PrusaSlicer-NonPlainar/xs/src/libslic3r/Point.hpp
bubnikv d9d6d996e9 Utility functions to pass wxWidgets pointers from Perl to C++ code.
C++ var_dir / set_var_dir() interface to access the UI resources
from the C++ code.
2017-10-17 20:00:15 +02:00

323 lines
14 KiB
C++

#ifndef slic3r_Point_hpp_
#define slic3r_Point_hpp_
#include "libslic3r.h"
#include <vector>
#include <math.h>
#include <string>
#include <sstream>
#include <unordered_map>
namespace Slic3r {
class Line;
class Linef;
class MultiPoint;
class Point;
class Pointf;
class Pointf3;
typedef Point Vector;
typedef Pointf Vectorf;
typedef Pointf3 Vectorf3;
typedef std::vector<Point> Points;
typedef std::vector<Point*> PointPtrs;
typedef std::vector<const Point*> PointConstPtrs;
typedef std::vector<Pointf> Pointfs;
typedef std::vector<Pointf3> Pointf3s;
class Point
{
public:
typedef coord_t coord_type;
coord_t x;
coord_t y;
Point(coord_t _x = 0, coord_t _y = 0): x(_x), y(_y) {};
Point(int _x, int _y): x(_x), y(_y) {};
Point(long long _x, long long _y): x(coord_t(_x)), y(coord_t(_y)) {}; // for Clipper
Point(double x, double y);
static Point new_scale(coordf_t x, coordf_t y) { return Point(coord_t(scale_(x)), coord_t(scale_(y))); }
bool operator==(const Point& rhs) const { return this->x == rhs.x && this->y == rhs.y; }
bool operator!=(const Point& rhs) const { return ! (*this == rhs); }
bool operator<(const Point& rhs) const { return this->x < rhs.x || (this->x == rhs.x && this->y < rhs.y); }
Point& operator+=(const Point& rhs) { this->x += rhs.x; this->y += rhs.y; return *this; }
Point& operator-=(const Point& rhs) { this->x -= rhs.x; this->y -= rhs.y; return *this; }
Point& operator*=(const coord_t& rhs) { this->x *= rhs; this->y *= rhs; return *this; }
std::string wkt() const;
std::string dump_perl() const;
void scale(double factor);
void translate(double x, double y);
void translate(const Vector &vector);
void rotate(double angle);
void rotate(double angle, const Point &center);
Point rotated(double angle) const { Point res(*this); res.rotate(angle); return res; }
Point rotated(double angle, const Point &center) const { Point res(*this); res.rotate(angle, center); return res; }
bool coincides_with(const Point &point) const { return this->x == point.x && this->y == point.y; }
bool coincides_with_epsilon(const Point &point) const;
int nearest_point_index(const Points &points) const;
int nearest_point_index(const PointConstPtrs &points) const;
int nearest_point_index(const PointPtrs &points) const;
bool nearest_point(const Points &points, Point* point) const;
double distance_to(const Point &point) const { return sqrt(distance_to_sq(point)); }
double distance_to_sq(const Point &point) const { double dx = double(point.x - this->x); double dy = double(point.y - this->y); return dx*dx + dy*dy; }
double distance_to(const Line &line) const;
double perp_distance_to(const Line &line) const;
double ccw(const Point &p1, const Point &p2) const;
double ccw(const Line &line) const;
double ccw_angle(const Point &p1, const Point &p2) const;
Point projection_onto(const MultiPoint &poly) const;
Point projection_onto(const Line &line) const;
Point negative() const;
Vector vector_to(const Point &point) const;
};
inline Point operator+(const Point& point1, const Point& point2) { return Point(point1.x + point2.x, point1.y + point2.y); }
inline Point operator-(const Point& point1, const Point& point2) { return Point(point1.x - point2.x, point1.y - point2.y); }
inline Point operator*(double scalar, const Point& point2) { return Point(scalar * point2.x, scalar * point2.y); }
inline int64_t cross(const Point &v1, const Point &v2) { return int64_t(v1.x) * int64_t(v2.y) - int64_t(v1.y) * int64_t(v2.x); }
inline int64_t dot(const Point &v1, const Point &v2) { return int64_t(v1.x) * int64_t(v2.x) + int64_t(v1.y) * int64_t(v2.y); }
// To be used by std::unordered_map, std::unordered_multimap and friends.
struct PointHash {
size_t operator()(const Point &pt) const {
return std::hash<coord_t>()(pt.x) ^ std::hash<coord_t>()(pt.y);
}
};
// A generic class to search for a closest Point in a given radius.
// It uses std::unordered_multimap to implement an efficient 2D spatial hashing.
// The PointAccessor has to return const Point*.
// If a nullptr is returned, it is ignored by the query.
template<typename ValueType, typename PointAccessor> class ClosestPointInRadiusLookup
{
public:
ClosestPointInRadiusLookup(coord_t search_radius, PointAccessor point_accessor = PointAccessor()) :
m_search_radius(search_radius), m_point_accessor(point_accessor), m_grid_log2(0)
{
// Resolution of a grid, twice the search radius + some epsilon.
coord_t gridres = 2 * m_search_radius + 4;
m_grid_resolution = gridres;
assert(m_grid_resolution > 0);
assert(m_grid_resolution < (coord_t(1) << 30));
// Compute m_grid_log2 = log2(m_grid_resolution)
if (m_grid_resolution > 32767) {
m_grid_resolution >>= 16;
m_grid_log2 += 16;
}
if (m_grid_resolution > 127) {
m_grid_resolution >>= 8;
m_grid_log2 += 8;
}
if (m_grid_resolution > 7) {
m_grid_resolution >>= 4;
m_grid_log2 += 4;
}
if (m_grid_resolution > 1) {
m_grid_resolution >>= 2;
m_grid_log2 += 2;
}
if (m_grid_resolution > 0)
++ m_grid_log2;
m_grid_resolution = 1 << m_grid_log2;
assert(m_grid_resolution >= gridres);
assert(gridres > m_grid_resolution / 2);
}
void insert(const ValueType &value) {
const Point *pt = m_point_accessor(value);
if (pt != nullptr)
m_map.emplace(std::make_pair(Point(pt->x>>m_grid_log2, pt->y>>m_grid_log2), value));
}
void insert(ValueType &&value) {
const Point *pt = m_point_accessor(value);
if (pt != nullptr)
m_map.emplace(std::make_pair(Point(pt->x>>m_grid_log2, pt->y>>m_grid_log2), std::move(value)));
}
// Return a pair of <ValueType*, distance_squared>
std::pair<const ValueType*, double> find(const Point &pt) {
// Iterate over 4 closest grid cells around pt,
// find the closest start point inside these cells to pt.
const ValueType *value_min = nullptr;
double dist_min = std::numeric_limits<double>::max();
// Round pt to a closest grid_cell corner.
Point grid_corner((pt.x+(m_grid_resolution>>1))>>m_grid_log2, (pt.y+(m_grid_resolution>>1))>>m_grid_log2);
// For four neighbors of grid_corner:
for (coord_t neighbor_y = -1; neighbor_y < 1; ++ neighbor_y) {
for (coord_t neighbor_x = -1; neighbor_x < 1; ++ neighbor_x) {
// Range of fragment starts around grid_corner, close to pt.
auto range = m_map.equal_range(Point(grid_corner.x + neighbor_x, grid_corner.y + neighbor_y));
// Find the map entry closest to pt.
for (auto it = range.first; it != range.second; ++it) {
const ValueType &value = it->second;
const Point *pt2 = m_point_accessor(value);
if (pt2 != nullptr) {
const double d2 = pt.distance_to_sq(*pt2);
if (d2 < dist_min) {
dist_min = d2;
value_min = &value;
}
}
}
}
}
return (value_min != nullptr && dist_min < coordf_t(m_search_radius * m_search_radius)) ?
std::make_pair(value_min, dist_min) :
std::make_pair(nullptr, std::numeric_limits<double>::max());
}
private:
typedef typename std::unordered_multimap<Point, ValueType, PointHash> map_type;
PointAccessor m_point_accessor;
map_type m_map;
coord_t m_search_radius;
coord_t m_grid_resolution;
coord_t m_grid_log2;
};
class Point3 : public Point
{
public:
coord_t z;
explicit Point3(coord_t _x = 0, coord_t _y = 0, coord_t _z = 0): Point(_x, _y), z(_z) {};
static Point3 new_scale(coordf_t x, coordf_t y, coordf_t z) { return Point3(coord_t(scale_(x)), coord_t(scale_(y)), coord_t(scale_(z))); }
bool operator==(const Point3 &rhs) const { return this->x == rhs.x && this->y == rhs.y && this->z == rhs.z; }
bool operator!=(const Point3 &rhs) const { return ! (*this == rhs); }
private:
// Hide the following inherited methods:
bool operator==(const Point &rhs);
bool operator!=(const Point &rhs);
};
std::ostream& operator<<(std::ostream &stm, const Pointf &pointf);
class Pointf
{
public:
typedef coordf_t coord_type;
coordf_t x;
coordf_t y;
explicit Pointf(coordf_t _x = 0, coordf_t _y = 0): x(_x), y(_y) {};
static Pointf new_unscale(coord_t x, coord_t y) {
return Pointf(unscale(x), unscale(y));
};
static Pointf new_unscale(const Point &p) {
return Pointf(unscale(p.x), unscale(p.y));
};
std::string wkt() const;
std::string dump_perl() const;
void scale(double factor);
void translate(double x, double y);
void translate(const Vectorf &vector);
void rotate(double angle);
void rotate(double angle, const Pointf &center);
Pointf negative() const;
Vectorf vector_to(const Pointf &point) const;
Pointf& operator+=(const Pointf& rhs) { this->x += rhs.x; this->y += rhs.y; return *this; }
Pointf& operator-=(const Pointf& rhs) { this->x -= rhs.x; this->y -= rhs.y; return *this; }
Pointf& operator*=(const coordf_t& rhs) { this->x *= rhs; this->y *= rhs; return *this; }
bool operator==(const Pointf &rhs) const { return this->x == rhs.x && this->y == rhs.y; }
bool operator!=(const Pointf &rhs) const { return ! (*this == rhs); }
bool operator< (const Pointf& rhs) const { return this->x < rhs.x || (this->x == rhs.x && this->y < rhs.y); }
};
inline Pointf operator+(const Pointf& point1, const Pointf& point2) { return Pointf(point1.x + point2.x, point1.y + point2.y); }
inline Pointf operator-(const Pointf& point1, const Pointf& point2) { return Pointf(point1.x - point2.x, point1.y - point2.y); }
inline Pointf operator*(double scalar, const Pointf& point2) { return Pointf(scalar * point2.x, scalar * point2.y); }
inline Pointf operator*(const Pointf& point2, double scalar) { return Pointf(scalar * point2.x, scalar * point2.y); }
inline coordf_t cross(const Pointf &v1, const Pointf &v2) { return v1.x * v2.y - v1.y * v2.x; }
inline coordf_t dot(const Pointf &v1, const Pointf &v2) { return v1.x * v2.x + v1.y * v2.y; }
inline coordf_t dot(const Pointf &v) { return v.x * v.x + v.y * v.y; }
inline double length(const Vectorf &v) { return sqrt(dot(v)); }
inline double l2(const Vectorf &v) { return dot(v); }
class Pointf3 : public Pointf
{
public:
coordf_t z;
explicit Pointf3(coordf_t _x = 0, coordf_t _y = 0, coordf_t _z = 0): Pointf(_x, _y), z(_z) {};
static Pointf3 new_unscale(coord_t x, coord_t y, coord_t z) {
return Pointf3(unscale(x), unscale(y), unscale(z));
};
void scale(double factor);
void translate(const Vectorf3 &vector);
void translate(double x, double y, double z);
double distance_to(const Pointf3 &point) const;
Pointf3 negative() const;
Vectorf3 vector_to(const Pointf3 &point) const;
bool operator==(const Pointf3 &rhs) const { return this->x == rhs.x && this->y == rhs.y && this->z == rhs.z; }
bool operator!=(const Pointf3 &rhs) const { return ! (*this == rhs); }
private:
// Hide the following inherited methods:
bool operator==(const Pointf &rhs);
bool operator!=(const Pointf &rhs);
};
template<typename TO> inline TO convert_to(const Point &src) { return TO(typename TO::coord_type(src.x), typename TO::coord_type(src.y)); }
template<typename TO> inline TO convert_to(const Pointf &src) { return TO(typename TO::coord_type(src.x), typename TO::coord_type(src.y)); }
template<typename TO> inline TO convert_to(const Point3 &src) { return TO(typename TO::coord_type(src.x), typename TO::coord_type(src.y), typename TO::coord_type(src.z)); }
template<typename TO> inline TO convert_to(const Pointf3 &src) { return TO(typename TO::coord_type(src.x), typename TO::coord_type(src.y), typename TO::coord_type(src.z)); }
} // namespace Slic3r
// start Boost
#include <boost/version.hpp>
#include <boost/polygon/polygon.hpp>
namespace boost { namespace polygon {
template <>
struct geometry_concept<coord_t> { typedef coordinate_concept type; };
/* Boost.Polygon already defines a specialization for coordinate_traits<long> as of 1.60:
https://github.com/boostorg/polygon/commit/0ac7230dd1f8f34cb12b86c8bb121ae86d3d9b97 */
#if BOOST_VERSION < 106000
template <>
struct coordinate_traits<coord_t> {
typedef coord_t coordinate_type;
typedef long double area_type;
typedef long long manhattan_area_type;
typedef unsigned long long unsigned_area_type;
typedef long long coordinate_difference;
typedef long double coordinate_distance;
};
#endif
template <>
struct geometry_concept<Slic3r::Point> { typedef point_concept type; };
template <>
struct point_traits<Slic3r::Point> {
typedef coord_t coordinate_type;
static inline coordinate_type get(const Slic3r::Point& point, orientation_2d orient) {
return (orient == HORIZONTAL) ? point.x : point.y;
}
};
template <>
struct point_mutable_traits<Slic3r::Point> {
typedef coord_t coordinate_type;
static inline void set(Slic3r::Point& point, orientation_2d orient, coord_t value) {
if (orient == HORIZONTAL)
point.x = value;
else
point.y = value;
}
static inline Slic3r::Point construct(coord_t x_value, coord_t y_value) {
Slic3r::Point retval;
retval.x = x_value;
retval.y = y_value;
return retval;
}
};
} }
// end Boost
#endif