PrusaSlicer-NonPlainar/lib/Slic3r/Layer/Region.pm

619 lines
25 KiB
Perl

package Slic3r::Layer::Region;
use Moo;
use Slic3r::ExtrusionPath ':roles';
use Slic3r::Geometry qw(scale shortest_path);
use Slic3r::Geometry::Clipper qw(safety_offset union_ex diff_ex intersection_ex);
use Slic3r::Surface ':types';
has 'layer' => (
is => 'ro',
weak_ref => 1,
required => 1,
trigger => 1,
handles => [qw(id slice_z print_z height flow)],
);
has 'region' => (is => 'ro', required => 1);
has 'perimeter_flow' => (is => 'rw');
has 'infill_flow' => (is => 'rw');
# collection of spare segments generated by slicing the original geometry;
# these need to be merged in continuos (closed) polylines
has 'lines' => (is => 'rw', default => sub { [] });
# collection of surfaces generated by slicing the original geometry
has 'slices' => (is => 'rw', default => sub { [] });
# collection of polygons or polylines representing thin walls contained
# in the original geometry
has 'thin_walls' => (is => 'rw', default => sub { [] });
# collection of polygons or polylines representing thin infill regions that
# need to be filled with a medial axis
has 'thin_fills' => (is => 'rw', default => sub { [] });
# collection of expolygons generated by offsetting the innermost perimeter(s)
# they represent boundaries of areas to fill, typed (top/bottom/internal)
has 'surfaces' => (is => 'rw', default => sub { [] });
# collection of surfaces for infill generation. the difference between surfaces
# fill_surfaces is that this one honors fill_density == 0 and turns small internal
# surfaces into solid ones
has 'fill_surfaces' => (is => 'rw', default => sub { [] });
# ordered collection of extrusion paths/loops to build all perimeters
has 'perimeters' => (is => 'rw', default => sub { [] });
# ordered collection of extrusion paths to fill surfaces
has 'fills' => (is => 'rw', default => sub { [] });
sub BUILD {
my $self = shift;
$self->_update_flows;
}
sub _trigger_layer {
my $self = shift;
$self->_update_flows;
}
sub _update_flows {
my $self = shift;
return if !$self->region;
$self->perimeter_flow($self->id == 0
? $self->region->first_layer_flows->{perimeter}
: $self->region->flows->{perimeter});
$self->infill_flow($self->id == 0
? $self->region->first_layer_flows->{infill}
: $self->region->flows->{infill});
}
# build polylines from lines
sub make_surfaces {
my $self = shift;
my ($loops) = @_;
return if !@$loops;
{
my $safety_offset = scale 0.1;
# merge everything
my $expolygons = [ map $_->offset_ex(-$safety_offset), @{union_ex(safety_offset($loops, $safety_offset))} ];
Slic3r::debugf " %d surface(s) having %d holes detected from %d polylines\n",
scalar(@$expolygons), scalar(map $_->holes, @$expolygons), scalar(@$loops);
$self->slices([
map Slic3r::Surface->new(expolygon => $_, surface_type => S_TYPE_INTERNAL),
@$expolygons
]);
}
# the contours must be offsetted by half extrusion width inwards
{
my $distance = $self->perimeter_flow->scaled_width / 2;
my @surfaces = @{$self->slices};
@{$self->slices} = ();
foreach my $surface (@surfaces) {
push @{$self->slices}, map Slic3r::Surface->new
(expolygon => $_, surface_type => S_TYPE_INTERNAL),
@{union_ex([
Slic3r::Geometry::Clipper::offset(
[Slic3r::Geometry::Clipper::offset($surface->expolygon, -2*$distance)],
+$distance,
),
])};
}
# now detect thin walls by re-outgrowing offsetted surfaces and subtracting
# them from the original slices
my $outgrown = [ Slic3r::Geometry::Clipper::offset([ map $_->p, @{$self->slices} ], $distance) ];
my $diff = diff_ex(
[ map $_->p, @surfaces ],
$outgrown,
1,
);
$self->thin_walls([]);
if (@$diff) {
my $area_threshold = $self->perimeter_flow->scaled_spacing ** 2;
@$diff = grep $_->area > ($area_threshold), @$diff;
@{$self->thin_walls} = map $_->medial_axis($self->perimeter_flow->scaled_width), @$diff;
Slic3r::debugf " %d thin walls detected\n", scalar(@{$self->thin_walls}) if @{$self->thin_walls};
}
}
if (0) {
require "Slic3r/SVG.pm";
Slic3r::SVG::output("surfaces.svg",
polygons => [ map $_->contour, @{$self->slices} ],
red_polygons => [ map $_->p, map @{$_->holes}, @{$self->slices} ],
);
}
}
sub make_perimeters {
my $self = shift;
my $gap_area_threshold = $self->perimeter_flow->scaled_width ** 2;
# this array will hold one arrayref per original surface (island);
# each item of this arrayref is an arrayref representing a depth (from outer
# perimeters to inner); each item of this arrayref is an ExPolygon:
# @perimeters = (
# [ # first island
# [ Slic3r::ExPolygon, Slic3r::ExPolygon... ], #depth 0: outer loop
# [ Slic3r::ExPolygon, Slic3r::ExPolygon... ], #depth 1: inner loop
# ],
# [ # second island
# ...
# ]
# )
my @perimeters = (); # one item per depth; each item
# organize islands using a shortest path search
my @surfaces = @{shortest_path([
map [ $_->contour->[0], $_ ], @{$self->slices},
])};
$self->perimeters([]);
$self->surfaces([]);
$self->thin_fills([]);
# for each island:
foreach my $surface (@surfaces) {
my @last_offsets = ($surface->expolygon);
# experimental hole compensation (see ArcCompensation in the RepRap wiki)
if (0) {
foreach my $hole ($last_offsets[0]->holes) {
my $circumference = abs($hole->length);
next unless $circumference <= &Slic3r::SMALL_PERIMETER_LENGTH;
# this compensation only works for circular holes, while it would
# overcompensate for hexagons and other shapes having straight edges.
# so we require a minimum number of vertices.
next unless $circumference / @$hole >= 3 * $Slic3r::flow->scaled_width;
# revert the compensation done in make_surfaces() and get the actual radius
# of the hole
my $radius = ($circumference / PI / 2) - $self->perimeter_flow->scaled_spacing/2;
my $new_radius = ($self->perimeter_flow->scaled_width + sqrt(($self->perimeter_flow->scaled_width ** 2) + (4*($radius**2)))) / 2;
# holes are always turned to contours, so reverse point order before and after
$hole->reverse;
my @offsetted = $hole->offset(+ ($new_radius - $radius));
# skip arc compensation when hole is not round (thus leads to multiple offsets)
@$hole = map Slic3r::Point->new($_), @{ $offsetted[0] } if @offsetted == 1;
$hole->reverse;
}
}
my $distance = $self->perimeter_flow->scaled_spacing;
my @gaps = ();
# generate perimeters inwards (loop 0 is the external one)
my $loop_number = $Slic3r::Config->perimeters + ($surface->additional_inner_perimeters || 0);
push @perimeters, [[@last_offsets]] if $loop_number > 0;
# do one more loop (<= instead of <) so that we can detect gaps even after the desired
# number of perimeters has been generated
for (my $loop = 1; $loop <= $loop_number; $loop++) {
# offsetting a polygon can result in one or many offset polygons
my @new_offsets = ();
foreach my $expolygon (@last_offsets) {
my @offsets = @{union_ex([
Slic3r::Geometry::Clipper::offset(
[Slic3r::Geometry::Clipper::offset($expolygon, -1.5*$distance)],
+0.5*$distance,
),
])};
push @new_offsets, @offsets;
# where the above check collapses the expolygon, then there's no room for an inner loop
# and we can extract the gap for later processing
my $diff = diff_ex(
[ map @$_, $expolygon->offset_ex(-0.5*$distance) ],
[ Slic3r::Geometry::Clipper::offset([map @$_, @offsets], +0.5*$distance) ],
);
push @gaps, grep $_->area >= $gap_area_threshold, @$diff;
}
last if !@new_offsets || $loop == $loop_number;
@last_offsets = @new_offsets;
push @{ $perimeters[-1] }, [@last_offsets];
}
# create one more offset to be used as boundary for fill
{
my @fill_boundaries = map $_->offset_ex(-$distance), @last_offsets;
$_->simplify(&Slic3r::SCALED_RESOLUTION) for @fill_boundaries;
push @{ $self->surfaces }, @fill_boundaries;
}
# fill gaps
{
my $filler = Slic3r::Fill::Rectilinear->new(layer_id => $self->layer->id);
my $w = $self->perimeter_flow->width;
my @widths = (1.5 * $w, $w, 0.5 * $w); # worth trying 0.2 too?
foreach my $width (@widths) {
my $flow = $self->perimeter_flow->clone(width => $width);
# extract the gaps having this width
my @this_width = map $_->offset_ex(+0.5*$flow->scaled_width),
map $_->noncollapsing_offset_ex(-0.5*$flow->scaled_width),
@gaps;
if (0) { # remember to re-enable t/dynamic.t
# fill gaps using dynamic extrusion width, by treating them like thin polygons,
# thus generating the skeleton and using it to fill them
my %path_args = (
role => EXTR_ROLE_SOLIDFILL,
flow_spacing => $flow->spacing,
);
push @{ $self->thin_fills }, map {
$_->isa('Slic3r::Polygon')
? (map $_->pack, Slic3r::ExtrusionLoop->new(polygon => $_, %path_args)->split_at_first_point) # we should keep these as loops
: Slic3r::ExtrusionPath->pack(polyline => $_, %path_args),
} map $_->medial_axis($flow->scaled_width), @this_width;
Slic3r::debugf " %d gaps filled with extrusion width = %s\n", scalar @this_width, $width
if @{ $self->thin_fills };
} else {
# fill gaps using zigzag infill
# since this is infill, we have to offset by half-extrusion width inwards
my @infill = map $_->offset_ex(-0.5*$flow->scaled_width), @this_width;
foreach my $expolygon (@infill) {
my @paths = $filler->fill_surface(
Slic3r::Surface->new(expolygon => $expolygon),
density => 1,
flow_spacing => $flow->spacing,
);
my $params = shift @paths;
push @{ $self->thin_fills },
map {
$_->polyline->simplify($flow->scaled_width / 3);
$_->pack;
}
map Slic3r::ExtrusionPath->new(
polyline => Slic3r::Polyline->new(@$_),
role => EXTR_ROLE_GAPFILL,
height => $self->height,
flow_spacing => $params->{flow_spacing},
), @paths;
}
}
# check what's left
@gaps = @{diff_ex(
[ map @$_, @gaps ],
[ map @$_, @this_width ],
)};
}
}
}
# process one island (original surface) at time
foreach my $island (@perimeters) {
# do holes starting from innermost one
my @holes = ();
my %is_external = ();
my @hole_depths = map [ map $_->holes, @$_ ], @$island;
# organize the outermost hole loops using a shortest path search
@{$hole_depths[0]} = @{shortest_path([
map [ $_->[0], $_ ], @{$hole_depths[0]},
])};
CYCLE: while (map @$_, @hole_depths) {
shift @hole_depths while !@{$hole_depths[0]};
# take first available hole
push @holes, shift @{$hole_depths[0]};
$is_external{$#holes} = 1;
my $current_depth = 0;
while (1) {
$current_depth++;
# look for the hole containing this one if any
next CYCLE if !$hole_depths[$current_depth];
my $parent_hole;
for (@{$hole_depths[$current_depth]}) {
if ($_->encloses_point($holes[-1]->[0])) {
$parent_hole = $_;
last;
}
}
next CYCLE if !$parent_hole;
# look for other holes contained in such parent
for (@{$hole_depths[$current_depth-1]}) {
if ($parent_hole->encloses_point($_->[0])) {
# we have a sibling, so let's move onto next iteration
next CYCLE;
}
}
push @holes, $parent_hole;
@{$hole_depths[$current_depth]} = grep $_ ne $parent_hole, @{$hole_depths[$current_depth]};
}
}
# do holes, then contours starting from innermost one
$self->_add_perimeter($holes[$_], $is_external{$_} ? EXTR_ROLE_EXTERNAL_PERIMETER : undef)
for reverse 0 .. $#holes;
for my $depth (reverse 0 .. $#$island) {
my $role = $depth == $#$island ? EXTR_ROLE_CONTOUR_INTERNAL_PERIMETER
: $depth == 0 ? EXTR_ROLE_EXTERNAL_PERIMETER
: EXTR_ROLE_PERIMETER;
$self->_add_perimeter($_, $role) for map $_->contour, @{$island->[$depth]};
}
}
# if brim will be printed, reverse the order of perimeters so that
# we continue inwards after having finished the brim
if ($self->layer->id == 0 && $Slic3r::Config->brim_width > 0) {
@{$self->perimeters} = reverse @{$self->perimeters};
}
# add thin walls as perimeters
push @{ $self->perimeters }, Slic3r::ExtrusionPath::Collection->new(paths => [
map {
Slic3r::ExtrusionPath->pack(
polyline => ($_->isa('Slic3r::Polygon') ? $_->split_at_first_point : $_),
role => EXTR_ROLE_EXTERNAL_PERIMETER,
flow_spacing => $self->perimeter_flow->spacing,
);
} @{ $self->thin_walls }
])->shortest_path;
}
sub _add_perimeter {
my $self = shift;
my ($polygon, $role) = @_;
return unless $polygon->is_printable($self->perimeter_flow->width);
push @{ $self->perimeters }, Slic3r::ExtrusionLoop->pack(
polygon => $polygon,
role => (abs($polygon->length) <= &Slic3r::SMALL_PERIMETER_LENGTH) ? EXTR_ROLE_SMALLPERIMETER : ($role // EXTR_ROLE_PERIMETER), #/
flow_spacing => $self->perimeter_flow->spacing,
);
}
sub prepare_fill_surfaces {
my $self = shift;
my @surfaces = @{$self->surfaces};
# if no solid layers are requested, turn top/bottom surfaces to internal
# note that this modifies $self->surfaces in place
if ($Slic3r::Config->top_solid_layers == 0) {
$_->surface_type(S_TYPE_INTERNAL) for grep $_->surface_type == S_TYPE_TOP, @surfaces;
}
if ($Slic3r::Config->bottom_solid_layers == 0) {
$_->surface_type(S_TYPE_INTERNAL) for grep $_->surface_type == S_TYPE_BOTTOM, @surfaces;
}
# if hollow object is requested, remove internal surfaces
if ($Slic3r::Config->fill_density == 0) {
@surfaces = grep $_->surface_type != S_TYPE_INTERNAL, @surfaces;
}
# remove unprintable regions (they would slow down the infill process and also cause
# some weird failures during bridge neighbor detection)
{
my $distance = $self->infill_flow->scaled_spacing / 2;
@surfaces = map {
my $surface = $_;
# offset inwards
my @offsets = $surface->expolygon->offset_ex(-$distance);
@offsets = @{union_ex([ Slic3r::Geometry::Clipper::offset([ map @$_, @offsets ], $distance)] )}; # isn't the union_ex useless?
map Slic3r::Surface->new(
expolygon => $_,
surface_type => $surface->surface_type,
), @offsets;
} @surfaces;
}
# turn too small internal regions into solid regions
{
my $min_area = scale scale $Slic3r::Config->solid_infill_below_area; # scaling an area requires two calls!
my @small = grep $_->surface_type == S_TYPE_INTERNAL && $_->expolygon->contour->area <= $min_area, @surfaces;
$_->surface_type(S_TYPE_INTERNALSOLID) for @small;
Slic3r::debugf "identified %d small solid surfaces at layer %d\n", scalar(@small), $self->id if @small > 0;
}
$self->fill_surfaces([@surfaces]);
}
# make bridges printable
sub process_bridges {
my $self = shift;
# no bridges are possible if we have no internal surfaces
return if $Slic3r::Config->fill_density == 0;
my @bridges = ();
# a bottom surface on a layer > 0 is either a bridge or a overhang
# or a combination of both; any top surface is a candidate for
# reverse bridge processing
my @solid_surfaces = grep {
($_->surface_type == S_TYPE_BOTTOM && $self->id > 0) || $_->surface_type == S_TYPE_TOP
} @{$self->fill_surfaces} or return;
my @internal_surfaces = grep { $_->surface_type == S_TYPE_INTERNAL || $_->surface_type == S_TYPE_INTERNALSOLID } @{$self->slices};
SURFACE: foreach my $surface (@solid_surfaces) {
my $expolygon = $surface->expolygon->safety_offset;
my $description = $surface->surface_type == S_TYPE_BOTTOM ? 'bridge/overhang' : 'reverse bridge';
# offset the contour and intersect it with the internal surfaces to discover
# which of them has contact with our bridge
my @supporting_surfaces = ();
my ($contour_offset) = $expolygon->contour->offset(scale $self->flow->spacing * sqrt(2));
foreach my $internal_surface (@internal_surfaces) {
my $intersection = intersection_ex([$contour_offset], [$internal_surface->p]);
if (@$intersection) {
push @supporting_surfaces, $internal_surface;
}
}
if (0) {
require "Slic3r/SVG.pm";
Slic3r::SVG::output("bridge_surfaces.svg",
green_polygons => [ map $_->p, @supporting_surfaces ],
red_polygons => [ @$expolygon ],
);
}
Slic3r::debugf "Found $description on layer %d with %d support(s)\n",
$self->id, scalar(@supporting_surfaces);
next SURFACE unless @supporting_surfaces;
my $bridge_angle = undef;
if ($surface->surface_type == S_TYPE_BOTTOM) {
# detect optimal bridge angle
my $bridge_over_hole = 0;
my @edges = (); # edges are POLYLINES
foreach my $supporting_surface (@supporting_surfaces) {
my @surface_edges = map $_->clip_with_polygon($contour_offset),
($supporting_surface->contour, $supporting_surface->holes);
if (@supporting_surfaces == 1 && @surface_edges == 1
&& @{$supporting_surface->contour} == @{$surface_edges[0]}) {
$bridge_over_hole = 1;
}
push @edges, grep { @$_ } @surface_edges;
}
Slic3r::debugf " Bridge is supported on %d edge(s)\n", scalar(@edges);
Slic3r::debugf " and covers a hole\n" if $bridge_over_hole;
if (0) {
require "Slic3r/SVG.pm";
Slic3r::SVG::output("bridge_edges.svg",
polylines => [ map $_->p, @edges ],
);
}
if (@edges == 2) {
my @chords = map Slic3r::Line->new($_->[0], $_->[-1]), @edges;
my @midpoints = map $_->midpoint, @chords;
my $line_between_midpoints = Slic3r::Line->new(@midpoints);
$bridge_angle = Slic3r::Geometry::rad2deg_dir($line_between_midpoints->direction);
} elsif (@edges == 1) {
# TODO: this case includes both U-shaped bridges and plain overhangs;
# we need a trapezoidation algorithm to detect the actual bridged area
# and separate it from the overhang area.
# in the mean time, we're treating as overhangs all cases where
# our supporting edge is a straight line
if (@{$edges[0]} > 2) {
my $line = Slic3r::Line->new($edges[0]->[0], $edges[0]->[-1]);
$bridge_angle = Slic3r::Geometry::rad2deg_dir($line->direction);
}
} elsif (@edges) {
my $center = Slic3r::Geometry::bounding_box_center([ map @$_, @edges ]);
my $x = my $y = 0;
foreach my $point (map @$, @edges) {
my $line = Slic3r::Line->new($center, $point);
my $dir = $line->direction;
my $len = $line->length;
$x += cos($dir) * $len;
$y += sin($dir) * $len;
}
$bridge_angle = Slic3r::Geometry::rad2deg_dir(atan2($y, $x));
}
Slic3r::debugf " Optimal infill angle of bridge on layer %d is %d degrees\n",
$self->id, $bridge_angle if defined $bridge_angle;
}
# now, extend our bridge by taking a portion of supporting surfaces
{
# offset the bridge by the specified amount of mm (minimum 3)
my $bridge_overlap = scale 3;
my ($bridge_offset) = $expolygon->contour->offset($bridge_overlap);
# calculate the new bridge
my $intersection = intersection_ex(
[ @$expolygon, map $_->p, @supporting_surfaces ],
[ $bridge_offset ],
);
push @bridges, map Slic3r::Surface->new(
expolygon => $_,
surface_type => $surface->surface_type,
bridge_angle => $bridge_angle,
), @$intersection;
}
}
# now we need to merge bridges to avoid overlapping
{
# build a list of unique bridge types
my @surface_groups = Slic3r::Surface->group(@bridges);
# merge bridges of the same type, removing any of the bridges already merged;
# the order of @surface_groups determines the priority between bridges having
# different surface_type or bridge_angle
@bridges = ();
foreach my $surfaces (@surface_groups) {
my $union = union_ex([ map $_->p, @$surfaces ]);
my $diff = diff_ex(
[ map @$_, @$union ],
[ map $_->p, @bridges ],
);
push @bridges, map Slic3r::Surface->new(
expolygon => $_,
surface_type => $surfaces->[0]->surface_type,
bridge_angle => $surfaces->[0]->bridge_angle,
), @$union;
}
}
# apply bridges to layer
{
my @surfaces = @{$self->fill_surfaces};
@{$self->fill_surfaces} = ();
# intersect layer surfaces with bridges to get actual bridges
foreach my $bridge (@bridges) {
my $actual_bridge = intersection_ex(
[ map $_->p, @surfaces ],
[ $bridge->p ],
);
push @{$self->fill_surfaces}, map Slic3r::Surface->new(
expolygon => $_,
surface_type => $bridge->surface_type,
bridge_angle => $bridge->bridge_angle,
), @$actual_bridge;
}
# difference between layer surfaces and bridges are the other surfaces
foreach my $group (Slic3r::Surface->group(@surfaces)) {
my $difference = diff_ex(
[ map $_->p, @$group ],
[ map $_->p, @bridges ],
);
push @{$self->fill_surfaces}, map Slic3r::Surface->new(
expolygon => $_,
surface_type => $group->[0]->surface_type), @$difference;
}
}
}
1;