238 lines
9.1 KiB
C++
238 lines
9.1 KiB
C++
/* ADMesh -- process triangulated solid meshes
|
|
* Copyright (C) 1995, 1996 Anthony D. Martin <amartin@engr.csulb.edu>
|
|
* Copyright (C) 2013, 2014 several contributors, see AUTHORS
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Questions, comments, suggestions, etc to
|
|
* https://github.com/admesh/admesh/issues
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <math.h>
|
|
|
|
// Boost pool: Don't use mutexes to synchronize memory allocation.
|
|
#define BOOST_POOL_NO_MT
|
|
#include <boost/pool/object_pool.hpp>
|
|
|
|
#include "stl.h"
|
|
|
|
static void reverse_facet(stl_file *stl, int facet_num)
|
|
{
|
|
++ stl->stats.facets_reversed;
|
|
|
|
int neighbor[3] = { stl->neighbors_start[facet_num].neighbor[0], stl->neighbors_start[facet_num].neighbor[1], stl->neighbors_start[facet_num].neighbor[2] };
|
|
int vnot[3] = { stl->neighbors_start[facet_num].which_vertex_not[0], stl->neighbors_start[facet_num].which_vertex_not[1], stl->neighbors_start[facet_num].which_vertex_not[2] };
|
|
|
|
// reverse the facet
|
|
stl_vertex tmp_vertex = stl->facet_start[facet_num].vertex[0];
|
|
stl->facet_start[facet_num].vertex[0] = stl->facet_start[facet_num].vertex[1];
|
|
stl->facet_start[facet_num].vertex[1] = tmp_vertex;
|
|
|
|
// fix the vnots of the neighboring facets
|
|
if (neighbor[0] != -1)
|
|
stl->neighbors_start[neighbor[0]].which_vertex_not[(vnot[0] + 1) % 3] = (stl->neighbors_start[neighbor[0]].which_vertex_not[(vnot[0] + 1) % 3] + 3) % 6;
|
|
if (neighbor[1] != -1)
|
|
stl->neighbors_start[neighbor[1]].which_vertex_not[(vnot[1] + 1) % 3] = (stl->neighbors_start[neighbor[1]].which_vertex_not[(vnot[1] + 1) % 3] + 4) % 6;
|
|
if (neighbor[2] != -1)
|
|
stl->neighbors_start[neighbor[2]].which_vertex_not[(vnot[2] + 1) % 3] = (stl->neighbors_start[neighbor[2]].which_vertex_not[(vnot[2] + 1) % 3] + 2) % 6;
|
|
|
|
// swap the neighbors of the facet that is being reversed
|
|
stl->neighbors_start[facet_num].neighbor[1] = neighbor[2];
|
|
stl->neighbors_start[facet_num].neighbor[2] = neighbor[1];
|
|
|
|
// swap the vnots of the facet that is being reversed
|
|
stl->neighbors_start[facet_num].which_vertex_not[1] = vnot[2];
|
|
stl->neighbors_start[facet_num].which_vertex_not[2] = vnot[1];
|
|
|
|
// reverse the values of the vnots of the facet that is being reversed
|
|
stl->neighbors_start[facet_num].which_vertex_not[0] = (stl->neighbors_start[facet_num].which_vertex_not[0] + 3) % 6;
|
|
stl->neighbors_start[facet_num].which_vertex_not[1] = (stl->neighbors_start[facet_num].which_vertex_not[1] + 3) % 6;
|
|
stl->neighbors_start[facet_num].which_vertex_not[2] = (stl->neighbors_start[facet_num].which_vertex_not[2] + 3) % 6;
|
|
}
|
|
|
|
// Returns true if the normal was flipped.
|
|
static bool check_normal_vector(stl_file *stl, int facet_num, int normal_fix_flag)
|
|
{
|
|
stl_facet *facet = &stl->facet_start[facet_num];
|
|
|
|
stl_normal normal;
|
|
stl_calculate_normal(normal, facet);
|
|
stl_normalize_vector(normal);
|
|
stl_normal normal_dif = (normal - facet->normal).cwiseAbs();
|
|
|
|
const float eps = 0.001f;
|
|
if (normal_dif(0) < eps && normal_dif(1) < eps && normal_dif(2) < eps) {
|
|
// Normal is within tolerance. It is not really necessary to change the values here, but just for consistency, I will.
|
|
facet->normal = normal;
|
|
return false;
|
|
}
|
|
|
|
stl_normal test_norm = facet->normal;
|
|
stl_normalize_vector(test_norm);
|
|
normal_dif = (normal - test_norm).cwiseAbs();
|
|
if (normal_dif(0) < eps && normal_dif(1) < eps && normal_dif(2) < eps) {
|
|
// The normal is not within tolerance, but direction is OK.
|
|
if (normal_fix_flag) {
|
|
facet->normal = normal;
|
|
++ stl->stats.normals_fixed;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
test_norm *= -1.f;
|
|
normal_dif = (normal - test_norm).cwiseAbs();
|
|
if (normal_dif(0) < eps && normal_dif(1) < eps && normal_dif(2) < eps) {
|
|
// The normal is not within tolerance and backwards.
|
|
if (normal_fix_flag) {
|
|
facet->normal = normal;
|
|
++ stl->stats.normals_fixed;
|
|
}
|
|
return true;
|
|
}
|
|
if (normal_fix_flag) {
|
|
facet->normal = normal;
|
|
++ stl->stats.normals_fixed;
|
|
}
|
|
// Status is unknown.
|
|
return false;
|
|
}
|
|
|
|
void stl_fix_normal_directions(stl_file *stl)
|
|
{
|
|
// This may happen for malformed models, see: https://github.com/prusa3d/PrusaSlicer/issues/2209
|
|
if (stl->stats.number_of_facets == 0)
|
|
return;
|
|
|
|
struct stl_normal {
|
|
int facet_num;
|
|
stl_normal *next;
|
|
};
|
|
|
|
// Initialize linked list.
|
|
boost::object_pool<stl_normal> pool;
|
|
stl_normal *head = pool.construct();
|
|
stl_normal *tail = pool.construct();
|
|
head->next = tail;
|
|
tail->next = tail;
|
|
|
|
// Initialize list that keeps track of already fixed facets.
|
|
std::vector<char> norm_sw(stl->stats.number_of_facets, 0);
|
|
// Initialize list that keeps track of reversed facets.
|
|
std::vector<int> reversed_ids(stl->stats.number_of_facets, 0);
|
|
|
|
int facet_num = 0;
|
|
int reversed_count = 0;
|
|
// If normal vector is not within tolerance and backwards:
|
|
// Arbitrarily starts at face 0. If this one is wrong, we're screwed. Thankfully, the chances
|
|
// of it being wrong randomly are low if most of the triangles are right:
|
|
if (check_normal_vector(stl, 0, 0)) {
|
|
reverse_facet(stl, 0);
|
|
reversed_ids[reversed_count ++] = 0;
|
|
}
|
|
|
|
// Say that we've fixed this facet:
|
|
norm_sw[facet_num] = 1;
|
|
int checked = 1;
|
|
|
|
for (;;) {
|
|
// Add neighbors_to_list. Add unconnected neighbors to the list.
|
|
bool force_exit = false;
|
|
for (int j = 0; j < 3; ++ j) {
|
|
// Reverse the neighboring facets if necessary.
|
|
if (stl->neighbors_start[facet_num].which_vertex_not[j] > 2) {
|
|
// If the facet has a neighbor that is -1, it means that edge isn't shared by another facet
|
|
if (stl->neighbors_start[facet_num].neighbor[j] != -1) {
|
|
if (norm_sw[stl->neighbors_start[facet_num].neighbor[j]] == 1) {
|
|
// trying to modify a facet already marked as fixed, revert all changes made until now and exit (fixes: #716, #574, #413, #269, #262, #259, #230, #228, #206)
|
|
for (int id = reversed_count - 1; id >= 0; -- id)
|
|
reverse_facet(stl, reversed_ids[id]);
|
|
force_exit = true;
|
|
break;
|
|
}
|
|
reverse_facet(stl, stl->neighbors_start[facet_num].neighbor[j]);
|
|
reversed_ids[reversed_count ++] = stl->neighbors_start[facet_num].neighbor[j];
|
|
}
|
|
}
|
|
// If this edge of the facet is connected:
|
|
if (stl->neighbors_start[facet_num].neighbor[j] != -1) {
|
|
// If we haven't fixed this facet yet, add it to the list:
|
|
if (norm_sw[stl->neighbors_start[facet_num].neighbor[j]] != 1) {
|
|
// Add node to beginning of list.
|
|
stl_normal *newn = pool.construct();
|
|
newn->facet_num = stl->neighbors_start[facet_num].neighbor[j];
|
|
newn->next = head->next;
|
|
head->next = newn;
|
|
}
|
|
}
|
|
}
|
|
|
|
// an error occourred, quit the for loop and exit
|
|
if (force_exit)
|
|
break;
|
|
|
|
// Get next facet to fix from top of list.
|
|
if (head->next != tail) {
|
|
facet_num = head->next->facet_num;
|
|
if (norm_sw[facet_num] != 1) { // If facet is in list mutiple times
|
|
norm_sw[facet_num] = 1; // Record this one as being fixed.
|
|
++ checked;
|
|
}
|
|
stl_normal *temp = head->next; // Delete this facet from the list.
|
|
head->next = head->next->next;
|
|
// pool.destroy(temp);
|
|
} else { // If we ran out of facets to fix: All of the facets in this part have been fixed.
|
|
++ stl->stats.number_of_parts;
|
|
if (checked >= stl->stats.number_of_facets)
|
|
// All of the facets have been checked. Bail out.
|
|
break;
|
|
// There is another part here. Find it and continue.
|
|
for (uint32_t i = 0; i < stl->stats.number_of_facets; ++ i)
|
|
if (norm_sw[i] == 0) {
|
|
// This is the first facet of the next part.
|
|
facet_num = i;
|
|
if (check_normal_vector(stl, i, 0)) {
|
|
reverse_facet(stl, i);
|
|
reversed_ids[reversed_count++] = i;
|
|
}
|
|
norm_sw[facet_num] = 1;
|
|
++ checked;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// pool.destroy(head);
|
|
// pool.destroy(tail);
|
|
}
|
|
|
|
void stl_fix_normal_values(stl_file *stl)
|
|
{
|
|
for (uint32_t i = 0; i < stl->stats.number_of_facets; ++ i)
|
|
check_normal_vector(stl, i, 1);
|
|
}
|
|
|
|
void stl_reverse_all_facets(stl_file *stl)
|
|
{
|
|
stl_normal normal;
|
|
for (uint32_t i = 0; i < stl->stats.number_of_facets; ++ i) {
|
|
reverse_facet(stl, i);
|
|
stl_calculate_normal(normal, &stl->facet_start[i]);
|
|
stl_normalize_vector(normal);
|
|
stl->facet_start[i].normal = normal;
|
|
}
|
|
}
|