insert(edge->twin());
|
|
|
|
if (!this->validate_edge(&*edge)) continue;
|
|
this->valid_edges.insert(&*edge);
|
|
this->valid_edges.insert(edge->twin());
|
|
}
|
|
}
|
|
this->edges = this->valid_edges;
|
|
|
|
// iterate through the valid edges to build polylines
|
|
while (!this->edges.empty()) {
|
|
const edge_t* edge = *this->edges.begin();
|
|
|
|
// start a polyline
|
|
ThickPolyline polyline;
|
|
polyline.points.push_back(Point( edge->vertex0()->x(), edge->vertex0()->y() ));
|
|
polyline.points.push_back(Point( edge->vertex1()->x(), edge->vertex1()->y() ));
|
|
polyline.width.push_back(this->thickness[edge].first);
|
|
polyline.width.push_back(this->thickness[edge].second);
|
|
|
|
// remove this edge and its twin from the available edges
|
|
(void)this->edges.erase(edge);
|
|
(void)this->edges.erase(edge->twin());
|
|
|
|
// get next points
|
|
this->process_edge_neighbors(edge, &polyline);
|
|
|
|
// get previous points
|
|
{
|
|
ThickPolyline rpolyline;
|
|
this->process_edge_neighbors(edge->twin(), &rpolyline);
|
|
polyline.points.insert(polyline.points.begin(), rpolyline.points.rbegin(), rpolyline.points.rend());
|
|
polyline.width.insert(polyline.width.begin(), rpolyline.width.rbegin(), rpolyline.width.rend());
|
|
polyline.endpoints.first = rpolyline.endpoints.second;
|
|
}
|
|
|
|
assert(polyline.width.size() == polyline.points.size()*2 - 2);
|
|
|
|
// prevent loop endpoints from being extended
|
|
if (polyline.first_point() == polyline.last_point()) {
|
|
polyline.endpoints.first = false;
|
|
polyline.endpoints.second = false;
|
|
}
|
|
|
|
// append polyline to result
|
|
polylines->push_back(polyline);
|
|
}
|
|
|
|
#ifdef SLIC3R_DEBUG
|
|
{
|
|
static int iRun = 0;
|
|
dump_voronoi_to_svg(this->lines, this->vd, polylines, debug_out_path("MedialAxis-%d.svg", iRun ++).c_str());
|
|
printf("Thick lines: ");
|
|
for (ThickPolylines::const_iterator it = polylines->begin(); it != polylines->end(); ++ it) {
|
|
ThickLines lines = it->thicklines();
|
|
for (ThickLines::const_iterator it2 = lines.begin(); it2 != lines.end(); ++ it2) {
|
|
printf("%f,%f ", it2->a_width, it2->b_width);
|
|
}
|
|
}
|
|
printf("\n");
|
|
}
|
|
#endif /* SLIC3R_DEBUG */
|
|
}
|
|
|
|
void
|
|
MedialAxis::build(Polylines* polylines)
|
|
{
|
|
ThickPolylines tp;
|
|
this->build(&tp);
|
|
polylines->insert(polylines->end(), tp.begin(), tp.end());
|
|
}
|
|
|
|
void
|
|
MedialAxis::process_edge_neighbors(const VD::edge_type* edge, ThickPolyline* polyline)
|
|
{
|
|
while (true) {
|
|
// Since rot_next() works on the edge starting point but we want
|
|
// to find neighbors on the ending point, we just swap edge with
|
|
// its twin.
|
|
const VD::edge_type* twin = edge->twin();
|
|
|
|
// count neighbors for this edge
|
|
std::vector<const VD::edge_type*> neighbors;
|
|
for (const VD::edge_type* neighbor = twin->rot_next(); neighbor != twin;
|
|
neighbor = neighbor->rot_next()) {
|
|
if (this->valid_edges.count(neighbor) > 0) neighbors.push_back(neighbor);
|
|
}
|
|
|
|
// if we have a single neighbor then we can continue recursively
|
|
if (neighbors.size() == 1) {
|
|
const VD::edge_type* neighbor = neighbors.front();
|
|
|
|
// break if this is a closed loop
|
|
if (this->edges.count(neighbor) == 0) return;
|
|
|
|
Point new_point(neighbor->vertex1()->x(), neighbor->vertex1()->y());
|
|
polyline->points.push_back(new_point);
|
|
polyline->width.push_back(this->thickness[neighbor].first);
|
|
polyline->width.push_back(this->thickness[neighbor].second);
|
|
(void)this->edges.erase(neighbor);
|
|
(void)this->edges.erase(neighbor->twin());
|
|
edge = neighbor;
|
|
} else if (neighbors.size() == 0) {
|
|
polyline->endpoints.second = true;
|
|
return;
|
|
} else {
|
|
// T-shaped or star-shaped joint
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool MedialAxis::validate_edge(const VD::edge_type* edge)
|
|
{
|
|
// prevent overflows and detect almost-infinite edges
|
|
#ifndef CLIPPERLIB_INT32
|
|
if (std::abs(edge->vertex0()->x()) > double(CLIPPER_MAX_COORD_UNSCALED) ||
|
|
std::abs(edge->vertex0()->y()) > double(CLIPPER_MAX_COORD_UNSCALED) ||
|
|
std::abs(edge->vertex1()->x()) > double(CLIPPER_MAX_COORD_UNSCALED) ||
|
|
std::abs(edge->vertex1()->y()) > double(CLIPPER_MAX_COORD_UNSCALED))
|
|
return false;
|
|
#endif // CLIPPERLIB_INT32
|
|
|
|
// construct the line representing this edge of the Voronoi diagram
|
|
const Line line(
|
|
Point( edge->vertex0()->x(), edge->vertex0()->y() ),
|
|
Point( edge->vertex1()->x(), edge->vertex1()->y() )
|
|
);
|
|
|
|
// discard edge if it lies outside the supplied shape
|
|
// this could maybe be optimized (checking inclusion of the endpoints
|
|
// might give false positives as they might belong to the contour itself)
|
|
if (this->expolygon != NULL) {
|
|
if (line.a == line.b) {
|
|
// in this case, contains(line) returns a false positive
|
|
if (!this->expolygon->contains(line.a)) return false;
|
|
} else {
|
|
if (!this->expolygon->contains(line)) return false;
|
|
}
|
|
}
|
|
|
|
// retrieve the original line segments which generated the edge we're checking
|
|
const VD::cell_type* cell_l = edge->cell();
|
|
const VD::cell_type* cell_r = edge->twin()->cell();
|
|
const Line &segment_l = this->retrieve_segment(cell_l);
|
|
const Line &segment_r = this->retrieve_segment(cell_r);
|
|
|
|
/*
|
|
SVG svg("edge.svg");
|
|
svg.draw(*this->expolygon);
|
|
svg.draw(line);
|
|
svg.draw(segment_l, "red");
|
|
svg.draw(segment_r, "blue");
|
|
svg.Close();
|
|
*/
|
|
|
|
/* Calculate thickness of the cross-section at both the endpoints of this edge.
|
|
Our Voronoi edge is part of a CCW sequence going around its Voronoi cell
|
|
located on the left side. (segment_l).
|
|
This edge's twin goes around segment_r. Thus, segment_r is
|
|
oriented in the same direction as our main edge, and segment_l is oriented
|
|
in the same direction as our twin edge.
|
|
We used to only consider the (half-)distances to segment_r, and that works
|
|
whenever segment_l and segment_r are almost specular and facing. However,
|
|
at curves they are staggered and they only face for a very little length
|
|
(our very short edge represents such visibility).
|
|
Both w0 and w1 can be calculated either towards cell_l or cell_r with equal
|
|
results by Voronoi definition.
|
|
When cell_l or cell_r don't refer to the segment but only to an endpoint, we
|
|
calculate the distance to that endpoint instead. */
|
|
|
|
coordf_t w0 = cell_r->contains_segment()
|
|
? segment_r.distance_to(line.a)*2
|
|
: (this->retrieve_endpoint(cell_r) - line.a).cast<double>().norm()*2;
|
|
|
|
coordf_t w1 = cell_l->contains_segment()
|
|
? segment_l.distance_to(line.b)*2
|
|
: (this->retrieve_endpoint(cell_l) - line.b).cast<double>().norm()*2;
|
|
|
|
if (cell_l->contains_segment() && cell_r->contains_segment()) {
|
|
// calculate the relative angle between the two boundary segments
|
|
double angle = fabs(segment_r.orientation() - segment_l.orientation());
|
|
if (angle > PI) angle = 2*PI - angle;
|
|
assert(angle >= 0 && angle <= PI);
|
|
|
|
// fabs(angle) ranges from 0 (collinear, same direction) to PI (collinear, opposite direction)
|
|
// we're interested only in segments close to the second case (facing segments)
|
|
// so we allow some tolerance.
|
|
// this filter ensures that we're dealing with a narrow/oriented area (longer than thick)
|
|
// we don't run it on edges not generated by two segments (thus generated by one segment
|
|
// and the endpoint of another segment), since their orientation would not be meaningful
|
|
if (PI - angle > PI/8) {
|
|
// angle is not narrow enough
|
|
|
|
// only apply this filter to segments that are not too short otherwise their
|
|
// angle could possibly be not meaningful
|
|
if (w0 < SCALED_EPSILON || w1 < SCALED_EPSILON || line.length() >= this->min_width)
|
|
return false;
|
|
}
|
|
} else {
|
|
if (w0 < SCALED_EPSILON || w1 < SCALED_EPSILON)
|
|
return false;
|
|
}
|
|
|
|
if (w0 < this->min_width && w1 < this->min_width)
|
|
return false;
|
|
|
|
if (w0 > this->max_width && w1 > this->max_width)
|
|
return false;
|
|
|
|
this->thickness[edge] = std::make_pair(w0, w1);
|
|
this->thickness[edge->twin()] = std::make_pair(w1, w0);
|
|
|
|
return true;
|
|
}
|
|
|
|
const Line& MedialAxis::retrieve_segment(const VD::cell_type* cell) const
|
|
{
|
|
return this->lines[cell->source_index()];
|
|
}
|
|
|
|
const Point& MedialAxis::retrieve_endpoint(const VD::cell_type* cell) const
|
|
{
|
|
const Line& line = this->retrieve_segment(cell);
|
|
if (cell->source_category() == SOURCE_CATEGORY_SEGMENT_START_POINT) {
|
|
return line.a;
|
|
} else {
|
|
return line.b;
|
|
}
|
|
}
|
|
|
|
void assemble_transform(Transform3d& transform, const Vec3d& translation, const Vec3d& rotation, const Vec3d& scale, const Vec3d& mirror)
|
|
{
|
|
transform = Transform3d::Identity();
|
|
transform.translate(translation);
|
|
transform.rotate(Eigen::AngleAxisd(rotation(2), Vec3d::UnitZ()) * Eigen::AngleAxisd(rotation(1), Vec3d::UnitY()) * Eigen::AngleAxisd(rotation(0), Vec3d::UnitX()));
|
|
transform.scale(scale.cwiseProduct(mirror));
|
|
}
|
|
|
|
Transform3d assemble_transform(const Vec3d& translation, const Vec3d& rotation, const Vec3d& scale, const Vec3d& mirror)
|
|
{
|
|
Transform3d transform;
|
|
assemble_transform(transform, translation, rotation, scale, mirror);
|
|
return transform;
|
|
}
|
|
|
|
Vec3d extract_euler_angles(const Eigen::Matrix<double, 3, 3, Eigen::DontAlign>& rotation_matrix)
|
|
{
|
|
// reference: http://www.gregslabaugh.net/publications/euler.pdf
|
|
Vec3d angles1 = Vec3d::Zero();
|
|
Vec3d angles2 = Vec3d::Zero();
|
|
if (std::abs(std::abs(rotation_matrix(2, 0)) - 1.0) < 1e-5)
|
|
{
|
|
angles1(2) = 0.0;
|
|
if (rotation_matrix(2, 0) < 0.0) // == -1.0
|
|
{
|
|
angles1(1) = 0.5 * (double)PI;
|
|
angles1(0) = angles1(2) + ::atan2(rotation_matrix(0, 1), rotation_matrix(0, 2));
|
|
}
|
|
else // == 1.0
|
|
{
|
|
angles1(1) = - 0.5 * (double)PI;
|
|
angles1(0) = - angles1(2) + ::atan2(- rotation_matrix(0, 1), - rotation_matrix(0, 2));
|
|
}
|
|
angles2 = angles1;
|
|
}
|
|
else
|
|
{
|
|
angles1(1) = -::asin(rotation_matrix(2, 0));
|
|
double inv_cos1 = 1.0 / ::cos(angles1(1));
|
|
angles1(0) = ::atan2(rotation_matrix(2, 1) * inv_cos1, rotation_matrix(2, 2) * inv_cos1);
|
|
angles1(2) = ::atan2(rotation_matrix(1, 0) * inv_cos1, rotation_matrix(0, 0) * inv_cos1);
|
|
|
|
angles2(1) = (double)PI - angles1(1);
|
|
double inv_cos2 = 1.0 / ::cos(angles2(1));
|
|
angles2(0) = ::atan2(rotation_matrix(2, 1) * inv_cos2, rotation_matrix(2, 2) * inv_cos2);
|
|
angles2(2) = ::atan2(rotation_matrix(1, 0) * inv_cos2, rotation_matrix(0, 0) * inv_cos2);
|
|
}
|
|
|
|
// The following euristic is the best found up to now (in the sense that it works fine with the greatest number of edge use-cases)
|
|
// but there are other use-cases were it does not
|
|
// We need to improve it
|
|
double min_1 = angles1.cwiseAbs().minCoeff();
|
|
double min_2 = angles2.cwiseAbs().minCoeff();
|
|
bool use_1 = (min_1 < min_2) || (is_approx(min_1, min_2) && (angles1.norm() <= angles2.norm()));
|
|
|
|
return use_1 ? angles1 : angles2;
|
|
}
|
|
|
|
Vec3d extract_euler_angles(const Transform3d& transform)
|
|
{
|
|
// use only the non-translational part of the transform
|
|
Eigen::Matrix<double, 3, 3, Eigen::DontAlign> m = transform.matrix().block(0, 0, 3, 3);
|
|
// remove scale
|
|
m.col(0).normalize();
|
|
m.col(1).normalize();
|
|
m.col(2).normalize();
|
|
return extract_euler_angles(m);
|
|
}
|
|
|
|
Transformation::Flags::Flags()
|
|
: dont_translate(true)
|
|
, dont_rotate(true)
|
|
, dont_scale(true)
|
|
, dont_mirror(true)
|
|
{
|
|
}
|
|
|
|
bool Transformation::Flags::needs_update(bool dont_translate, bool dont_rotate, bool dont_scale, bool dont_mirror) const
|
|
{
|
|
return (this->dont_translate != dont_translate) || (this->dont_rotate != dont_rotate) || (this->dont_scale != dont_scale) || (this->dont_mirror != dont_mirror);
|
|
}
|
|
|
|
void Transformation::Flags::set(bool dont_translate, bool dont_rotate, bool dont_scale, bool dont_mirror)
|
|
{
|
|
this->dont_translate = dont_translate;
|
|
this->dont_rotate = dont_rotate;
|
|
this->dont_scale = dont_scale;
|
|
this->dont_mirror = dont_mirror;
|
|
}
|
|
|
|
Transformation::Transformation()
|
|
{
|
|
reset();
|
|
}
|
|
|
|
Transformation::Transformation(const Transform3d& transform)
|
|
{
|
|
set_from_transform(transform);
|
|
}
|
|
|
|
void Transformation::set_offset(const Vec3d& offset)
|
|
{
|
|
set_offset(X, offset(0));
|
|
set_offset(Y, offset(1));
|
|
set_offset(Z, offset(2));
|
|
}
|
|
|
|
void Transformation::set_offset(Axis axis, double offset)
|
|
{
|
|
if (m_offset(axis) != offset)
|
|
{
|
|
m_offset(axis) = offset;
|
|
m_dirty = true;
|
|
}
|
|
}
|
|
|
|
void Transformation::set_rotation(const Vec3d& rotation)
|
|
{
|
|
set_rotation(X, rotation(0));
|
|
set_rotation(Y, rotation(1));
|
|
set_rotation(Z, rotation(2));
|
|
}
|
|
|
|
void Transformation::set_rotation(Axis axis, double rotation)
|
|
{
|
|
rotation = angle_to_0_2PI(rotation);
|
|
if (is_approx(std::abs(rotation), 2.0 * (double)PI))
|
|
rotation = 0.0;
|
|
|
|
if (m_rotation(axis) != rotation)
|
|
{
|
|
m_rotation(axis) = rotation;
|
|
m_dirty = true;
|
|
}
|
|
}
|
|
|
|
void Transformation::set_scaling_factor(const Vec3d& scaling_factor)
|
|
{
|
|
set_scaling_factor(X, scaling_factor(0));
|
|
set_scaling_factor(Y, scaling_factor(1));
|
|
set_scaling_factor(Z, scaling_factor(2));
|
|
}
|
|
|
|
void Transformation::set_scaling_factor(Axis axis, double scaling_factor)
|
|
{
|
|
if (m_scaling_factor(axis) != std::abs(scaling_factor))
|
|
{
|
|
m_scaling_factor(axis) = std::abs(scaling_factor);
|
|
m_dirty = true;
|
|
}
|
|
}
|
|
|
|
void Transformation::set_mirror(const Vec3d& mirror)
|
|
{
|
|
set_mirror(X, mirror(0));
|
|
set_mirror(Y, mirror(1));
|
|
set_mirror(Z, mirror(2));
|
|
}
|
|
|
|
void Transformation::set_mirror(Axis axis, double mirror)
|
|
{
|
|
double abs_mirror = std::abs(mirror);
|
|
if (abs_mirror == 0.0)
|
|
mirror = 1.0;
|
|
else if (abs_mirror != 1.0)
|
|
mirror /= abs_mirror;
|
|
|
|
if (m_mirror(axis) != mirror)
|
|
{
|
|
m_mirror(axis) = mirror;
|
|
m_dirty = true;
|
|
}
|
|
}
|
|
|
|
void Transformation::set_from_transform(const Transform3d& transform)
|
|
{
|
|
// offset
|
|
set_offset(transform.matrix().block(0, 3, 3, 1));
|
|
|
|
Eigen::Matrix<double, 3, 3, Eigen::DontAlign> m3x3 = transform.matrix().block(0, 0, 3, 3);
|
|
|
|
// mirror
|
|
// it is impossible to reconstruct the original mirroring factors from a matrix,
|
|
// we can only detect if the matrix contains a left handed reference system
|
|
// in which case we reorient it back to right handed by mirroring the x axis
|
|
Vec3d mirror = Vec3d::Ones();
|
|
if (m3x3.col(0).dot(m3x3.col(1).cross(m3x3.col(2))) < 0.0)
|
|
{
|
|
mirror(0) = -1.0;
|
|
// remove mirror
|
|
m3x3.col(0) *= -1.0;
|
|
}
|
|
set_mirror(mirror);
|
|
|
|
// scale
|
|
set_scaling_factor(Vec3d(m3x3.col(0).norm(), m3x3.col(1).norm(), m3x3.col(2).norm()));
|
|
|
|
// remove scale
|
|
m3x3.col(0).normalize();
|
|
m3x3.col(1).normalize();
|
|
m3x3.col(2).normalize();
|
|
|
|
// rotation
|
|
set_rotation(extract_euler_angles(m3x3));
|
|
|
|
// forces matrix recalculation matrix
|
|
m_matrix = get_matrix();
|
|
|
|
// // debug check
|
|
// if (!m_matrix.isApprox(transform))
|
|
// std::cout << "something went wrong in extracting data from matrix" << std::endl;
|
|
}
|
|
|
|
void Transformation::reset()
|
|
{
|
|
m_offset = Vec3d::Zero();
|
|
m_rotation = Vec3d::Zero();
|
|
m_scaling_factor = Vec3d::Ones();
|
|
m_mirror = Vec3d::Ones();
|
|
m_matrix = Transform3d::Identity();
|
|
m_dirty = false;
|
|
}
|
|
|
|
const Transform3d& Transformation::get_matrix(bool dont_translate, bool dont_rotate, bool dont_scale, bool dont_mirror) const
|
|
{
|
|
if (m_dirty || m_flags.needs_update(dont_translate, dont_rotate, dont_scale, dont_mirror))
|
|
{
|
|
m_matrix = Geometry::assemble_transform(
|
|
dont_translate ? Vec3d::Zero() : m_offset,
|
|
dont_rotate ? Vec3d::Zero() : m_rotation,
|
|
dont_scale ? Vec3d::Ones() : m_scaling_factor,
|
|
dont_mirror ? Vec3d::Ones() : m_mirror
|
|
);
|
|
|
|
m_flags.set(dont_translate, dont_rotate, dont_scale, dont_mirror);
|
|
m_dirty = false;
|
|
}
|
|
|
|
return m_matrix;
|
|
}
|
|
|
|
Transformation Transformation::operator * (const Transformation& other) const
|
|
{
|
|
return Transformation(get_matrix() * other.get_matrix());
|
|
}
|
|
|
|
Transformation Transformation::volume_to_bed_transformation(const Transformation& instance_transformation, const BoundingBoxf3& bbox)
|
|
{
|
|
Transformation out;
|
|
|
|
if (instance_transformation.is_scaling_uniform()) {
|
|
// No need to run the non-linear least squares fitting for uniform scaling.
|
|
// Just set the inverse.
|
|
out.set_from_transform(instance_transformation.get_matrix(true).inverse());
|
|
}
|
|
else if (is_rotation_ninety_degrees(instance_transformation.get_rotation()))
|
|
{
|
|
// Anisotropic scaling, rotation by multiples of ninety degrees.
|
|
Eigen::Matrix3d instance_rotation_trafo =
|
|
(Eigen::AngleAxisd(instance_transformation.get_rotation().z(), Vec3d::UnitZ()) *
|
|
Eigen::AngleAxisd(instance_transformation.get_rotation().y(), Vec3d::UnitY()) *
|
|
Eigen::AngleAxisd(instance_transformation.get_rotation().x(), Vec3d::UnitX())).toRotationMatrix();
|
|
Eigen::Matrix3d volume_rotation_trafo =
|
|
(Eigen::AngleAxisd(-instance_transformation.get_rotation().x(), Vec3d::UnitX()) *
|
|
Eigen::AngleAxisd(-instance_transformation.get_rotation().y(), Vec3d::UnitY()) *
|
|
Eigen::AngleAxisd(-instance_transformation.get_rotation().z(), Vec3d::UnitZ())).toRotationMatrix();
|
|
|
|
// 8 corners of the bounding box.
|
|
auto pts = Eigen::MatrixXd(8, 3);
|
|
pts(0, 0) = bbox.min.x(); pts(0, 1) = bbox.min.y(); pts(0, 2) = bbox.min.z();
|
|
pts(1, 0) = bbox.min.x(); pts(1, 1) = bbox.min.y(); pts(1, 2) = bbox.max.z();
|
|
pts(2, 0) = bbox.min.x(); pts(2, 1) = bbox.max.y(); pts(2, 2) = bbox.min.z();
|
|
pts(3, 0) = bbox.min.x(); pts(3, 1) = bbox.max.y(); pts(3, 2) = bbox.max.z();
|
|
pts(4, 0) = bbox.max.x(); pts(4, 1) = bbox.min.y(); pts(4, 2) = bbox.min.z();
|
|
pts(5, 0) = bbox.max.x(); pts(5, 1) = bbox.min.y(); pts(5, 2) = bbox.max.z();
|
|
pts(6, 0) = bbox.max.x(); pts(6, 1) = bbox.max.y(); pts(6, 2) = bbox.min.z();
|
|
pts(7, 0) = bbox.max.x(); pts(7, 1) = bbox.max.y(); pts(7, 2) = bbox.max.z();
|
|
|
|
// Corners of the bounding box transformed into the modifier mesh coordinate space, with inverse rotation applied to the modifier.
|
|
auto qs = pts *
|
|
(instance_rotation_trafo *
|
|
Eigen::Scaling(instance_transformation.get_scaling_factor().cwiseProduct(instance_transformation.get_mirror())) *
|
|
volume_rotation_trafo).inverse().transpose();
|
|
// Fill in scaling based on least squares fitting of the bounding box corners.
|
|
Vec3d scale;
|
|
for (int i = 0; i < 3; ++i)
|
|
scale(i) = pts.col(i).dot(qs.col(i)) / pts.col(i).dot(pts.col(i));
|
|
|
|
out.set_rotation(Geometry::extract_euler_angles(volume_rotation_trafo));
|
|
out.set_scaling_factor(Vec3d(std::abs(scale(0)), std::abs(scale(1)), std::abs(scale(2))));
|
|
out.set_mirror(Vec3d(scale(0) > 0 ? 1. : -1, scale(1) > 0 ? 1. : -1, scale(2) > 0 ? 1. : -1));
|
|
}
|
|
else
|
|
{
|
|
// General anisotropic scaling, general rotation.
|
|
// Keep the modifier mesh in the instance coordinate system, so the modifier mesh will not be aligned with the world.
|
|
// Scale it to get the required size.
|
|
out.set_scaling_factor(instance_transformation.get_scaling_factor().cwiseInverse());
|
|
}
|
|
|
|
return out;
|
|
}
|
|
|
|
// For parsing a transformation matrix from 3MF / AMF.
|
|
Transform3d transform3d_from_string(const std::string& transform_str)
|
|
{
|
|
assert(is_decimal_separator_point()); // for atof
|
|
Transform3d transform = Transform3d::Identity();
|
|
|
|
if (!transform_str.empty())
|
|
{
|
|
std::vector<std::string> mat_elements_str;
|
|
boost::split(mat_elements_str, transform_str, boost::is_any_of(" "), boost::token_compress_on);
|
|
|
|
unsigned int size = (unsigned int)mat_elements_str.size();
|
|
if (size == 16)
|
|
{
|
|
unsigned int i = 0;
|
|
for (unsigned int r = 0; r < 4; ++r)
|
|
{
|
|
for (unsigned int c = 0; c < 4; ++c)
|
|
{
|
|
transform(r, c) = ::atof(mat_elements_str[i++].c_str());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return transform;
|
|
}
|
|
|
|
Eigen::Quaterniond rotation_xyz_diff(const Vec3d &rot_xyz_from, const Vec3d &rot_xyz_to)
|
|
{
|
|
return
|
|
// From the current coordinate system to world.
|
|
Eigen::AngleAxisd(rot_xyz_to(2), Vec3d::UnitZ()) * Eigen::AngleAxisd(rot_xyz_to(1), Vec3d::UnitY()) * Eigen::AngleAxisd(rot_xyz_to(0), Vec3d::UnitX()) *
|
|
// From world to the initial coordinate system.
|
|
Eigen::AngleAxisd(-rot_xyz_from(0), Vec3d::UnitX()) * Eigen::AngleAxisd(-rot_xyz_from(1), Vec3d::UnitY()) * Eigen::AngleAxisd(-rot_xyz_from(2), Vec3d::UnitZ());
|
|
}
|
|
|
|
// This should only be called if it is known, that the two rotations only differ in rotation around the Z axis.
|
|
double rotation_diff_z(const Vec3d &rot_xyz_from, const Vec3d &rot_xyz_to)
|
|
{
|
|
Eigen::AngleAxisd angle_axis(rotation_xyz_diff(rot_xyz_from, rot_xyz_to));
|
|
Vec3d axis = angle_axis.axis();
|
|
double angle = angle_axis.angle();
|
|
#ifndef NDEBUG
|
|
if (std::abs(angle) > 1e-8) {
|
|
assert(std::abs(axis.x()) < 1e-8);
|
|
assert(std::abs(axis.y()) < 1e-8);
|
|
}
|
|
#endif /* NDEBUG */
|
|
return (axis.z() < 0) ? -angle : angle;
|
|
}
|
|
|
|
} }
|