PrusaSlicer-NonPlainar/xs/src/libslic3r/ExPolygon.cpp
2015-12-08 00:39:54 +01:00

429 lines
13 KiB
C++

#include "BoundingBox.hpp"
#include "ExPolygon.hpp"
#include "Geometry.hpp"
#include "Polygon.hpp"
#include "Line.hpp"
#include "ClipperUtils.hpp"
#include "polypartition.h"
#include "poly2tri/poly2tri.h"
#include <algorithm>
#include <list>
namespace Slic3r {
ExPolygon::operator Points() const
{
Points points;
Polygons pp = *this;
for (Polygons::const_iterator poly = pp.begin(); poly != pp.end(); ++poly) {
for (Points::const_iterator point = poly->points.begin(); point != poly->points.end(); ++point)
points.push_back(*point);
}
return points;
}
ExPolygon::operator Polygons() const
{
Polygons polygons;
polygons.reserve(this->holes.size() + 1);
polygons.push_back(this->contour);
for (Polygons::const_iterator it = this->holes.begin(); it != this->holes.end(); ++it) {
polygons.push_back(*it);
}
return polygons;
}
void
ExPolygon::scale(double factor)
{
contour.scale(factor);
for (Polygons::iterator it = holes.begin(); it != holes.end(); ++it) {
(*it).scale(factor);
}
}
void
ExPolygon::translate(double x, double y)
{
contour.translate(x, y);
for (Polygons::iterator it = holes.begin(); it != holes.end(); ++it) {
(*it).translate(x, y);
}
}
void
ExPolygon::rotate(double angle, const Point &center)
{
contour.rotate(angle, center);
for (Polygons::iterator it = holes.begin(); it != holes.end(); ++it) {
(*it).rotate(angle, center);
}
}
double
ExPolygon::area() const
{
double a = this->contour.area();
for (Polygons::const_iterator it = this->holes.begin(); it != this->holes.end(); ++it) {
a -= -(*it).area(); // holes have negative area
}
return a;
}
bool
ExPolygon::is_valid() const
{
if (!this->contour.is_valid() || !this->contour.is_counter_clockwise()) return false;
for (Polygons::const_iterator it = this->holes.begin(); it != this->holes.end(); ++it) {
if (!(*it).is_valid() || (*it).is_counter_clockwise()) return false;
}
return true;
}
bool
ExPolygon::contains(const Line &line) const
{
return this->contains((Polyline)line);
}
bool
ExPolygon::contains(const Polyline &polyline) const
{
Polylines pl_out;
diff((Polylines)polyline, *this, &pl_out);
return pl_out.empty();
}
bool
ExPolygon::contains(const Point &point) const
{
if (!this->contour.contains(point)) return false;
for (Polygons::const_iterator it = this->holes.begin(); it != this->holes.end(); ++it) {
if (it->contains(point)) return false;
}
return true;
}
// inclusive version of contains() that also checks whether point is on boundaries
bool
ExPolygon::contains_b(const Point &point) const
{
return this->contains(point) || this->has_boundary_point(point);
}
bool
ExPolygon::has_boundary_point(const Point &point) const
{
if (this->contour.has_boundary_point(point)) return true;
for (Polygons::const_iterator h = this->holes.begin(); h != this->holes.end(); ++h) {
if (h->has_boundary_point(point)) return true;
}
return false;
}
void
ExPolygon::simplify_p(double tolerance, Polygons* polygons) const
{
Polygons pp = this->simplify_p(tolerance);
polygons->insert(polygons->end(), pp.begin(), pp.end());
}
Polygons
ExPolygon::simplify_p(double tolerance) const
{
Polygons pp;
pp.reserve(this->holes.size() + 1);
// contour
{
Polygon p = this->contour;
p.points.push_back(p.points.front());
p.points = MultiPoint::_douglas_peucker(p.points, tolerance);
p.points.pop_back();
pp.push_back(p);
}
// holes
for (Polygons::const_iterator it = this->holes.begin(); it != this->holes.end(); ++it) {
Polygon p = *it;
p.points.push_back(p.points.front());
p.points = MultiPoint::_douglas_peucker(p.points, tolerance);
p.points.pop_back();
pp.push_back(p);
}
simplify_polygons(pp, &pp);
return pp;
}
ExPolygons
ExPolygon::simplify(double tolerance) const
{
Polygons pp = this->simplify_p(tolerance);
ExPolygons expp;
union_(pp, &expp);
return expp;
}
void
ExPolygon::simplify(double tolerance, ExPolygons &expolygons) const
{
ExPolygons ep = this->simplify(tolerance);
expolygons.reserve(expolygons.size() + ep.size());
expolygons.insert(expolygons.end(), ep.begin(), ep.end());
}
void
ExPolygon::medial_axis(double max_width, double min_width, Polylines* polylines) const
{
// init helper object
Slic3r::Geometry::MedialAxis ma(max_width, min_width);
// populate list of segments for the Voronoi diagram
ma.lines = this->contour.lines();
for (Polygons::const_iterator hole = this->holes.begin(); hole != this->holes.end(); ++hole) {
Lines lines = hole->lines();
ma.lines.insert(ma.lines.end(), lines.begin(), lines.end());
}
// compute the Voronoi diagram
Polylines pp;
ma.build(&pp);
// clip segments to our expolygon area
// (do this before extending endpoints as external segments coule be extended into
// expolygon, this leaving wrong things inside)
pp = intersection(pp, *this);
// extend initial and final segments of each polyline (they will be clipped)
// unless they represent closed loops
for (Polylines::iterator polyline = pp.begin(); polyline != pp.end(); ++polyline) {
if (polyline->points.front().distance_to(polyline->points.back()) < min_width) continue;
// TODO: we should *not* extend endpoints where other polylines start/end
// (such as T joints, which are returned as three polylines by MedialAxis)
polyline->extend_start(max_width);
polyline->extend_end(max_width);
}
// clip again after extending endpoints to prevent them from exceeding the expolygon boundaries
pp = intersection(pp, *this);
// remove too short polylines
// (we can't do this check before endpoints extension and clipping because we don't
// know how long will the endpoints be extended since it depends on polygon thickness
// which is variable - extension will be <= max_width/2 on each side)
for (size_t i = 0; i < pp.size(); ++i) {
if (pp[i].length() < max_width) {
pp.erase(pp.begin() + i);
--i;
}
}
polylines->insert(polylines->end(), pp.begin(), pp.end());
}
void
ExPolygon::get_trapezoids(Polygons* polygons) const
{
ExPolygons expp;
expp.push_back(*this);
boost::polygon::get_trapezoids(*polygons, expp);
}
void
ExPolygon::get_trapezoids(Polygons* polygons, double angle) const
{
ExPolygon clone = *this;
clone.rotate(PI/2 - angle, Point(0,0));
clone.get_trapezoids(polygons);
for (Polygons::iterator polygon = polygons->begin(); polygon != polygons->end(); ++polygon)
polygon->rotate(-(PI/2 - angle), Point(0,0));
}
// This algorithm may return more trapezoids than necessary
// (i.e. it may break a single trapezoid in several because
// other parts of the object have x coordinates in the middle)
void
ExPolygon::get_trapezoids2(Polygons* polygons) const
{
// get all points of this ExPolygon
Points pp = *this;
// build our bounding box
BoundingBox bb(pp);
// get all x coordinates
std::vector<coord_t> xx;
xx.reserve(pp.size());
for (Points::const_iterator p = pp.begin(); p != pp.end(); ++p)
xx.push_back(p->x);
std::sort(xx.begin(), xx.end());
// find trapezoids by looping from first to next-to-last coordinate
for (std::vector<coord_t>::const_iterator x = xx.begin(); x != xx.end()-1; ++x) {
coord_t next_x = *(x + 1);
if (*x == next_x) continue;
// build rectangle
Polygon poly;
poly.points.resize(4);
poly[0].x = *x;
poly[0].y = bb.min.y;
poly[1].x = next_x;
poly[1].y = bb.min.y;
poly[2].x = next_x;
poly[2].y = bb.max.y;
poly[3].x = *x;
poly[3].y = bb.max.y;
// intersect with this expolygon
Polygons trapezoids;
intersection<Polygons,Polygons>(poly, *this, &trapezoids);
// append results to return value
polygons->insert(polygons->end(), trapezoids.begin(), trapezoids.end());
}
}
void
ExPolygon::get_trapezoids2(Polygons* polygons, double angle) const
{
ExPolygon clone = *this;
clone.rotate(PI/2 - angle, Point(0,0));
clone.get_trapezoids2(polygons);
for (Polygons::iterator polygon = polygons->begin(); polygon != polygons->end(); ++polygon)
polygon->rotate(-(PI/2 - angle), Point(0,0));
}
// While this triangulates successfully, it's NOT a constrained triangulation
// as it will create more vertices on the boundaries than the ones supplied.
void
ExPolygon::triangulate(Polygons* polygons) const
{
// first make trapezoids
Polygons trapezoids;
this->get_trapezoids2(&trapezoids);
// then triangulate each trapezoid
for (Polygons::iterator polygon = trapezoids.begin(); polygon != trapezoids.end(); ++polygon)
polygon->triangulate_convex(polygons);
}
void
ExPolygon::triangulate_pp(Polygons* polygons) const
{
// convert polygons
std::list<TPPLPoly> input;
Polygons pp = *this;
simplify_polygons(pp, &pp, true);
ExPolygons expp;
union_(pp, &expp);
for (ExPolygons::const_iterator ex = expp.begin(); ex != expp.end(); ++ex) {
// contour
{
TPPLPoly p;
p.Init(ex->contour.points.size());
//printf("%zu\n0\n", ex->contour.points.size());
for (Points::const_iterator point = ex->contour.points.begin(); point != ex->contour.points.end(); ++point) {
p[ point-ex->contour.points.begin() ].x = point->x;
p[ point-ex->contour.points.begin() ].y = point->y;
//printf("%ld %ld\n", point->x, point->y);
}
p.SetHole(false);
input.push_back(p);
}
// holes
for (Polygons::const_iterator hole = ex->holes.begin(); hole != ex->holes.end(); ++hole) {
TPPLPoly p;
p.Init(hole->points.size());
//printf("%zu\n1\n", hole->points.size());
for (Points::const_iterator point = hole->points.begin(); point != hole->points.end(); ++point) {
p[ point-hole->points.begin() ].x = point->x;
p[ point-hole->points.begin() ].y = point->y;
//printf("%ld %ld\n", point->x, point->y);
}
p.SetHole(true);
input.push_back(p);
}
}
// perform triangulation
std::list<TPPLPoly> output;
int res = TPPLPartition().Triangulate_MONO(&input, &output);
if (res != 1) CONFESS("Triangulation failed");
// convert output polygons
for (std::list<TPPLPoly>::iterator poly = output.begin(); poly != output.end(); ++poly) {
long num_points = poly->GetNumPoints();
Polygon p;
p.points.resize(num_points);
for (long i = 0; i < num_points; ++i) {
p.points[i].x = (*poly)[i].x;
p.points[i].y = (*poly)[i].y;
}
polygons->push_back(p);
}
}
void
ExPolygon::triangulate_p2t(Polygons* polygons) const
{
ExPolygons expp;
simplify_polygons(*this, &expp, true);
for (ExPolygons::const_iterator ex = expp.begin(); ex != expp.end(); ++ex) {
// TODO: prevent duplicate points
// contour
std::vector<p2t::Point*> ContourPoints;
for (Points::const_iterator point = ex->contour.points.begin(); point != ex->contour.points.end(); ++point) {
// We should delete each p2t::Point object
ContourPoints.push_back(new p2t::Point(point->x, point->y));
}
p2t::CDT cdt(ContourPoints);
// holes
for (Polygons::const_iterator hole = ex->holes.begin(); hole != ex->holes.end(); ++hole) {
std::vector<p2t::Point*> points;
for (Points::const_iterator point = hole->points.begin(); point != hole->points.end(); ++point) {
// will be destructed in SweepContext::~SweepContext
points.push_back(new p2t::Point(point->x, point->y));
}
cdt.AddHole(points);
}
// perform triangulation
cdt.Triangulate();
std::vector<p2t::Triangle*> triangles = cdt.GetTriangles();
for (std::vector<p2t::Triangle*>::const_iterator triangle = triangles.begin(); triangle != triangles.end(); ++triangle) {
Polygon p;
for (int i = 0; i <= 2; ++i) {
p2t::Point* point = (*triangle)->GetPoint(i);
p.points.push_back(Point(point->x, point->y));
}
polygons->push_back(p);
}
for(std::vector<p2t::Point*>::iterator it = ContourPoints.begin(); it != ContourPoints.end(); ++it) {
delete *it;
}
}
}
Lines
ExPolygon::lines() const
{
Lines lines = this->contour.lines();
for (Polygons::const_iterator h = this->holes.begin(); h != this->holes.end(); ++h) {
Lines hole_lines = h->lines();
lines.insert(lines.end(), hole_lines.begin(), hole_lines.end());
}
return lines;
}
}