PrusaSlicer-NonPlainar/lib/Slic3r/Flow.pm
2014-01-02 17:24:23 +01:00

119 lines
3.8 KiB
Perl

package Slic3r::Flow;
use Moo;
require Exporter;
our @ISA = qw(Exporter);
our @EXPORT_OK = qw(FLOW_ROLE_PERIMETER FLOW_ROLE_INFILL FLOW_ROLE_SOLID_INFILL FLOW_ROLE_TOP_SOLID_INFILL
FLOW_ROLE_SUPPORT_MATERIAL FLOW_ROLE_SUPPORT_MATERIAL_INTERFACE);
our %EXPORT_TAGS = (roles => \@EXPORT_OK);
use Slic3r::Geometry qw(PI);
has 'width' => (is => 'ro');
has 'spacing' => (is => 'ro');
has 'scaled_width' => (is => 'lazy');
has 'scaled_spacing' => (is => 'lazy');
use constant FLOW_ROLE_PERIMETER => 1;
use constant FLOW_ROLE_INFILL => 2;
use constant FLOW_ROLE_SOLID_INFILL => 3;
use constant FLOW_ROLE_TOP_SOLID_INFILL => 4;
use constant FLOW_ROLE_SUPPORT_MATERIAL => 5;
use constant FLOW_ROLE_SUPPORT_MATERIAL_INTERFACE => 6;
sub BUILDARGS {
my ($self, %args) = @_;
# the constructor can take two sets of arguments:
# - width (only absolute value), spacing
# - width (abs/%/0), role, nozzle_diameter, layer_height, bridge_flow_ratio
# (if bridge_flow_ratio == 0, we return a non-bridge flow)
if (exists $args{role}) {
if ($args{width} eq '0') {
$args{width} = $self->_width(@args{qw(role nozzle_diameter layer_height bridge_flow_ratio)});
} elsif ($args{width} =~ /^(\d+(?:\.\d+)?)%$/) {
$args{width} = $args{layer_height} * $1 / 100;
}
$args{spacing} = $self->_spacing(@args{qw(width nozzle_diameter layer_height bridge_flow_ratio)});
%args = (
width => $args{width},
spacing => $args{spacing},
);
}
return {%args};
}
sub _width {
my ($self, $role, $nozzle_diameter, $layer_height, $bridge_flow_ratio) = @_;
if ($bridge_flow_ratio > 0) {
return sqrt($bridge_flow_ratio * ($nozzle_diameter**2));
}
# here we calculate a sane default by matching the flow speed (at the nozzle) and the feed rate
my $volume = ($nozzle_diameter**2) * PI/4;
my $shape_threshold = $nozzle_diameter * $layer_height + ($layer_height**2) * PI/4;
my $width;
if ($volume >= $shape_threshold) {
# rectangle with semicircles at the ends
$width = (($nozzle_diameter**2) * PI + ($layer_height**2) * (4 - PI)) / (4 * $layer_height);
} else {
# rectangle with squished semicircles at the ends
$width = $nozzle_diameter * ($nozzle_diameter/$layer_height - 4/PI + 1);
}
my $min = $nozzle_diameter * 1.05;
my $max;
if ($role == FLOW_ROLE_PERIMETER || $role == FLOW_ROLE_SUPPORT_MATERIAL) {
$min = $max = $nozzle_diameter;
} elsif ($role != FLOW_ROLE_INFILL) {
# do not limit width for sparse infill so that we use full native flow for it
$max = $nozzle_diameter * 1.7;
}
$width = $max if defined($max) && $width > $max;
$width = $min if $width < $min;
return $width;
}
sub _spacing {
my ($self, $width, $nozzle_diameter, $layer_height, $bridge_flow_ratio) = @_;
if ($bridge_flow_ratio > 0) {
return $width + 0.05;
}
my $min_flow_spacing;
if ($width >= ($nozzle_diameter + $layer_height)) {
# rectangle with semicircles at the ends
$min_flow_spacing = $width - $layer_height * (1 - PI/4);
} else {
# rectangle with shrunk semicircles at the ends
$min_flow_spacing = $nozzle_diameter * (1 - PI/4) + $width * PI/4;
}
return $width - &Slic3r::OVERLAP_FACTOR * ($width - $min_flow_spacing);
}
sub clone {
my $self = shift;
return (ref $self)->new(
width => $self->width,
spacing => $self->spacing,
);
}
sub _build_scaled_width {
my $self = shift;
return Slic3r::Geometry::scale($self->width);
}
sub _build_scaled_spacing {
my $self = shift;
return Slic3r::Geometry::scale($self->spacing);
}
1;