PrusaSlicer-NonPlainar/lib/Slic3r/Geometry.pm
2011-10-05 21:25:17 +02:00

268 lines
7.9 KiB
Perl

package Slic3r::Geometry;
use strict;
use warnings;
use Slic3r::Geometry::DouglasPeucker;
use XXX;
use constant PI => 4 * atan2(1, 1);
use constant A => 0;
use constant B => 1;
use constant X => 0;
use constant Y => 1;
use constant epsilon => 1E-6;
our $parallel_degrees_limit = abs(deg2rad(3));
sub slope {
my ($line) = @_;
return undef if abs($line->[B][X] - $line->[A][X]) < epsilon; # line is vertical
return ($line->[B][Y] - $line->[A][Y]) / ($line->[B][X] - $line->[A][X]);
}
sub line_atan {
my ($line) = @_;
return atan2($line->[B][Y] - $line->[A][Y], $line->[B][X] - $line->[A][X]);
}
sub lines_parallel {
my ($line1, $line2) = @_;
return abs(line_atan($line1) - line_atan($line2)) < $parallel_degrees_limit;
}
# this subroutine checks whether a given point may belong to a given
# segment given the hypothesis that it belongs to the line containing
# the segment
sub line_point_belongs_to_segment {
my ($point, $segment) = @_;
#printf " checking whether %f,%f may belong to segment %f,%f - %f,%f\n",
# @$point, map @$_, @$segment;
my @segment_extents = (
[ sort { $a <=> $b } map $_->[X], @$segment ],
[ sort { $a <=> $b } map $_->[Y], @$segment ],
);
return 0 if $point->[X] < ($segment_extents[X][0] - epsilon) || $point->[X] > ($segment_extents[X][1] + epsilon);
return 0 if $point->[Y] < ($segment_extents[Y][0] - epsilon) || $point->[Y] > ($segment_extents[Y][1] + epsilon);
return 1;
}
sub points_coincide {
my ($p1, $p2) = @_;
return 1 if abs($p2->[X] - $p1->[X]) < epsilon && abs($p2->[Y] - $p1->[Y]) < epsilon;
return 0;
}
sub distance_between_points {
my ($p1, $p2) = @_;
return sqrt((($p1->[X] - $p2->[X])**2) + ($p1->[Y] - $p2->[Y])**2);
}
sub point_in_polygon {
my ($point, $polygon) = @_;
my ($x, $y) = @$point;
my @xy = map @$_, @$polygon;
# Derived from the comp.graphics.algorithms FAQ,
# courtesy of Wm. Randolph Franklin
my $n = @xy / 2; # Number of points in polygon
my @i = map { 2*$_ } 0..(@xy/2); # The even indices of @xy
my @x = map { $xy[$_] } @i; # Even indices: x-coordinates
my @y = map { $xy[$_ + 1] } @i; # Odd indices: y-coordinates
my ($i, $j);
my $side = 0; # 0 = outside; 1 = inside
for ($i = 0, $j = $n - 1; $i < $n; $j = $i++) {
if (
# If the y is between the (y-) borders...
($y[$i] <= $y && $y < $y[$j]) || ($y[$j] <= $y && $y < $y[$i])
and
# ...the (x,y) to infinity line crosses the edge
# from the ith point to the jth point...
($x < ($x[$j] - $x[$i]) * ($y - $y[$i]) / ($y[$j] - $y[$i]) + $x[$i])
) {
$side = not $side; # Jump the fence
}
}
# if point is not in polygon, let's check whether it belongs to the contour
if (!$side && 0) {
foreach my $line (polygon_lines($polygon)) {
return 1 if point_in_segment($point, $line);
}
}
return $side;
}
sub point_in_segment {
my ($point, $line) = @_;
my ($x, $y) = @$point;
my @line_x = sort { $a <=> $b } $line->[A][X], $line->[B][X];
my @line_y = sort { $a <=> $b } $line->[A][Y], $line->[B][Y];
# check whether the point is in the segment bounding box
return 0 unless $x >= ($line_x[0] - epsilon) && $x <= ($line_x[1] + epsilon)
&& $y >= ($line_y[0] - epsilon) && $y <= ($line_y[1] + epsilon);
# if line is vertical, check whether point's X is the same as the line
if ($line->[A][X] == $line->[B][X]) {
return 1 if abs($x - $line->[A][X]) < epsilon;
}
# calculate the Y in line at X of the point
my $y3 = $line->[A][Y] + ($line->[B][Y] - $line->[A][Y])
* ($x - $line->[A][X]) / ($line->[B][X] - $line->[A][X]);
return abs($y3 - $y) < epsilon ? 1 : 0;
}
sub polygon_lines {
my ($polygon) = @_;
my @lines = ();
my $last_point = $polygon->[-1];
foreach my $point (@$polygon) {
push @lines, [ $last_point, $point ];
$last_point = $point;
}
return @lines;
}
sub nearest_point {
my ($point, $points) = @_;
my ($nearest_point, $distance);
foreach my $p (@$points) {
my $d = distance_between_points($point, $p);
if (!defined $distance || $d < $distance) {
$nearest_point = $p;
$distance = $d;
return $p if $distance < epsilon;
}
}
return $nearest_point;
}
sub point_along_segment {
my ($p1, $p2, $distance) = @_;
my $point = [ @$p1 ];
my $line_length = sqrt( (($p2->[X] - $p1->[X])**2) + (($p2->[Y] - $p1->[Y])**2) );
for (X, Y) {
if ($p1->[$_] != $p2->[$_]) {
$point->[$_] = $p1->[$_] + ($p2->[$_] - $p1->[$_]) * $distance / $line_length;
}
}
return $point;
}
sub deg2rad {
my ($degrees) = @_;
return PI() * $degrees / 180;
}
sub rotate_points {
my ($radians, $center, @points) = @_;
$center ||= [0,0];
return map {
[
$center->[X] + cos($radians) * ($_->[X] - $center->[X]) - sin($radians) * ($_->[Y] - $center->[Y]),
$center->[Y] + cos($radians) * ($_->[Y] - $center->[Y]) + sin($radians) * ($_->[X] - $center->[X]),
]
} @points;
}
sub move_points {
my ($shift, @points) = @_;
return map [ $shift->[X] + $_->[X], $shift->[Y] + $_->[Y] ], @points;
}
# preserves order
sub remove_coinciding_points {
my ($points) = @_;
my %p = map { sprintf('%f,%f', @$_) => "$_" } @$points;
%p = reverse %p;
@$points = grep $p{"$_"}, @$points;
}
# implementation of Liang-Barsky algorithm
# polygon must be convex and ccw
sub clip_segment_polygon {
my ($line, $polygon) = @_;
if (@$line == 1) {
# the segment is a point, check for inclusion
return point_in_polygon($line, $polygon);
}
my @V = (@$polygon, $polygon->[0]);
my $tE = 0; # the maximum entering segment parameter
my $tL = 1; # the minimum entering segment parameter
my $dS = subtract_vectors($line->[B], $line->[A]); # the segment direction vector
for (my $i = 0; $i < $#V; $i++) { # process polygon edge V[i]V[Vi+1]
my $e = subtract_vectors($V[$i+1], $V[$i]);
my $N = perp($e, subtract_vectors($line->[A], $V[$i]));
my $D = -perp($e, $dS);
if (abs($D) < epsilon) { # $line is nearly parallel to this edge
($N < 0) ? return : next; # P0 outside this edge ? $line is outside : $line cannot cross edge, thus ignoring
}
my $t = $N / $D;
if ($D < 0) { # $line is entering across this edge
if ($t > $tE) { # new max $tE
$tE = $t;
return if $tE > $tL; # $line enters after leaving polygon?
}
} else { # $line is leaving across this edge
if ($t < $tL) { # new min $tL
$tL = $t;
return if $tL < $tE; # $line leaves before entering polygon?
}
}
}
# $tE <= $tL implies that there is a valid intersection subsegment
return [
sum_vectors($line->[A], multiply_vector($dS, $tE)), # = P(tE) = point where S enters polygon
sum_vectors($line->[A], multiply_vector($dS, $tL)), # = P(tE) = point where S enters polygon
];
}
sub sum_vectors {
my ($v1, $v2) = @_;
return [ $v1->[X] + $v2->[X], $v1->[Y] + $v2->[Y] ];
}
sub multiply_vector {
my ($line, $scalar) = @_;
return [ $line->[X] * $scalar, $line->[Y] * $scalar ];
}
sub subtract_vectors {
my ($line2, $line1) = @_;
return [ $line2->[X] - $line1->[X], $line2->[Y] - $line1->[Y] ];
}
# 2D dot product
sub dot {
my ($u, $v) = @_;
return $u->[X] * $v->[X] + $u->[Y] * $v->[Y];
}
# 2D perp product
sub perp {
my ($u, $v) = @_;
return $u->[X] * $v->[Y] - $u->[Y] * $v->[X];
}
1;