970 lines
42 KiB
Perl
970 lines
42 KiB
Perl
package Slic3r::Print;
|
||
use Moo;
|
||
|
||
use File::Basename qw(basename fileparse);
|
||
use File::Spec;
|
||
use List::Util qw(min max first);
|
||
use Math::ConvexHull::MonotoneChain qw(convex_hull);
|
||
use Slic3r::ExtrusionPath ':roles';
|
||
use Slic3r::Geometry qw(X Y Z X1 Y1 X2 Y2 MIN MAX PI scale unscale move_points chained_path);
|
||
use Slic3r::Geometry::Clipper qw(diff_ex union_ex union_pt intersection_ex intersection offset
|
||
offset2 traverse_pt JT_ROUND JT_SQUARE);
|
||
use Time::HiRes qw(gettimeofday tv_interval);
|
||
|
||
has 'config' => (is => 'rw', default => sub { Slic3r::Config->new_from_defaults }, trigger => 1);
|
||
has 'extra_variables' => (is => 'rw', default => sub {{}});
|
||
has 'objects' => (is => 'rw', default => sub {[]});
|
||
has 'processing_time' => (is => 'rw');
|
||
has 'extruders' => (is => 'rw', default => sub {[]});
|
||
has 'regions' => (is => 'rw', default => sub {[]});
|
||
has 'support_material_flow' => (is => 'rw');
|
||
has 'first_layer_support_material_flow' => (is => 'rw');
|
||
has 'has_support_material' => (is => 'lazy');
|
||
|
||
# ordered collection of extrusion paths to build skirt loops
|
||
has 'skirt' => (is => 'rw', default => sub { Slic3r::ExtrusionPath::Collection->new });
|
||
|
||
# ordered collection of extrusion paths to build a brim
|
||
has 'brim' => (is => 'rw', default => sub { Slic3r::ExtrusionPath::Collection->new });
|
||
|
||
sub BUILD {
|
||
my $self = shift;
|
||
|
||
# call this manually because the 'default' coderef doesn't trigger the trigger
|
||
$self->_trigger_config;
|
||
}
|
||
|
||
sub _trigger_config {
|
||
my $self = shift;
|
||
|
||
# store config in a handy place
|
||
$Slic3r::Config = $self->config;
|
||
|
||
# legacy with existing config files
|
||
$self->config->set('first_layer_height', $self->config->layer_height)
|
||
if !$self->config->first_layer_height;
|
||
$self->config->set_ifndef('small_perimeter_speed', $self->config->perimeter_speed);
|
||
$self->config->set_ifndef('bridge_speed', $self->config->infill_speed);
|
||
$self->config->set_ifndef('solid_infill_speed', $self->config->infill_speed);
|
||
$self->config->set_ifndef('top_solid_infill_speed', $self->config->solid_infill_speed);
|
||
$self->config->set_ifndef('top_solid_layers', $self->config->solid_layers);
|
||
$self->config->set_ifndef('bottom_solid_layers', $self->config->solid_layers);
|
||
|
||
# G-code flavors
|
||
$self->config->set('extrusion_axis', 'A') if $self->config->gcode_flavor eq 'mach3';
|
||
$self->config->set('extrusion_axis', '') if $self->config->gcode_flavor eq 'no-extrusion';
|
||
|
||
# enforce some settings when spiral_vase is set
|
||
if ($self->config->spiral_vase) {
|
||
$self->config->set('perimeters', 1);
|
||
$self->config->set('fill_density', 0);
|
||
$self->config->set('top_solid_layers', 0);
|
||
$self->config->set('support_material', 0);
|
||
$self->config->set('support_material_enforce_layers', 0);
|
||
$self->config->set('retract_layer_change', [0]); # TODO: only apply this to the spiral layers
|
||
}
|
||
|
||
# force all retraction lift values to be the same
|
||
$self->config->set('retract_lift', [ map $self->config->retract_lift->[0], @{$self->config->retract_lift} ]);
|
||
}
|
||
|
||
sub _build_has_support_material {
|
||
my $self = shift;
|
||
return (first { $_->config->support_material } @{$self->objects})
|
||
|| (first { $_->config->raft_layers > 0 } @{$self->objects})
|
||
|| (first { $_->config->support_material_enforce_layers > 0 } @{$self->objects});
|
||
}
|
||
|
||
# caller is responsible for supplying models whose objects don't collide
|
||
# and have explicit instance positions
|
||
sub add_model {
|
||
my $self = shift;
|
||
my ($model) = @_;
|
||
|
||
# optimization: if avoid_crossing_perimeters is enabled, split
|
||
# this mesh into distinct objects so that we reduce the complexity
|
||
# of the graphs
|
||
# -- Disabling this one because there are too many legit objects having nested shells
|
||
# -- It also caused a bug where plater rotation was applied to each single object by the
|
||
# -- code below (thus around its own center), instead of being applied to the whole
|
||
# -- thing before the split.
|
||
###$model->split_meshes if $Slic3r::Config->avoid_crossing_perimeters && !$Slic3r::Config->complete_objects;
|
||
|
||
my %unmapped_materials = ();
|
||
foreach my $object (@{ $model->objects }) {
|
||
# we align object to origin before applying transformations
|
||
my @align = $object->align_to_origin;
|
||
|
||
# extract meshes by material
|
||
my @meshes = (); # by region_id
|
||
foreach my $volume (@{$object->volumes}) {
|
||
my $region_id;
|
||
if (defined $volume->material_id) {
|
||
if ($object->material_mapping) {
|
||
$region_id = $object->material_mapping->{$volume->material_id} - 1
|
||
if defined $object->material_mapping->{$volume->material_id};
|
||
}
|
||
$region_id //= $unmapped_materials{$volume->material_id};
|
||
if (!defined $region_id) {
|
||
$region_id = $unmapped_materials{$volume->material_id} = scalar(keys %unmapped_materials);
|
||
}
|
||
}
|
||
$region_id //= 0;
|
||
|
||
my $mesh = $volume->mesh->clone;
|
||
# should the object contain multiple volumes of the same material, merge them
|
||
$meshes[$region_id] = $meshes[$region_id]
|
||
? Slic3r::TriangleMesh->merge($meshes[$region_id], $mesh)
|
||
: $mesh;
|
||
}
|
||
$self->regions->[$_] //= Slic3r::Print::Region->new for 0..$#meshes;
|
||
|
||
foreach my $mesh (grep $_, @meshes) {
|
||
# the order of these transformations must be the same as the one used in plater
|
||
# to make the object positioning consistent with the visual preview
|
||
|
||
# we ignore the per-instance transformations currently and only
|
||
# consider the first one
|
||
if ($object->instances && @{$object->instances}) {
|
||
$mesh->rotate($object->instances->[0]->rotation, $object->center_2D);
|
||
$mesh->scale($object->instances->[0]->scaling_factor);
|
||
}
|
||
|
||
$mesh->scale(1 / &Slic3r::SCALING_FACTOR);
|
||
$mesh->repair;
|
||
}
|
||
|
||
# we also align object after transformations so that we only work with positive coordinates
|
||
# and the assumption that bounding_box === size works
|
||
my $bb = Slic3r::Geometry::BoundingBox->merge(map $_->bounding_box, grep $_, @meshes);
|
||
my @align2 = map -$bb->extents->[$_][MIN], (X,Y,Z);
|
||
$_->translate(@align2) for grep $_, @meshes;
|
||
|
||
# initialize print object
|
||
push @{$self->objects}, Slic3r::Print::Object->new(
|
||
print => $self,
|
||
meshes => [ @meshes ],
|
||
copies => [
|
||
map Slic3r::Point->new(@$_),
|
||
$object->instances
|
||
? (map [ scale($_->offset->[X] - $align[X]) - $align2[X], scale($_->offset->[Y] - $align[Y]) - $align2[Y] ], @{$object->instances})
|
||
: [0,0],
|
||
],
|
||
size => $bb->size, # transformed size
|
||
input_file => $object->input_file,
|
||
config_overrides => $object->config,
|
||
layer_height_ranges => $object->layer_height_ranges,
|
||
);
|
||
}
|
||
|
||
if (!defined $self->extra_variables->{input_filename}) {
|
||
if (defined (my $input_file = $self->objects->[0]->input_file)) {
|
||
@{$self->extra_variables}{qw(input_filename input_filename_base)} = parse_filename($input_file);
|
||
}
|
||
}
|
||
}
|
||
|
||
sub validate {
|
||
my $self = shift;
|
||
|
||
if ($Slic3r::Config->complete_objects) {
|
||
# check horizontal clearance
|
||
{
|
||
my @a = ();
|
||
for my $obj_idx (0 .. $#{$self->objects}) {
|
||
my $clearance;
|
||
{
|
||
my @points = map [ @$_[X,Y] ], map @{$_->vertices}, @{$self->objects->[$obj_idx]->meshes};
|
||
my $convex_hull = Slic3r::Polygon->new(@{convex_hull(\@points)});
|
||
($clearance) = @{offset([$convex_hull], scale $Slic3r::Config->extruder_clearance_radius / 2, 1, JT_ROUND)};
|
||
}
|
||
for my $copy (@{$self->objects->[$obj_idx]->copies}) {
|
||
my $copy_clearance = $clearance->clone;
|
||
$copy_clearance->translate(@$copy);
|
||
if (@{ intersection(\@a, [$copy_clearance]) }) {
|
||
die "Some objects are too close; your extruder will collide with them.\n";
|
||
}
|
||
@a = map $_->clone, map @$_, @{union_ex([ @a, $copy_clearance ])};
|
||
}
|
||
}
|
||
}
|
||
|
||
# check vertical clearance
|
||
{
|
||
my @object_height = ();
|
||
foreach my $object (@{$self->objects}) {
|
||
my $height = $object->size->[Z];
|
||
push @object_height, $height for @{$object->copies};
|
||
}
|
||
@object_height = sort { $a <=> $b } @object_height;
|
||
# ignore the tallest *copy* (this is why we repeat height for all of them):
|
||
# it will be printed as last one so its height doesn't matter
|
||
pop @object_height;
|
||
if (@object_height && max(@object_height) > scale $Slic3r::Config->extruder_clearance_height) {
|
||
die "Some objects are too tall and cannot be printed without extruder collisions.\n";
|
||
}
|
||
}
|
||
}
|
||
|
||
if ($Slic3r::Config->spiral_vase) {
|
||
if ((map @{$_->copies}, @{$self->objects}) > 1) {
|
||
die "The Spiral Vase option can only be used when printing a single object.\n";
|
||
}
|
||
if (@{$self->regions} > 1) {
|
||
die "The Spiral Vase option can only be used when printing single material objects.\n";
|
||
}
|
||
}
|
||
}
|
||
|
||
sub init_extruders {
|
||
my $self = shift;
|
||
|
||
# map regions to extruders (ghetto mapping for now)
|
||
my %extruder_mapping = map { $_ => $_ } 0..$#{$self->regions};
|
||
|
||
# initialize all extruder(s) we need
|
||
my @used_extruders = (
|
||
0,
|
||
(map $self->config->get("${_}_extruder")-1, qw(perimeter infill support_material support_material_interface)),
|
||
(values %extruder_mapping),
|
||
);
|
||
for my $extruder_id (keys %{{ map {$_ => 1} @used_extruders }}) {
|
||
$self->extruders->[$extruder_id] = Slic3r::Extruder->new(
|
||
config => $self->config,
|
||
id => $extruder_id,
|
||
map { $_ => $self->config->get($_)->[$extruder_id] // $self->config->get($_)->[0] } #/
|
||
@{&Slic3r::Extruder::OPTIONS}
|
||
);
|
||
}
|
||
|
||
# calculate regions' flows
|
||
for my $region_id (0 .. $#{$self->regions}) {
|
||
my $region = $self->regions->[$region_id];
|
||
|
||
# per-role extruders and flows
|
||
for (qw(perimeter infill solid_infill top_infill)) {
|
||
my $extruder_name = $_;
|
||
$extruder_name =~ s/^(?:solid|top)_//;
|
||
$region->extruders->{$_} = ($self->regions_count > 1)
|
||
? $self->extruders->[$extruder_mapping{$region_id}]
|
||
: $self->extruders->[$self->config->get("${extruder_name}_extruder")-1];
|
||
$region->flows->{$_} = $region->extruders->{$_}->make_flow(
|
||
width => $self->config->get("${_}_extrusion_width") || $self->config->extrusion_width,
|
||
role => $_,
|
||
);
|
||
$region->first_layer_flows->{$_} = $region->extruders->{$_}->make_flow(
|
||
layer_height => $self->config->get_value('first_layer_height'),
|
||
width => $self->config->first_layer_extrusion_width,
|
||
role => $_,
|
||
) if $self->config->first_layer_extrusion_width;
|
||
}
|
||
}
|
||
|
||
# calculate support material flow
|
||
# Note: we should calculate a different flow for support material interface
|
||
if ($self->has_support_material) {
|
||
my $extruder = $self->extruders->[$self->config->support_material_extruder-1];
|
||
$self->support_material_flow($extruder->make_flow(
|
||
width => $self->config->support_material_extrusion_width || $self->config->extrusion_width,
|
||
role => 'support_material',
|
||
));
|
||
$self->first_layer_support_material_flow($extruder->make_flow(
|
||
layer_height => $self->config->get_value('first_layer_height'),
|
||
width => $self->config->first_layer_extrusion_width,
|
||
role => 'support_material',
|
||
));
|
||
}
|
||
|
||
# enforce tall skirt if using ooze_prevention
|
||
# NOTE: this is not idempotent (i.e. switching ooze_prevention off will not revert skirt settings)
|
||
if ($self->config->ooze_prevention && @{$self->extruders} > 1) {
|
||
$self->config->set('skirt_height', 9999999999);
|
||
$self->config->set('skirts', 1) if $self->config->skirts == 0;
|
||
}
|
||
}
|
||
|
||
sub layer_count {
|
||
my $self = shift;
|
||
return max(map { scalar @{$_->layers} } @{$self->objects});
|
||
}
|
||
|
||
sub regions_count {
|
||
my $self = shift;
|
||
return scalar @{$self->regions};
|
||
}
|
||
|
||
sub bounding_box {
|
||
my $self = shift;
|
||
|
||
my @points = ();
|
||
foreach my $object (@{$self->objects}) {
|
||
foreach my $copy (@{$object->copies}) {
|
||
push @points,
|
||
[ $copy->[X], $copy->[Y] ],
|
||
[ $copy->[X] + $object->size->[X], $copy->[Y] + $object->size->[Y] ];
|
||
}
|
||
}
|
||
return Slic3r::Geometry::BoundingBox->new_from_points([ map Slic3r::Point->new(@$_), @points ]);
|
||
}
|
||
|
||
sub size {
|
||
my $self = shift;
|
||
return $self->bounding_box->size;
|
||
}
|
||
|
||
sub _simplify_slices {
|
||
my $self = shift;
|
||
my ($distance) = @_;
|
||
|
||
foreach my $layer (map @{$_->layers}, @{$self->objects}) {
|
||
my @new = map $_->simplify($distance), map $_->clone, @{$layer->slices};
|
||
$layer->slices->clear;
|
||
$layer->slices->append(@new);
|
||
foreach my $layerm (@{$layer->regions}) {
|
||
my @new = map $_->simplify($distance), map $_->clone, @{$layerm->slices};
|
||
$layerm->slices->clear;
|
||
$layerm->slices->append(@new);
|
||
}
|
||
}
|
||
}
|
||
|
||
sub export_gcode {
|
||
my $self = shift;
|
||
my %params = @_;
|
||
|
||
$self->init_extruders;
|
||
my $status_cb = $params{status_cb} || sub {};
|
||
my $t0 = [gettimeofday];
|
||
|
||
# skein the STL into layers
|
||
# each layer has surfaces with holes
|
||
$status_cb->(10, "Processing triangulated mesh");
|
||
$_->slice for @{$self->objects};
|
||
|
||
# remove empty layers and abort if there are no more
|
||
# as some algorithms assume all objects have at least one layer
|
||
# note: this will change object indexes
|
||
@{$self->objects} = grep @{$_->layers}, @{$self->objects};
|
||
die "No layers were detected. You might want to repair your STL file(s) or check their size and retry.\n"
|
||
if !@{$self->objects};
|
||
|
||
if ($Slic3r::Config->resolution) {
|
||
$status_cb->(15, "Simplifying input");
|
||
$self->_simplify_slices(scale $Slic3r::Config->resolution);
|
||
}
|
||
|
||
# make perimeters
|
||
# this will add a set of extrusion loops to each layer
|
||
# as well as generate infill boundaries
|
||
$status_cb->(20, "Generating perimeters");
|
||
$_->make_perimeters for @{$self->objects};
|
||
|
||
# simplify slices (both layer and region slices),
|
||
# we only need the max resolution for perimeters
|
||
$self->_simplify_slices(&Slic3r::SCALED_RESOLUTION);
|
||
|
||
# this will assign a type (top/bottom/internal) to $layerm->slices
|
||
# and transform $layerm->fill_surfaces from expolygon
|
||
# to typed top/bottom/internal surfaces;
|
||
$status_cb->(30, "Detecting solid surfaces");
|
||
$_->detect_surfaces_type for @{$self->objects};
|
||
|
||
# decide what surfaces are to be filled
|
||
$status_cb->(35, "Preparing infill surfaces");
|
||
$_->prepare_fill_surfaces for map @{$_->regions}, map @{$_->layers}, @{$self->objects};
|
||
|
||
# this will detect bridges and reverse bridges
|
||
# and rearrange top/bottom/internal surfaces
|
||
$status_cb->(45, "Detect bridges");
|
||
$_->process_external_surfaces for @{$self->objects};
|
||
|
||
# detect which fill surfaces are near external layers
|
||
# they will be split in internal and internal-solid surfaces
|
||
$status_cb->(60, "Generating horizontal shells");
|
||
$_->discover_horizontal_shells for @{$self->objects};
|
||
$_->clip_fill_surfaces for @{$self->objects};
|
||
# the following step needs to be done before combination because it may need
|
||
# to remove only half of the combined infill
|
||
$_->bridge_over_infill for @{$self->objects};
|
||
|
||
# combine fill surfaces to honor the "infill every N layers" option
|
||
$status_cb->(70, "Combining infill");
|
||
$_->combine_infill for @{$self->objects};
|
||
|
||
# this will generate extrusion paths for each layer
|
||
$status_cb->(80, "Infilling layers");
|
||
{
|
||
Slic3r::parallelize(
|
||
items => sub {
|
||
my @items = (); # [obj_idx, layer_id]
|
||
for my $obj_idx (0 .. $#{$self->objects}) {
|
||
for my $region_id (0 .. ($self->regions_count-1)) {
|
||
push @items, map [$obj_idx, $_, $region_id], 0..($self->objects->[$obj_idx]->layer_count-1);
|
||
}
|
||
}
|
||
@items;
|
||
},
|
||
thread_cb => sub {
|
||
my $q = shift;
|
||
while (defined (my $obj_layer = $q->dequeue)) {
|
||
my ($obj_idx, $layer_id, $region_id) = @$obj_layer;
|
||
my $object = $self->objects->[$obj_idx];
|
||
my $layerm = $object->layers->[$layer_id]->regions->[$region_id];
|
||
$layerm->fills->append( $object->fill_maker->make_fill($layerm) );
|
||
}
|
||
},
|
||
collect_cb => sub {},
|
||
no_threads_cb => sub {
|
||
foreach my $layerm (map @{$_->regions}, map @{$_->layers}, @{$self->objects}) {
|
||
$layerm->fills->append($layerm->layer->object->fill_maker->make_fill($layerm));
|
||
}
|
||
},
|
||
);
|
||
}
|
||
|
||
# generate support material
|
||
if ($self->has_support_material) {
|
||
$status_cb->(85, "Generating support material");
|
||
$_->generate_support_material for @{$self->objects};
|
||
}
|
||
|
||
# free memory (note that support material needs fill_surfaces)
|
||
$_->fill_surfaces->clear for map @{$_->regions}, map @{$_->layers}, @{$self->objects};
|
||
|
||
# make skirt
|
||
$status_cb->(88, "Generating skirt");
|
||
$self->make_skirt;
|
||
$self->make_brim; # must come after make_skirt
|
||
|
||
# time to make some statistics
|
||
if (0) {
|
||
eval "use Devel::Size";
|
||
print "MEMORY USAGE:\n";
|
||
printf " meshes = %.1fMb\n", List::Util::sum(map Devel::Size::total_size($_->meshes), @{$self->objects})/1024/1024;
|
||
printf " layer slices = %.1fMb\n", List::Util::sum(map Devel::Size::total_size($_->slices), map @{$_->layers}, @{$self->objects})/1024/1024;
|
||
printf " region slices = %.1fMb\n", List::Util::sum(map Devel::Size::total_size($_->slices), map @{$_->regions}, map @{$_->layers}, @{$self->objects})/1024/1024;
|
||
printf " perimeters = %.1fMb\n", List::Util::sum(map Devel::Size::total_size($_->perimeters), map @{$_->regions}, map @{$_->layers}, @{$self->objects})/1024/1024;
|
||
printf " fills = %.1fMb\n", List::Util::sum(map Devel::Size::total_size($_->fills), map @{$_->regions}, map @{$_->layers}, @{$self->objects})/1024/1024;
|
||
printf " print object = %.1fMb\n", Devel::Size::total_size($self)/1024/1024;
|
||
}
|
||
if (0) {
|
||
eval "use Slic3r::Test::SectionCut";
|
||
Slic3r::Test::SectionCut->new(print => $self)->export_svg("section_cut.svg");
|
||
}
|
||
|
||
# output everything to a G-code file
|
||
my $output_file = $self->expanded_output_filepath($params{output_file});
|
||
$status_cb->(90, "Exporting G-code" . ($output_file ? " to $output_file" : ""));
|
||
$self->write_gcode($params{output_fh} || $output_file);
|
||
|
||
# run post-processing scripts
|
||
if (@{$Slic3r::Config->post_process}) {
|
||
$status_cb->(95, "Running post-processing scripts");
|
||
$Slic3r::Config->setenv;
|
||
for (@{$Slic3r::Config->post_process}) {
|
||
Slic3r::debugf " '%s' '%s'\n", $_, $output_file;
|
||
system($_, $output_file);
|
||
}
|
||
}
|
||
|
||
# output some statistics
|
||
unless ($params{quiet}) {
|
||
$self->processing_time(tv_interval($t0));
|
||
printf "Done. Process took %d minutes and %.3f seconds\n",
|
||
int($self->processing_time/60),
|
||
$self->processing_time - int($self->processing_time/60)*60;
|
||
|
||
# TODO: more statistics!
|
||
print map sprintf("Filament required: %.1fmm (%.1fcm3)\n",
|
||
$_->absolute_E, $_->extruded_volume/1000),
|
||
@{$self->extruders};
|
||
}
|
||
}
|
||
|
||
sub export_svg {
|
||
my $self = shift;
|
||
my %params = @_;
|
||
|
||
# this shouldn't be needed, but we're currently relying on ->make_surfaces() which
|
||
# calls ->perimeter_flow
|
||
$self->init_extruders;
|
||
|
||
$_->slice for @{$self->objects};
|
||
|
||
my $fh = $params{output_fh};
|
||
if (!$fh) {
|
||
my $output_file = $self->expanded_output_filepath($params{output_file});
|
||
$output_file =~ s/\.gcode$/.svg/i;
|
||
Slic3r::open(\$fh, ">", $output_file) or die "Failed to open $output_file for writing\n";
|
||
print "Exporting to $output_file..." unless $params{quiet};
|
||
}
|
||
|
||
my $print_size = $self->size;
|
||
print $fh sprintf <<"EOF", unscale($print_size->[X]), unscale($print_size->[Y]);
|
||
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
|
||
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN" "http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd">
|
||
<svg width="%s" height="%s" xmlns="http://www.w3.org/2000/svg" xmlns:svg="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:slic3r="http://slic3r.org/namespaces/slic3r">
|
||
<!--
|
||
Generated using Slic3r $Slic3r::VERSION
|
||
http://slic3r.org/
|
||
-->
|
||
EOF
|
||
|
||
my $print_polygon = sub {
|
||
my ($polygon, $type) = @_;
|
||
printf $fh qq{ <polygon slic3r:type="%s" points="%s" style="fill: %s" />\n},
|
||
$type, (join ' ', map { join ',', map unscale $_, @$_ } @$polygon),
|
||
($type eq 'contour' ? 'white' : 'black');
|
||
};
|
||
|
||
my @previous_layer_slices = ();
|
||
for my $layer_id (0..$self->layer_count-1) {
|
||
my @layers = map $_->layers->[$layer_id], @{$self->objects};
|
||
printf $fh qq{ <g id="layer%d" slic3r:z="%s">\n}, $layer_id, unscale +(grep defined $_, @layers)[0]->slice_z;
|
||
|
||
my @current_layer_slices = ();
|
||
for my $obj_idx (0 .. $#{$self->objects}) {
|
||
my $layer = $self->objects->[$obj_idx]->layers->[$layer_id] or next;
|
||
|
||
# sort slices so that the outermost ones come first
|
||
my @slices = sort { $a->contour->contains_point($b->contour->first_point) ? 0 : 1 } @{$layer->slices};
|
||
foreach my $copy (@{$self->objects->[$obj_idx]->copies}) {
|
||
foreach my $slice (@slices) {
|
||
my $expolygon = $slice->clone;
|
||
$expolygon->translate(@$copy);
|
||
$print_polygon->($expolygon->contour, 'contour');
|
||
$print_polygon->($_, 'hole') for @{$expolygon->holes};
|
||
push @current_layer_slices, $expolygon;
|
||
}
|
||
}
|
||
}
|
||
# generate support material
|
||
if ($self->has_support_material && $layer_id > 0) {
|
||
my (@supported_slices, @unsupported_slices) = ();
|
||
foreach my $expolygon (@current_layer_slices) {
|
||
my $intersection = intersection_ex(
|
||
[ map @$_, @previous_layer_slices ],
|
||
$expolygon,
|
||
);
|
||
@$intersection
|
||
? push @supported_slices, $expolygon
|
||
: push @unsupported_slices, $expolygon;
|
||
}
|
||
my @supported_points = map @$_, @$_, @supported_slices;
|
||
foreach my $expolygon (@unsupported_slices) {
|
||
# look for the nearest point to this island among all
|
||
# supported points
|
||
my $contour = $expolygon->contour;
|
||
my $support_point = $contour->first_point->nearest_point(\@supported_points)
|
||
or next;
|
||
my $anchor_point = $support_point->nearest_point([ @$contour ]);
|
||
printf $fh qq{ <line x1="%s" y1="%s" x2="%s" y2="%s" style="stroke-width: 2; stroke: white" />\n},
|
||
map @$_, $support_point, $anchor_point;
|
||
}
|
||
}
|
||
print $fh qq{ </g>\n};
|
||
@previous_layer_slices = @current_layer_slices;
|
||
}
|
||
|
||
print $fh "</svg>\n";
|
||
close $fh;
|
||
print "Done.\n" unless $params{quiet};
|
||
}
|
||
|
||
sub make_skirt {
|
||
my $self = shift;
|
||
return unless $Slic3r::Config->skirts > 0
|
||
|| ($Slic3r::Config->ooze_prevention && @{$self->extruders} > 1);
|
||
|
||
# collect points from all layers contained in skirt height
|
||
my @points = ();
|
||
foreach my $obj_idx (0 .. $#{$self->objects}) {
|
||
my $object = $self->objects->[$obj_idx];
|
||
my @layers = map $object->layers->[$_], 0..min($Slic3r::Config->skirt_height-1, $#{$object->layers});
|
||
my @layer_points = (
|
||
(map @$_, map @$_, map @{$_->slices}, @layers),
|
||
);
|
||
if (@{ $object->support_layers }) {
|
||
my @support_layers = map $object->support_layers->[$_], 0..min($Slic3r::Config->skirt_height-1, $#{$object->support_layers});
|
||
push @layer_points,
|
||
(map @{$_->polyline}, map @{$_->support_fills}, grep $_->support_fills, @support_layers),
|
||
(map @{$_->polyline}, map @{$_->support_interface_fills}, grep $_->support_interface_fills, @support_layers);
|
||
}
|
||
push @points, map move_points($_, @layer_points), @{$object->copies};
|
||
}
|
||
return if @points < 3; # at least three points required for a convex hull
|
||
|
||
# find out convex hull
|
||
my $convex_hull = convex_hull([ map $_->arrayref, @points ]);
|
||
|
||
my @extruded_length = (); # for each extruder
|
||
|
||
# TODO: use each extruder's own flow
|
||
my $spacing = $self->objects->[0]->layers->[0]->regions->[0]->perimeter_flow->spacing;
|
||
|
||
my $first_layer_height = $Slic3r::Config->get_value('first_layer_height');
|
||
my @extruders_e_per_mm = ();
|
||
my $extruder_idx = 0;
|
||
|
||
# draw outlines from outside to inside
|
||
# loop while we have less skirts than required or any extruder hasn't reached the min length if any
|
||
my $distance = scale $Slic3r::Config->skirt_distance;
|
||
for (my $i = $Slic3r::Config->skirts; $i > 0; $i--) {
|
||
$distance += scale $spacing;
|
||
my $loop = Slic3r::Geometry::Clipper::offset([$convex_hull], $distance, 0.0001, JT_ROUND)->[0];
|
||
$self->skirt->append(Slic3r::ExtrusionLoop->new(
|
||
polygon => Slic3r::Polygon->new(@$loop),
|
||
role => EXTR_ROLE_SKIRT,
|
||
flow_spacing => $spacing,
|
||
));
|
||
|
||
if ($Slic3r::Config->min_skirt_length > 0) {
|
||
$extruded_length[$extruder_idx] ||= 0;
|
||
$extruders_e_per_mm[$extruder_idx] ||= $self->extruders->[$extruder_idx]->e_per_mm($spacing, $first_layer_height);
|
||
$extruded_length[$extruder_idx] += unscale $loop->length * $extruders_e_per_mm[$extruder_idx];
|
||
$i++ if defined first { ($extruded_length[$_] // 0) < $Slic3r::Config->min_skirt_length } 0 .. $#{$self->extruders};
|
||
if ($extruded_length[$extruder_idx] >= $Slic3r::Config->min_skirt_length) {
|
||
if ($extruder_idx < $#{$self->extruders}) {
|
||
$extruder_idx++;
|
||
next;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
$self->skirt->reverse;
|
||
}
|
||
|
||
sub make_brim {
|
||
my $self = shift;
|
||
return unless $Slic3r::Config->brim_width > 0;
|
||
|
||
my $flow = $self->objects->[0]->layers->[0]->regions->[0]->perimeter_flow;
|
||
|
||
my $grow_distance = $flow->scaled_width / 2;
|
||
my @islands = (); # array of polygons
|
||
foreach my $obj_idx (0 .. $#{$self->objects}) {
|
||
my $object = $self->objects->[$obj_idx];
|
||
my $layer0 = $object->layers->[0];
|
||
my @object_islands = (
|
||
(map $_->contour, @{$layer0->slices}),
|
||
);
|
||
if (@{ $object->support_layers }) {
|
||
my $support_layer0 = $object->support_layers->[0];
|
||
push @object_islands,
|
||
(map @{$_->polyline->grow($grow_distance)}, @{$support_layer0->support_fills})
|
||
if $support_layer0->support_fills;
|
||
push @object_islands,
|
||
(map @{$_->polyline->grow($grow_distance)}, @{$support_layer0->support_interface_fills})
|
||
if $support_layer0->support_interface_fills;
|
||
}
|
||
foreach my $copy (@{$object->copies}) {
|
||
push @islands, map { $_->translate(@$copy); $_ } map $_->clone, @object_islands;
|
||
}
|
||
}
|
||
|
||
# if brim touches skirt, make it around skirt too
|
||
# TODO: calculate actual skirt width (using each extruder's flow in multi-extruder setups)
|
||
if ($Slic3r::Config->skirt_distance + (($Slic3r::Config->skirts - 1) * $flow->spacing) <= $Slic3r::Config->brim_width) {
|
||
push @islands, map @{$_->split_at_first_point->polyline->grow($grow_distance)}, @{$self->skirt};
|
||
}
|
||
|
||
my @loops = ();
|
||
my $num_loops = sprintf "%.0f", $Slic3r::Config->brim_width / $flow->width;
|
||
for my $i (reverse 1 .. $num_loops) {
|
||
# JT_SQUARE ensures no vertex is outside the given offset distance
|
||
# -0.5 because islands are not represented by their centerlines
|
||
# (first offset more, then step back - reverse order than the one used for
|
||
# perimeters because here we're offsetting outwards)
|
||
push @loops, @{offset2(\@islands, ($i + 0.5) * $flow->scaled_spacing, -1.0 * $flow->scaled_spacing, 100000, JT_SQUARE)};
|
||
}
|
||
|
||
$self->brim->append(map Slic3r::ExtrusionLoop->new(
|
||
polygon => Slic3r::Polygon->new(@$_),
|
||
role => EXTR_ROLE_SKIRT,
|
||
flow_spacing => $flow->spacing,
|
||
), reverse traverse_pt( union_pt(\@loops) ));
|
||
}
|
||
|
||
sub write_gcode {
|
||
my $self = shift;
|
||
my ($file) = @_;
|
||
|
||
# open output gcode file if we weren't supplied a file-handle
|
||
my $fh;
|
||
if (ref $file eq 'IO::Scalar') {
|
||
$fh = $file;
|
||
} else {
|
||
Slic3r::open(\$fh, ">", $file)
|
||
or die "Failed to open $file for writing\n";
|
||
}
|
||
|
||
# write some information
|
||
my @lt = localtime;
|
||
printf $fh "; generated by Slic3r $Slic3r::VERSION on %04d-%02d-%02d at %02d:%02d:%02d\n\n",
|
||
$lt[5] + 1900, $lt[4]+1, $lt[3], $lt[2], $lt[1], $lt[0];
|
||
|
||
print $fh "; $_\n" foreach split /\R/, $Slic3r::Config->notes;
|
||
print $fh "\n" if $Slic3r::Config->notes;
|
||
|
||
for (qw(layer_height perimeters top_solid_layers bottom_solid_layers fill_density perimeter_speed infill_speed travel_speed)) {
|
||
printf $fh "; %s = %s\n", $_, $Slic3r::Config->$_;
|
||
}
|
||
for (qw(nozzle_diameter filament_diameter extrusion_multiplier)) {
|
||
printf $fh "; %s = %s\n", $_, $Slic3r::Config->$_->[0];
|
||
}
|
||
printf $fh "; perimeters extrusion width = %.2fmm\n", $self->regions->[0]->flows->{perimeter}->width;
|
||
printf $fh "; infill extrusion width = %.2fmm\n", $self->regions->[0]->flows->{infill}->width;
|
||
printf $fh "; solid infill extrusion width = %.2fmm\n", $self->regions->[0]->flows->{solid_infill}->width;
|
||
printf $fh "; top infill extrusion width = %.2fmm\n", $self->regions->[0]->flows->{top_infill}->width;
|
||
printf $fh "; support material extrusion width = %.2fmm\n", $self->support_material_flow->width
|
||
if $self->support_material_flow;
|
||
printf $fh "; first layer extrusion width = %.2fmm\n", $self->regions->[0]->first_layer_flows->{perimeter}->width
|
||
if $self->regions->[0]->first_layer_flows->{perimeter};
|
||
print $fh "\n";
|
||
|
||
# set up our extruder object
|
||
my $gcodegen = Slic3r::GCode->new(
|
||
config => $self->config,
|
||
extruders => $self->extruders, # we should only pass the *used* extruders (but maintain the Tx indices right!)
|
||
layer_count => $self->layer_count,
|
||
);
|
||
print $fh "G21 ; set units to millimeters\n" if $Slic3r::Config->gcode_flavor ne 'makerware';
|
||
print $fh $gcodegen->set_fan(0, 1) if $Slic3r::Config->cooling && $Slic3r::Config->disable_fan_first_layers;
|
||
|
||
# set bed temperature
|
||
if ((my $temp = $Slic3r::Config->first_layer_bed_temperature) && $Slic3r::Config->start_gcode !~ /M(?:190|140)/i) {
|
||
printf $fh $gcodegen->set_bed_temperature($temp, 1);
|
||
}
|
||
|
||
# set extruder(s) temperature before and after start G-code
|
||
my $print_first_layer_temperature = sub {
|
||
my ($wait) = @_;
|
||
|
||
return if $Slic3r::Config->start_gcode =~ /M(?:109|104)/i;
|
||
for my $t (0 .. $#{$self->extruders}) {
|
||
my $temp = $self->extruders->[$t]->first_layer_temperature;
|
||
$temp += $self->config->standby_temperature_delta if $self->config->ooze_prevention;
|
||
printf $fh $gcodegen->set_temperature($temp, $wait, $t) if $temp > 0;
|
||
}
|
||
};
|
||
$print_first_layer_temperature->(0);
|
||
printf $fh "%s\n", $self->replace_variables($Slic3r::Config->start_gcode);
|
||
$print_first_layer_temperature->(1);
|
||
|
||
# set other general things
|
||
print $fh "G90 ; use absolute coordinates\n" if $Slic3r::Config->gcode_flavor ne 'makerware';
|
||
if ($Slic3r::Config->gcode_flavor =~ /^(?:reprap|teacup)$/) {
|
||
printf $fh $gcodegen->reset_e;
|
||
if ($Slic3r::Config->use_relative_e_distances) {
|
||
print $fh "M83 ; use relative distances for extrusion\n";
|
||
} else {
|
||
print $fh "M82 ; use absolute distances for extrusion\n";
|
||
}
|
||
}
|
||
|
||
# always start with first extruder
|
||
# TODO: make sure we select the first *used* extruder
|
||
print $fh $gcodegen->set_extruder($self->extruders->[0]);
|
||
|
||
# calculate X,Y shift to center print around specified origin
|
||
my $print_bb = $self->bounding_box;
|
||
my $print_size = $print_bb->size;
|
||
my @shift = (
|
||
$Slic3r::Config->print_center->[X] - unscale($print_size->[X]/2 + $print_bb->x_min),
|
||
$Slic3r::Config->print_center->[Y] - unscale($print_size->[Y]/2 + $print_bb->y_min),
|
||
);
|
||
|
||
# initialize a motion planner for object-to-object travel moves
|
||
if ($Slic3r::Config->avoid_crossing_perimeters) {
|
||
my $distance_from_objects = 1;
|
||
# compute the offsetted convex hull for each object and repeat it for each copy.
|
||
my @islands = ();
|
||
foreach my $obj_idx (0 .. $#{$self->objects}) {
|
||
my $convex_hull = convex_hull([
|
||
map @{$_->contour->pp}, map @{$_->slices}, @{$self->objects->[$obj_idx]->layers},
|
||
]);
|
||
# discard layers only containing thin walls (offset would fail on an empty polygon)
|
||
if (@$convex_hull) {
|
||
my $expolygon = Slic3r::ExPolygon->new($convex_hull);
|
||
$expolygon->translate(scale $shift[X], scale $shift[Y]);
|
||
my @island = @{$expolygon->offset_ex(scale $distance_from_objects, 1, JT_SQUARE)};
|
||
foreach my $copy (@{ $self->objects->[$obj_idx]->copies }) {
|
||
push @islands, map { my $c = $_->clone; $c->translate(@$copy); $c } @island;
|
||
}
|
||
}
|
||
}
|
||
$gcodegen->external_mp(Slic3r::GCode::MotionPlanner->new(
|
||
islands => union_ex([ map @$_, @islands ]),
|
||
no_internal => 1,
|
||
));
|
||
}
|
||
|
||
# calculate wiping points if needed
|
||
if ($self->config->ooze_prevention) {
|
||
my $outer_skirt = Slic3r::Polygon->new(@{convex_hull([ map $_->pp, map @$_, @{$self->skirt} ])});
|
||
my @skirts = ();
|
||
foreach my $extruder (@{$self->extruders}) {
|
||
push @skirts, my $s = $outer_skirt->clone;
|
||
$s->translate(map scale($_), @{$extruder->extruder_offset});
|
||
}
|
||
my $convex_hull = Slic3r::Polygon->new(@{convex_hull([ map @$_, map $_->pp, @skirts ])});
|
||
$gcodegen->standby_points([ map $_->clone, map @$_, map $_->subdivide(scale 10), @{offset([$convex_hull], scale 3)} ]);
|
||
}
|
||
|
||
# prepare the layer processor
|
||
my $layer_gcode = Slic3r::GCode::Layer->new(
|
||
print => $self,
|
||
gcodegen => $gcodegen,
|
||
shift => \@shift,
|
||
);
|
||
|
||
# do all objects for each layer
|
||
if ($Slic3r::Config->complete_objects) {
|
||
|
||
# print objects from the smallest to the tallest to avoid collisions
|
||
# when moving onto next object starting point
|
||
my @obj_idx = sort { $self->objects->[$a]->size->[Z] <=> $self->objects->[$b]->size->[Z] } 0..$#{$self->objects};
|
||
|
||
my $finished_objects = 0;
|
||
for my $obj_idx (@obj_idx) {
|
||
for my $copy (@{ $self->objects->[$obj_idx]->copies }) {
|
||
# move to the origin position for the copy we're going to print.
|
||
# this happens before Z goes down to layer 0 again, so that
|
||
# no collision happens hopefully.
|
||
if ($finished_objects > 0) {
|
||
$gcodegen->set_shift(map $shift[$_] + unscale $copy->[$_], X,Y);
|
||
print $fh $gcodegen->retract;
|
||
print $fh $gcodegen->G0(Slic3r::Point->new(0,0), undef, 0, 'move to origin position for next object');
|
||
}
|
||
|
||
my $buffer = Slic3r::GCode::CoolingBuffer->new(
|
||
config => $Slic3r::Config,
|
||
gcodegen => $gcodegen,
|
||
);
|
||
|
||
my $object = $self->objects->[$obj_idx];
|
||
my @layers = sort { $a->print_z <=> $b->print_z } @{$object->layers}, @{$object->support_layers};
|
||
for my $layer (@layers) {
|
||
# if we are printing the bottom layer of an object, and we have already finished
|
||
# another one, set first layer temperatures. this happens before the Z move
|
||
# is triggered, so machine has more time to reach such temperatures
|
||
if ($layer->id == 0 && $finished_objects > 0) {
|
||
printf $fh $gcodegen->set_bed_temperature($Slic3r::Config->first_layer_bed_temperature),
|
||
if $Slic3r::Config->first_layer_bed_temperature;
|
||
$print_first_layer_temperature->();
|
||
}
|
||
print $fh $buffer->append(
|
||
$layer_gcode->process_layer($layer, [$copy]),
|
||
$layer->object."",
|
||
$layer->id,
|
||
$layer->print_z,
|
||
);
|
||
}
|
||
print $fh $buffer->flush;
|
||
$finished_objects++;
|
||
}
|
||
}
|
||
} else {
|
||
# order objects using a nearest neighbor search
|
||
my @obj_idx = chained_path([ map Slic3r::Point->new(@{$_->copies->[0]}), @{$self->objects} ]);
|
||
|
||
# sort layers by Z
|
||
my %layers = (); # print_z => [ [layers], [layers], [layers] ] by obj_idx
|
||
foreach my $obj_idx (0 .. $#{$self->objects}) {
|
||
my $object = $self->objects->[$obj_idx];
|
||
foreach my $layer (@{$object->layers}, @{$object->support_layers}) {
|
||
$layers{ $layer->print_z } ||= [];
|
||
$layers{ $layer->print_z }[$obj_idx] ||= [];
|
||
push @{$layers{ $layer->print_z }[$obj_idx]}, $layer;
|
||
}
|
||
}
|
||
|
||
my $buffer = Slic3r::GCode::CoolingBuffer->new(
|
||
config => $Slic3r::Config,
|
||
gcodegen => $gcodegen,
|
||
);
|
||
foreach my $print_z (sort { $a <=> $b } keys %layers) {
|
||
foreach my $obj_idx (@obj_idx) {
|
||
foreach my $layer (@{ $layers{$print_z}[$obj_idx] // [] }) {
|
||
print $fh $buffer->append(
|
||
$layer_gcode->process_layer($layer, $layer->object->copies),
|
||
$layer->object . ref($layer), # differentiate $obj_id between normal layers and support layers
|
||
$layer->id,
|
||
$layer->print_z,
|
||
);
|
||
}
|
||
}
|
||
}
|
||
print $fh $buffer->flush;
|
||
}
|
||
|
||
# write end commands to file
|
||
print $fh $gcodegen->retract if $gcodegen->extruder; # empty prints don't even set an extruder
|
||
print $fh $gcodegen->set_fan(0);
|
||
printf $fh "%s\n", $self->replace_variables($Slic3r::Config->end_gcode);
|
||
|
||
foreach my $extruder (@{$self->extruders}) {
|
||
printf $fh "; filament used = %.1fmm (%.1fcm3)\n",
|
||
$extruder->absolute_E, $extruder->extruded_volume/1000;
|
||
}
|
||
|
||
if ($Slic3r::Config->gcode_comments) {
|
||
# append full config
|
||
print $fh "\n";
|
||
foreach my $opt_key (sort keys %{$Slic3r::Config}) {
|
||
next if $Slic3r::Config::Options->{$opt_key}{shortcut};
|
||
next if $Slic3r::Config::Options->{$opt_key}{gui_only};
|
||
printf $fh "; %s = %s\n", $opt_key, $Slic3r::Config->serialize($opt_key);
|
||
}
|
||
}
|
||
|
||
# close our gcode file
|
||
close $fh;
|
||
}
|
||
|
||
# this method will return the supplied input file path after expanding its
|
||
# format variables with their values
|
||
sub expanded_output_filepath {
|
||
my $self = shift;
|
||
my ($path, $input_file) = @_;
|
||
|
||
my $extra_variables = {};
|
||
if ($input_file) {
|
||
@$extra_variables{qw(input_filename input_filename_base)} = parse_filename($input_file);
|
||
} else {
|
||
# if no input file was supplied, take the first one from our objects
|
||
$input_file = $self->objects->[0]->input_file // return undef;
|
||
}
|
||
|
||
if ($path && -d $path) {
|
||
# if output path is an existing directory, we take that and append
|
||
# the specified filename format
|
||
$path = File::Spec->join($path, $self->config->output_filename_format);
|
||
} elsif (!$path) {
|
||
# if no explicit output file was defined, we take the input
|
||
# file directory and append the specified filename format
|
||
$path = (fileparse($input_file))[1] . $self->config->output_filename_format;
|
||
} else {
|
||
# path is a full path to a file so we use it as it is
|
||
}
|
||
|
||
return $self->replace_variables($path, $extra_variables);
|
||
}
|
||
|
||
sub replace_variables {
|
||
my ($self, $string, $extra) = @_;
|
||
return $self->config->replace_options($string, { %{$self->extra_variables}, %{ $extra || {} } });
|
||
}
|
||
|
||
# given the path to a file, this function returns its filename with and without extension
|
||
sub parse_filename {
|
||
my ($path) = @_;
|
||
|
||
my $filename = my $filename_base = basename($path);
|
||
$filename_base =~ s/\.[^.]+$//;
|
||
return ($filename, $filename_base);
|
||
}
|
||
|
||
1;
|