PrusaSlicer-NonPlainar/xs/src/libslic3r/ExtrusionEntity.hpp
bubnikv cb138a20b8 Completely replaced the homebrew Pointf3 class with Eigen Vec3d.
Replaced the unscale macro with a template, implemented templates
for unscaling Eigen vectors.
2018-08-21 17:43:05 +02:00

313 lines
16 KiB
C++

#ifndef slic3r_ExtrusionEntity_hpp_
#define slic3r_ExtrusionEntity_hpp_
#include "libslic3r.h"
#include "Polygon.hpp"
#include "Polyline.hpp"
namespace Slic3r {
class ExPolygonCollection;
class ExtrusionEntityCollection;
class Extruder;
/* Each ExtrusionRole value identifies a distinct set of { extruder, speed } */
enum ExtrusionRole {
erNone,
erPerimeter,
erExternalPerimeter,
erOverhangPerimeter,
erInternalInfill,
erSolidInfill,
erTopSolidInfill,
erBridgeInfill,
erGapFill,
erSkirt,
erSupportMaterial,
erSupportMaterialInterface,
erWipeTower,
erCustom,
// Extrusion role for a collection with multiple extrusion roles.
erMixed,
};
inline bool is_perimeter(ExtrusionRole role)
{
return role == erPerimeter
|| role == erExternalPerimeter
|| role == erOverhangPerimeter;
}
inline bool is_infill(ExtrusionRole role)
{
return role == erBridgeInfill
|| role == erInternalInfill
|| role == erSolidInfill
|| role == erTopSolidInfill;
}
inline bool is_solid_infill(ExtrusionRole role)
{
return role == erBridgeInfill
|| role == erSolidInfill
|| role == erTopSolidInfill;
}
inline bool is_bridge(ExtrusionRole role) {
return role == erBridgeInfill
|| role == erOverhangPerimeter;
}
/* Special flags describing loop */
enum ExtrusionLoopRole {
elrDefault,
elrContourInternalPerimeter,
elrSkirt,
};
class ExtrusionEntity
{
public:
virtual ExtrusionRole role() const = 0;
virtual bool is_collection() const { return false; }
virtual bool is_loop() const { return false; }
virtual bool can_reverse() const { return true; }
virtual ExtrusionEntity* clone() const = 0;
virtual ~ExtrusionEntity() {};
virtual void reverse() = 0;
virtual Point first_point() const = 0;
virtual Point last_point() const = 0;
// Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion width.
// Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps.
virtual void polygons_covered_by_width(Polygons &out, const float scaled_epsilon) const = 0;
// Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion spacing.
// Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps.
// Useful to calculate area of an infill, which has been really filled in by a 100% rectilinear infill.
virtual void polygons_covered_by_spacing(Polygons &out, const float scaled_epsilon) const = 0;
Polygons polygons_covered_by_width(const float scaled_epsilon = 0.f) const
{ Polygons out; this->polygons_covered_by_width(out, scaled_epsilon); return out; }
Polygons polygons_covered_by_spacing(const float scaled_epsilon = 0.f) const
{ Polygons out; this->polygons_covered_by_spacing(out, scaled_epsilon); return out; }
// Minimum volumetric velocity of this extrusion entity. Used by the constant nozzle pressure algorithm.
virtual double min_mm3_per_mm() const = 0;
virtual Polyline as_polyline() const = 0;
virtual double length() const = 0;
virtual double total_volume() const = 0;
};
typedef std::vector<ExtrusionEntity*> ExtrusionEntitiesPtr;
class ExtrusionPath : public ExtrusionEntity
{
public:
Polyline polyline;
// Volumetric velocity. mm^3 of plastic per mm of linear head motion. Used by the G-code generator.
double mm3_per_mm;
// Width of the extrusion, used for visualization purposes.
float width;
// Height of the extrusion, used for visualization purposed.
float height;
// Feedrate of the extrusion, used for visualization purposed.
float feedrate;
// Id of the extruder, used for visualization purposed.
unsigned int extruder_id;
ExtrusionPath(ExtrusionRole role) : mm3_per_mm(-1), width(-1), height(-1), feedrate(0.0f), extruder_id(0), m_role(role) {};
ExtrusionPath(ExtrusionRole role, double mm3_per_mm, float width, float height) : mm3_per_mm(mm3_per_mm), width(width), height(height), feedrate(0.0f), extruder_id(0), m_role(role) {};
ExtrusionPath(const ExtrusionPath &rhs) : polyline(rhs.polyline), mm3_per_mm(rhs.mm3_per_mm), width(rhs.width), height(rhs.height), feedrate(rhs.feedrate), extruder_id(rhs.extruder_id), m_role(rhs.m_role) {}
ExtrusionPath(ExtrusionPath &&rhs) : polyline(std::move(rhs.polyline)), mm3_per_mm(rhs.mm3_per_mm), width(rhs.width), height(rhs.height), feedrate(rhs.feedrate), extruder_id(rhs.extruder_id), m_role(rhs.m_role) {}
// ExtrusionPath(ExtrusionRole role, const Flow &flow) : m_role(role), mm3_per_mm(flow.mm3_per_mm()), width(flow.width), height(flow.height), feedrate(0.0f), extruder_id(0) {};
ExtrusionPath& operator=(const ExtrusionPath &rhs) { this->m_role = rhs.m_role; this->mm3_per_mm = rhs.mm3_per_mm; this->width = rhs.width; this->height = rhs.height; this->feedrate = rhs.feedrate, this->extruder_id = rhs.extruder_id, this->polyline = rhs.polyline; return *this; }
ExtrusionPath& operator=(ExtrusionPath &&rhs) { this->m_role = rhs.m_role; this->mm3_per_mm = rhs.mm3_per_mm; this->width = rhs.width; this->height = rhs.height; this->feedrate = rhs.feedrate, this->extruder_id = rhs.extruder_id, this->polyline = std::move(rhs.polyline); return *this; }
ExtrusionPath* clone() const { return new ExtrusionPath (*this); }
void reverse() { this->polyline.reverse(); }
Point first_point() const { return this->polyline.points.front(); }
Point last_point() const { return this->polyline.points.back(); }
// Produce a list of extrusion paths into retval by clipping this path by ExPolygonCollection.
// Currently not used.
void intersect_expolygons(const ExPolygonCollection &collection, ExtrusionEntityCollection* retval) const;
// Produce a list of extrusion paths into retval by removing parts of this path by ExPolygonCollection.
// Currently not used.
void subtract_expolygons(const ExPolygonCollection &collection, ExtrusionEntityCollection* retval) const;
void clip_end(double distance);
void simplify(double tolerance);
virtual double length() const;
virtual ExtrusionRole role() const { return m_role; }
// Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion width.
// Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps.
void polygons_covered_by_width(Polygons &out, const float scaled_epsilon) const;
// Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion spacing.
// Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps.
// Useful to calculate area of an infill, which has been really filled in by a 100% rectilinear infill.
void polygons_covered_by_spacing(Polygons &out, const float scaled_epsilon) const;
Polygons polygons_covered_by_width(const float scaled_epsilon = 0.f) const
{ Polygons out; this->polygons_covered_by_width(out, scaled_epsilon); return out; }
Polygons polygons_covered_by_spacing(const float scaled_epsilon = 0.f) const
{ Polygons out; this->polygons_covered_by_spacing(out, scaled_epsilon); return out; }
// Minimum volumetric velocity of this extrusion entity. Used by the constant nozzle pressure algorithm.
double min_mm3_per_mm() const { return this->mm3_per_mm; }
Polyline as_polyline() const { return this->polyline; }
virtual double total_volume() const { return mm3_per_mm * unscale<double>(length()); }
private:
void _inflate_collection(const Polylines &polylines, ExtrusionEntityCollection* collection) const;
ExtrusionRole m_role;
};
typedef std::vector<ExtrusionPath> ExtrusionPaths;
// Single continuous extrusion path, possibly with varying extrusion thickness, extrusion height or bridging / non bridging.
class ExtrusionMultiPath : public ExtrusionEntity
{
public:
ExtrusionPaths paths;
ExtrusionMultiPath() {};
ExtrusionMultiPath(const ExtrusionMultiPath &rhs) : paths(rhs.paths) {}
ExtrusionMultiPath(ExtrusionMultiPath &&rhs) : paths(std::move(rhs.paths)) {}
ExtrusionMultiPath(const ExtrusionPaths &paths) : paths(paths) {};
ExtrusionMultiPath(const ExtrusionPath &path) { this->paths.push_back(path); }
ExtrusionMultiPath& operator=(const ExtrusionMultiPath &rhs) { this->paths = rhs.paths; return *this; }
ExtrusionMultiPath& operator=(ExtrusionMultiPath &&rhs) { this->paths = std::move(rhs.paths); return *this; }
bool is_loop() const { return false; }
bool can_reverse() const { return true; }
ExtrusionMultiPath* clone() const { return new ExtrusionMultiPath(*this); }
void reverse();
Point first_point() const { return this->paths.front().polyline.points.front(); }
Point last_point() const { return this->paths.back().polyline.points.back(); }
virtual double length() const;
virtual ExtrusionRole role() const { return this->paths.empty() ? erNone : this->paths.front().role(); }
// Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion width.
// Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps.
void polygons_covered_by_width(Polygons &out, const float scaled_epsilon) const;
// Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion spacing.
// Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps.
// Useful to calculate area of an infill, which has been really filled in by a 100% rectilinear infill.
void polygons_covered_by_spacing(Polygons &out, const float scaled_epsilon) const;
Polygons polygons_covered_by_width(const float scaled_epsilon = 0.f) const
{ Polygons out; this->polygons_covered_by_width(out, scaled_epsilon); return out; }
Polygons polygons_covered_by_spacing(const float scaled_epsilon = 0.f) const
{ Polygons out; this->polygons_covered_by_spacing(out, scaled_epsilon); return out; }
// Minimum volumetric velocity of this extrusion entity. Used by the constant nozzle pressure algorithm.
double min_mm3_per_mm() const;
Polyline as_polyline() const;
virtual double total_volume() const { double volume =0.; for (const auto& path : paths) volume += path.total_volume(); return volume; }
};
// Single continuous extrusion loop, possibly with varying extrusion thickness, extrusion height or bridging / non bridging.
class ExtrusionLoop : public ExtrusionEntity
{
public:
ExtrusionPaths paths;
ExtrusionLoop(ExtrusionLoopRole role = elrDefault) : m_loop_role(role) {};
ExtrusionLoop(const ExtrusionPaths &paths, ExtrusionLoopRole role = elrDefault) : paths(paths), m_loop_role(role) {};
ExtrusionLoop(ExtrusionPaths &&paths, ExtrusionLoopRole role = elrDefault) : paths(std::move(paths)), m_loop_role(role) {};
ExtrusionLoop(const ExtrusionPath &path, ExtrusionLoopRole role = elrDefault) : m_loop_role(role)
{ this->paths.push_back(path); };
ExtrusionLoop(const ExtrusionPath &&path, ExtrusionLoopRole role = elrDefault) : m_loop_role(role)
{ this->paths.emplace_back(std::move(path)); };
bool is_loop() const { return true; }
bool can_reverse() const { return false; }
ExtrusionLoop* clone() const { return new ExtrusionLoop (*this); }
bool make_clockwise();
bool make_counter_clockwise();
void reverse();
Point first_point() const { return this->paths.front().polyline.points.front(); }
Point last_point() const { assert(first_point() == this->paths.back().polyline.points.back()); return first_point(); }
Polygon polygon() const;
virtual double length() const;
bool split_at_vertex(const Point &point);
void split_at(const Point &point, bool prefer_non_overhang);
void clip_end(double distance, ExtrusionPaths* paths) const;
// Test, whether the point is extruded by a bridging flow.
// This used to be used to avoid placing seams on overhangs, but now the EdgeGrid is used instead.
bool has_overhang_point(const Point &point) const;
virtual ExtrusionRole role() const { return this->paths.empty() ? erNone : this->paths.front().role(); }
ExtrusionLoopRole loop_role() const { return m_loop_role; }
// Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion width.
// Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps.
void polygons_covered_by_width(Polygons &out, const float scaled_epsilon) const;
// Produce a list of 2D polygons covered by the extruded paths, offsetted by the extrusion spacing.
// Increase the offset by scaled_epsilon to achieve an overlap, so a union will produce no gaps.
// Useful to calculate area of an infill, which has been really filled in by a 100% rectilinear infill.
void polygons_covered_by_spacing(Polygons &out, const float scaled_epsilon) const;
Polygons polygons_covered_by_width(const float scaled_epsilon = 0.f) const
{ Polygons out; this->polygons_covered_by_width(out, scaled_epsilon); return out; }
Polygons polygons_covered_by_spacing(const float scaled_epsilon = 0.f) const
{ Polygons out; this->polygons_covered_by_spacing(out, scaled_epsilon); return out; }
// Minimum volumetric velocity of this extrusion entity. Used by the constant nozzle pressure algorithm.
double min_mm3_per_mm() const;
Polyline as_polyline() const { return this->polygon().split_at_first_point(); }
virtual double total_volume() const { double volume =0.; for (const auto& path : paths) volume += path.total_volume(); return volume; }
private:
ExtrusionLoopRole m_loop_role;
};
inline void extrusion_paths_append(ExtrusionPaths &dst, Polylines &polylines, ExtrusionRole role, double mm3_per_mm, float width, float height)
{
dst.reserve(dst.size() + polylines.size());
for (Polyline &polyline : polylines)
if (polyline.is_valid()) {
dst.push_back(ExtrusionPath(role, mm3_per_mm, width, height));
dst.back().polyline = polyline;
}
}
inline void extrusion_paths_append(ExtrusionPaths &dst, Polylines &&polylines, ExtrusionRole role, double mm3_per_mm, float width, float height)
{
dst.reserve(dst.size() + polylines.size());
for (Polyline &polyline : polylines)
if (polyline.is_valid()) {
dst.push_back(ExtrusionPath(role, mm3_per_mm, width, height));
dst.back().polyline = std::move(polyline);
}
polylines.clear();
}
inline void extrusion_entities_append_paths(ExtrusionEntitiesPtr &dst, Polylines &polylines, ExtrusionRole role, double mm3_per_mm, float width, float height)
{
dst.reserve(dst.size() + polylines.size());
for (Polyline &polyline : polylines)
if (polyline.is_valid()) {
ExtrusionPath *extrusion_path = new ExtrusionPath(role, mm3_per_mm, width, height);
dst.push_back(extrusion_path);
extrusion_path->polyline = polyline;
}
}
inline void extrusion_entities_append_paths(ExtrusionEntitiesPtr &dst, Polylines &&polylines, ExtrusionRole role, double mm3_per_mm, float width, float height)
{
dst.reserve(dst.size() + polylines.size());
for (Polyline &polyline : polylines)
if (polyline.is_valid()) {
ExtrusionPath *extrusion_path = new ExtrusionPath(role, mm3_per_mm, width, height);
dst.push_back(extrusion_path);
extrusion_path->polyline = std::move(polyline);
}
polylines.clear();
}
inline void extrusion_entities_append_loops(ExtrusionEntitiesPtr &dst, Polygons &&loops, ExtrusionRole role, double mm3_per_mm, float width, float height)
{
dst.reserve(dst.size() + loops.size());
for (Polygon &poly : loops) {
if (poly.is_valid()) {
ExtrusionPath path(role, mm3_per_mm, width, height);
path.polyline.points = std::move(poly.points);
path.polyline.points.push_back(path.polyline.points.front());
dst.emplace_back(new ExtrusionLoop(std::move(path)));
}
}
loops.clear();
}
}
#endif