395 lines
14 KiB
C++
395 lines
14 KiB
C++
#include "BoundingBox.hpp"
|
|
#include "MotionPlanner.hpp"
|
|
#include <limits> // for numeric_limits
|
|
|
|
#include "boost/polygon/voronoi.hpp"
|
|
using boost::polygon::voronoi_builder;
|
|
using boost::polygon::voronoi_diagram;
|
|
|
|
namespace Slic3r {
|
|
|
|
MotionPlanner::MotionPlanner(const ExPolygons &islands)
|
|
: islands(islands), initialized(false)
|
|
{}
|
|
|
|
MotionPlanner::~MotionPlanner()
|
|
{
|
|
for (std::vector<MotionPlannerGraph*>::iterator graph = this->graphs.begin(); graph != this->graphs.end(); ++graph)
|
|
delete *graph;
|
|
}
|
|
|
|
size_t
|
|
MotionPlanner::islands_count() const
|
|
{
|
|
return this->islands.size();
|
|
}
|
|
|
|
void
|
|
MotionPlanner::initialize()
|
|
{
|
|
if (this->initialized) return;
|
|
if (this->islands.empty()) return; // prevent initialization of empty BoundingBox
|
|
|
|
ExPolygons expp;
|
|
for (ExPolygons::const_iterator island = this->islands.begin(); island != this->islands.end(); ++island) {
|
|
island->simplify(SCALED_EPSILON, expp);
|
|
}
|
|
this->islands = expp;
|
|
|
|
// loop through islands in order to create inner expolygons and collect their contours
|
|
this->inner.reserve(this->islands.size());
|
|
Polygons outer_holes;
|
|
for (ExPolygons::const_iterator island = this->islands.begin(); island != this->islands.end(); ++island) {
|
|
this->inner.push_back(ExPolygonCollection());
|
|
offset(*island, &this->inner.back().expolygons, -MP_INNER_MARGIN);
|
|
|
|
outer_holes.push_back(island->contour);
|
|
}
|
|
|
|
// grow island contours in order to prepare holes of the outer environment
|
|
// This is actually wrong because it might merge contours that are close,
|
|
// thus confusing the island check in shortest_path() below
|
|
//offset(outer_holes, &outer_holes, +MP_OUTER_MARGIN);
|
|
|
|
// generate outer contour as bounding box of everything
|
|
Points points;
|
|
for (Polygons::const_iterator contour = outer_holes.begin(); contour != outer_holes.end(); ++contour)
|
|
points.insert(points.end(), contour->points.begin(), contour->points.end());
|
|
BoundingBox bb(points);
|
|
|
|
// grow outer contour
|
|
Polygons contour;
|
|
offset(bb.polygon(), &contour, +MP_OUTER_MARGIN);
|
|
assert(contour.size() == 1);
|
|
|
|
// make expolygon for outer environment
|
|
ExPolygons outer;
|
|
diff(contour, outer_holes, &outer);
|
|
assert(outer.size() == 1);
|
|
this->outer = outer.front();
|
|
|
|
this->graphs.resize(this->islands.size() + 1, NULL);
|
|
this->initialized = true;
|
|
}
|
|
|
|
ExPolygonCollection
|
|
MotionPlanner::get_env(int island_idx) const
|
|
{
|
|
if (island_idx == -1) {
|
|
return ExPolygonCollection(this->outer);
|
|
} else {
|
|
return this->inner[island_idx];
|
|
}
|
|
}
|
|
|
|
Polyline
|
|
MotionPlanner::shortest_path(const Point &from, const Point &to)
|
|
{
|
|
// lazy generation of configuration space
|
|
if (!this->initialized) this->initialize();
|
|
|
|
// if we have an empty configuration space, return a straight move
|
|
if (this->islands.empty()) {
|
|
Polyline p;
|
|
p.points.push_back(from);
|
|
p.points.push_back(to);
|
|
return p;
|
|
}
|
|
|
|
// Are both points in the same island?
|
|
int island_idx = -1;
|
|
for (ExPolygons::const_iterator island = this->islands.begin(); island != this->islands.end(); ++island) {
|
|
if (island->contains(from) && island->contains(to)) {
|
|
// since both points are in the same island, is a direct move possible?
|
|
// if so, we avoid generating the visibility environment
|
|
if (island->contains(Line(from, to))) {
|
|
Polyline p;
|
|
p.points.push_back(from);
|
|
p.points.push_back(to);
|
|
return p;
|
|
}
|
|
island_idx = island - this->islands.begin();
|
|
break;
|
|
}
|
|
}
|
|
|
|
// get environment
|
|
ExPolygonCollection env = this->get_env(island_idx);
|
|
if (env.expolygons.empty()) {
|
|
// if this environment is empty (probably because it's too small), perform straight move
|
|
// and avoid running the algorithms on empty dataset
|
|
Polyline p;
|
|
p.points.push_back(from);
|
|
p.points.push_back(to);
|
|
return p; // bye bye
|
|
}
|
|
|
|
// Now check whether points are inside the environment.
|
|
Point inner_from = from;
|
|
Point inner_to = to;
|
|
|
|
if (!env.contains(from)) {
|
|
// Find the closest inner point to start from.
|
|
inner_from = this->nearest_env_point(env, from, to);
|
|
}
|
|
if (!env.contains(to)) {
|
|
// Find the closest inner point to start from.
|
|
inner_to = this->nearest_env_point(env, to, inner_from);
|
|
}
|
|
|
|
// perform actual path search
|
|
MotionPlannerGraph* graph = this->init_graph(island_idx);
|
|
Polyline polyline = graph->shortest_path(graph->find_node(inner_from), graph->find_node(inner_to));
|
|
|
|
polyline.points.insert(polyline.points.begin(), from);
|
|
polyline.points.push_back(to);
|
|
|
|
{
|
|
// grow our environment slightly in order for simplify_by_visibility()
|
|
// to work best by considering moves on boundaries valid as well
|
|
ExPolygonCollection grown_env;
|
|
offset(env, &grown_env.expolygons, +SCALED_EPSILON);
|
|
|
|
// remove unnecessary vertices
|
|
polyline.simplify_by_visibility(grown_env);
|
|
}
|
|
|
|
/*
|
|
SVG svg("shortest_path.svg");
|
|
svg.draw(this->outer);
|
|
svg.arrows = false;
|
|
for (MotionPlannerGraph::adjacency_list_t::const_iterator it = graph->adjacency_list.begin(); it != graph->adjacency_list.end(); ++it) {
|
|
Point a = graph->nodes[it - graph->adjacency_list.begin()];
|
|
for (std::vector<MotionPlannerGraph::neighbor>::const_iterator n = it->begin(); n != it->end(); ++n) {
|
|
Point b = graph->nodes[n->target];
|
|
svg.draw(Line(a, b));
|
|
}
|
|
}
|
|
svg.arrows = true;
|
|
svg.draw(from);
|
|
svg.draw(inner_from, "red");
|
|
svg.draw(to);
|
|
svg.draw(inner_to, "red");
|
|
svg.draw(*polyline, "red");
|
|
svg.Close();
|
|
*/
|
|
|
|
return polyline;
|
|
}
|
|
|
|
Point
|
|
MotionPlanner::nearest_env_point(const ExPolygonCollection &env, const Point &from, const Point &to) const
|
|
{
|
|
/* In order to ensure that the move between 'from' and the initial env point does
|
|
not violate any of the configuration space boundaries, we limit our search to
|
|
the points that satisfy this condition. */
|
|
|
|
/* Assume that this method is never called when 'env' contains 'from';
|
|
so 'from' is either inside a hole or outside all contours */
|
|
|
|
// get the points of the hole containing 'from', if any
|
|
Points pp;
|
|
for (ExPolygons::const_iterator ex = env.expolygons.begin(); ex != env.expolygons.end(); ++ex) {
|
|
for (Polygons::const_iterator h = ex->holes.begin(); h != ex->holes.end(); ++h) {
|
|
if (h->contains(from)) {
|
|
pp = *h;
|
|
}
|
|
}
|
|
if (!pp.empty()) break;
|
|
}
|
|
|
|
/* If 'from' is not inside a hole, it's outside of all contours, so take all
|
|
contours' points */
|
|
if (pp.empty()) {
|
|
for (ExPolygons::const_iterator ex = env.expolygons.begin(); ex != env.expolygons.end(); ++ex) {
|
|
Points contour_pp = ex->contour;
|
|
pp.insert(pp.end(), contour_pp.begin(), contour_pp.end());
|
|
}
|
|
}
|
|
|
|
/* Find the candidate result and check that it doesn't cross any boundary.
|
|
(We could skip all of the above polygon finding logic and directly test all points
|
|
in env, but this way we probably reduce complexity). */
|
|
Polygons env_pp = env;
|
|
while (pp.size() >= 2) {
|
|
// find the point in pp that is closest to both 'from' and 'to'
|
|
size_t result = from.nearest_waypoint_index(pp, to);
|
|
|
|
if (intersects((Lines)Line(from, pp[result]), env_pp)) {
|
|
// discard result
|
|
pp.erase(pp.begin() + result);
|
|
} else {
|
|
return pp[result];
|
|
}
|
|
}
|
|
|
|
// if we're here, return last point if any (better than nothing)
|
|
if (!pp.empty()) return pp.front();
|
|
|
|
// if we have no points at all, then we have an empty environment and we
|
|
// make this method behave as a no-op (we shouldn't get here by the way)
|
|
return from;
|
|
}
|
|
|
|
MotionPlannerGraph*
|
|
MotionPlanner::init_graph(int island_idx)
|
|
{
|
|
if (this->graphs[island_idx + 1] == NULL) {
|
|
// if this graph doesn't exist, initialize it
|
|
MotionPlannerGraph* graph = this->graphs[island_idx + 1] = new MotionPlannerGraph();
|
|
|
|
/* We don't add polygon boundaries as graph edges, because we'd need to connect
|
|
them to the Voronoi-generated edges by recognizing coinciding nodes. */
|
|
|
|
typedef voronoi_diagram<double> VD;
|
|
VD vd;
|
|
|
|
// mapping between Voronoi vertices and graph nodes
|
|
typedef std::map<const VD::vertex_type*,size_t> t_vd_vertices;
|
|
t_vd_vertices vd_vertices;
|
|
|
|
// get boundaries as lines
|
|
ExPolygonCollection env = this->get_env(island_idx);
|
|
Lines lines = env.lines();
|
|
boost::polygon::construct_voronoi(lines.begin(), lines.end(), &vd);
|
|
|
|
// traverse the Voronoi diagram and generate graph nodes and edges
|
|
for (VD::const_edge_iterator edge = vd.edges().begin(); edge != vd.edges().end(); ++edge) {
|
|
if (edge->is_infinite()) continue;
|
|
|
|
const VD::vertex_type* v0 = edge->vertex0();
|
|
const VD::vertex_type* v1 = edge->vertex1();
|
|
Point p0 = Point(v0->x(), v0->y());
|
|
Point p1 = Point(v1->x(), v1->y());
|
|
|
|
// skip edge if any of its endpoints is outside our configuration space
|
|
if (!env.contains_b(p0) || !env.contains_b(p1)) continue;
|
|
|
|
t_vd_vertices::const_iterator i_v0 = vd_vertices.find(v0);
|
|
size_t v0_idx;
|
|
if (i_v0 == vd_vertices.end()) {
|
|
graph->nodes.push_back(p0);
|
|
vd_vertices[v0] = v0_idx = graph->nodes.size()-1;
|
|
} else {
|
|
v0_idx = i_v0->second;
|
|
}
|
|
|
|
t_vd_vertices::const_iterator i_v1 = vd_vertices.find(v1);
|
|
size_t v1_idx;
|
|
if (i_v1 == vd_vertices.end()) {
|
|
graph->nodes.push_back(p1);
|
|
vd_vertices[v1] = v1_idx = graph->nodes.size()-1;
|
|
} else {
|
|
v1_idx = i_v1->second;
|
|
}
|
|
|
|
// Euclidean distance is used as weight for the graph edge
|
|
double dist = graph->nodes[v0_idx].distance_to(graph->nodes[v1_idx]);
|
|
graph->add_edge(v0_idx, v1_idx, dist);
|
|
}
|
|
|
|
return graph;
|
|
}
|
|
return this->graphs[island_idx + 1];
|
|
}
|
|
|
|
void
|
|
MotionPlannerGraph::add_edge(size_t from, size_t to, double weight)
|
|
{
|
|
// extend adjacency list until this start node
|
|
if (this->adjacency_list.size() < from+1)
|
|
this->adjacency_list.resize(from+1);
|
|
|
|
this->adjacency_list[from].push_back(neighbor(to, weight));
|
|
}
|
|
|
|
size_t
|
|
MotionPlannerGraph::find_node(const Point &point) const
|
|
{
|
|
/*
|
|
for (Points::const_iterator p = this->nodes.begin(); p != this->nodes.end(); ++p) {
|
|
if (p->coincides_with(point)) return p - this->nodes.begin();
|
|
}
|
|
*/
|
|
return point.nearest_point_index(this->nodes);
|
|
}
|
|
|
|
Polyline
|
|
MotionPlannerGraph::shortest_path(size_t from, size_t to)
|
|
{
|
|
// this prevents a crash in case for some reason we got here with an empty adjacency list
|
|
if (this->adjacency_list.empty()) return Polyline();
|
|
|
|
const weight_t max_weight = std::numeric_limits<weight_t>::infinity();
|
|
|
|
std::vector<weight_t> dist;
|
|
std::vector<node_t> previous;
|
|
{
|
|
// number of nodes
|
|
size_t n = this->adjacency_list.size();
|
|
|
|
// initialize dist and previous
|
|
dist.clear();
|
|
dist.resize(n, max_weight);
|
|
dist[from] = 0; // distance from 'from' to itself
|
|
previous.clear();
|
|
previous.resize(n, -1);
|
|
|
|
// initialize the Q with all nodes
|
|
std::set<node_t> Q;
|
|
for (node_t i = 0; i < n; ++i) Q.insert(i);
|
|
|
|
while (!Q.empty())
|
|
{
|
|
// get node in Q having the minimum dist ('from' in the first loop)
|
|
node_t u;
|
|
{
|
|
double min_dist = -1;
|
|
for (std::set<node_t>::const_iterator n = Q.begin(); n != Q.end(); ++n) {
|
|
if (dist[*n] < min_dist || min_dist == -1) {
|
|
u = *n;
|
|
min_dist = dist[*n];
|
|
}
|
|
}
|
|
}
|
|
Q.erase(u);
|
|
|
|
// stop searching if we reached our destination
|
|
if (u == to) break;
|
|
|
|
// Visit each edge starting from node u
|
|
const std::vector<neighbor> &neighbors = this->adjacency_list[u];
|
|
for (std::vector<neighbor>::const_iterator neighbor_iter = neighbors.begin();
|
|
neighbor_iter != neighbors.end();
|
|
++neighbor_iter)
|
|
{
|
|
// neighbor node is v
|
|
node_t v = neighbor_iter->target;
|
|
|
|
// skip if we already visited this
|
|
if (Q.find(v) == Q.end()) continue;
|
|
|
|
// calculate total distance
|
|
weight_t alt = dist[u] + neighbor_iter->weight;
|
|
|
|
// if total distance through u is shorter than the previous
|
|
// distance (if any) between 'from' and 'v', replace it
|
|
if (alt < dist[v]) {
|
|
dist[v] = alt;
|
|
previous[v] = u;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
Polyline polyline;
|
|
for (node_t vertex = to; vertex != -1; vertex = previous[vertex])
|
|
polyline.points.push_back(this->nodes[vertex]);
|
|
polyline.points.push_back(this->nodes[from]);
|
|
polyline.reverse();
|
|
return polyline;
|
|
}
|
|
|
|
}
|