42e802c1b8
(replaced vector of vectors with Eigen 2D matrices).
119 lines
3.2 KiB
C++
119 lines
3.2 KiB
C++
#include <catch2/catch.hpp>
|
|
#include <test_utils.hpp>
|
|
|
|
#include <libslic3r/Geometry/Curves.hpp>
|
|
#include <libslic3r/Utils.hpp>
|
|
#include <libslic3r/SVG.hpp>
|
|
|
|
TEST_CASE("Curves: cubic b spline fit test", "[Curves]") {
|
|
using namespace Slic3r;
|
|
using namespace Slic3r::Geometry;
|
|
|
|
auto fx = [&](size_t index) {
|
|
return float(index) / 200.0f;
|
|
};
|
|
|
|
auto fy = [&](size_t index) {
|
|
return 1.0f;
|
|
};
|
|
|
|
std::vector<Vec<1, float>> observations { };
|
|
std::vector<float> observation_points { };
|
|
std::vector<float> weights { };
|
|
for (size_t index = 0; index < 200; ++index) {
|
|
observations.push_back(Vec<1, float> { fy(index) });
|
|
observation_points.push_back(fx(index));
|
|
weights.push_back(1);
|
|
}
|
|
|
|
Vec2f fmin { fx(0), fy(0) };
|
|
Vec2f fmax { fx(200), fy(200) };
|
|
|
|
auto bspline = fit_cubic_bspline(observations, observation_points, weights, 1);
|
|
|
|
Approx ap(1.0f);
|
|
ap.epsilon(0.1f);
|
|
|
|
for (int p = 0; p < 200; ++p) {
|
|
float fitted_val = bspline.get_fitted_value(fx(p))(0);
|
|
float expected = fy(p);
|
|
|
|
REQUIRE(fitted_val == ap(expected));
|
|
|
|
}
|
|
}
|
|
|
|
TEST_CASE("Curves: quadratic f cubic b spline fit test", "[Curves]") {
|
|
using namespace Slic3r;
|
|
using namespace Slic3r::Geometry;
|
|
|
|
auto fx = [&](size_t index) {
|
|
return float(index) / 100.0f;
|
|
};
|
|
|
|
auto fy = [&](size_t index) {
|
|
return (fx(index) - 1) * (fx(index) - 1);
|
|
};
|
|
|
|
std::vector<Vec<1, float>> observations { };
|
|
std::vector<float> observation_points { };
|
|
std::vector<float> weights { };
|
|
for (size_t index = 0; index < 200; ++index) {
|
|
observations.push_back(Vec<1, float> { fy(index) });
|
|
observation_points.push_back(fx(index));
|
|
weights.push_back(1);
|
|
}
|
|
|
|
Vec2f fmin { fx(0), fy(0) };
|
|
Vec2f fmax { fx(200), fy(200) };
|
|
|
|
auto bspline = fit_cubic_bspline(observations, observation_points, weights, 10);
|
|
|
|
for (int p = 0; p < 200; ++p) {
|
|
float fitted_val = bspline.get_fitted_value(fx(p))(0);
|
|
float expected = fy(p);
|
|
|
|
auto check = [](float a, float b) {
|
|
return abs(a - b) < 0.2f;
|
|
};
|
|
//Note: checking is problematic, splines will not perfectly align
|
|
REQUIRE(check(fitted_val, expected));
|
|
|
|
}
|
|
}
|
|
|
|
TEST_CASE("Curves: polynomial fit test", "[Curves]") {
|
|
using namespace Slic3r;
|
|
using namespace Slic3r::Geometry;
|
|
|
|
auto fx = [&](size_t index) {
|
|
return float(index) / 100.0f;
|
|
};
|
|
|
|
auto fy = [&](size_t index) {
|
|
return (fx(index) - 1) * (fx(index) - 1);
|
|
};
|
|
|
|
std::vector<Vec<1, float>> observations { };
|
|
std::vector<float> observation_points { };
|
|
std::vector<float> weights { };
|
|
for (size_t index = 0; index < 200; ++index) {
|
|
observations.push_back(Vec<1, float> { fy(index) });
|
|
observation_points.push_back(fx(index));
|
|
weights.push_back(1);
|
|
}
|
|
|
|
Vec2f fmin { fx(0), fy(0) };
|
|
Vec2f fmax { fx(200), fy(200) };
|
|
|
|
Approx ap(1.0f);
|
|
ap.epsilon(0.1f);
|
|
|
|
auto poly = fit_polynomial(observations, observation_points, weights, 2);
|
|
|
|
REQUIRE(poly.coefficients(0, 0) == ap(1));
|
|
REQUIRE(poly.coefficients(0, 1) == ap(-2));
|
|
REQUIRE(poly.coefficients(0, 2) == ap(1));
|
|
}
|
|
|