PrusaSlicer-NonPlainar/src/libslic3r/PrintObject.cpp
bubnikv 5c72eecf26 Fix of "Strange behavior on bridge detection" #1482
The very first slicing step needs to be invalidated if support is
enabled or disabled while the soluble supports are configured,
as the bridging is disabled for soluble supports, while the bridging
is enabled with supports disabled.
2019-09-09 17:47:29 +02:00

2672 lines
144 KiB
C++

#include "Print.hpp"
#include "BoundingBox.hpp"
#include "ClipperUtils.hpp"
#include "Geometry.hpp"
#include "I18N.hpp"
#include "SupportMaterial.hpp"
#include "Surface.hpp"
#include "Slicing.hpp"
#include "Utils.hpp"
#include <utility>
#include <boost/log/trivial.hpp>
#include <float.h>
#include <tbb/task_scheduler_init.h>
#include <tbb/parallel_for.h>
#include <tbb/atomic.h>
#include <Shiny/Shiny.h>
//! macro used to mark string used at localization,
//! return same string
#define L(s) Slic3r::I18N::translate(s)
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
#define SLIC3R_DEBUG
#endif
// #define SLIC3R_DEBUG
// Make assert active if SLIC3R_DEBUG
#ifdef SLIC3R_DEBUG
#undef NDEBUG
#define DEBUG
#define _DEBUG
#include "SVG.hpp"
#undef assert
#include <cassert>
#endif
namespace Slic3r {
PrintObject::PrintObject(Print* print, ModelObject* model_object, bool add_instances) :
PrintObjectBaseWithState(print, model_object),
typed_slices(false),
size(Vec3crd::Zero())
{
// Compute the translation to be applied to our meshes so that we work with smaller coordinates
{
// Translate meshes so that our toolpath generation algorithms work with smaller
// XY coordinates; this translation is an optimization and not strictly required.
// A cloned mesh will be aligned to 0 before slicing in slice_region() since we
// don't assume it's already aligned and we don't alter the original position in model.
// We store the XY translation so that we can place copies correctly in the output G-code
// (copies are expressed in G-code coordinates and this translation is not publicly exposed).
const BoundingBoxf3 modobj_bbox = model_object->raw_bounding_box();
m_copies_shift = Point::new_scale(modobj_bbox.min(0), modobj_bbox.min(1));
// Scale the object size and store it
this->size = (modobj_bbox.size() * (1. / SCALING_FACTOR)).cast<coord_t>();
}
if (add_instances) {
Points copies;
copies.reserve(m_model_object->instances.size());
for (const ModelInstance *mi : m_model_object->instances) {
assert(mi->is_printable());
const Vec3d& offset = mi->get_offset();
copies.emplace_back(Point::new_scale(offset(0), offset(1)));
}
this->set_copies(copies);
}
}
PrintBase::ApplyStatus PrintObject::set_copies(const Points &points)
{
// Order copies with a nearest-neighbor search.
std::vector<Point> copies;
{
std::vector<Points::size_type> ordered_copies;
Slic3r::Geometry::chained_path(points, ordered_copies);
copies.reserve(ordered_copies.size());
for (size_t point_idx : ordered_copies)
copies.emplace_back(points[point_idx] + m_copies_shift);
}
// Invalidate and set copies.
PrintBase::ApplyStatus status = PrintBase::APPLY_STATUS_UNCHANGED;
if (copies != m_copies) {
status = PrintBase::APPLY_STATUS_CHANGED;
if (m_print->invalidate_steps({ psSkirt, psBrim, psGCodeExport }) ||
(copies.size() != m_copies.size() && m_print->invalidate_step(psWipeTower)))
status = PrintBase::APPLY_STATUS_INVALIDATED;
m_copies = copies;
}
return status;
}
// 1) Decides Z positions of the layers,
// 2) Initializes layers and their regions
// 3) Slices the object meshes
// 4) Slices the modifier meshes and reclassifies the slices of the object meshes by the slices of the modifier meshes
// 5) Applies size compensation (offsets the slices in XY plane)
// 6) Replaces bad slices by the slices reconstructed from the upper/lower layer
// Resulting expolygons of layer regions are marked as Internal.
//
// this should be idempotent
void PrintObject::slice()
{
if (! this->set_started(posSlice))
return;
m_print->set_status(10, L("Processing triangulated mesh"));
std::vector<coordf_t> layer_height_profile;
this->update_layer_height_profile(*this->model_object(), m_slicing_params, layer_height_profile);
m_print->throw_if_canceled();
this->_slice(layer_height_profile);
m_print->throw_if_canceled();
// Fix the model.
//FIXME is this the right place to do? It is done repeateadly at the UI and now here at the backend.
std::string warning = this->_fix_slicing_errors();
m_print->throw_if_canceled();
if (! warning.empty())
BOOST_LOG_TRIVIAL(info) << warning;
// Simplify slices if required.
if (m_print->config().resolution)
this->_simplify_slices(scale_(this->print()->config().resolution));
if (m_layers.empty())
throw std::runtime_error("No layers were detected. You might want to repair your STL file(s) or check their size or thickness and retry.\n");
this->set_done(posSlice);
}
// 1) Merges typed region slices into stInternal type.
// 2) Increases an "extra perimeters" counter at region slices where needed.
// 3) Generates perimeters, gap fills and fill regions (fill regions of type stInternal).
void PrintObject::make_perimeters()
{
// prerequisites
this->slice();
if (! this->set_started(posPerimeters))
return;
m_print->set_status(20, L("Generating perimeters"));
BOOST_LOG_TRIVIAL(info) << "Generating perimeters..." << log_memory_info();
// merge slices if they were split into types
if (this->typed_slices) {
for (Layer *layer : m_layers) {
layer->merge_slices();
m_print->throw_if_canceled();
}
this->typed_slices = false;
}
// compare each layer to the one below, and mark those slices needing
// one additional inner perimeter, like the top of domed objects-
// this algorithm makes sure that at least one perimeter is overlapping
// but we don't generate any extra perimeter if fill density is zero, as they would be floating
// inside the object - infill_only_where_needed should be the method of choice for printing
// hollow objects
for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) {
const PrintRegion &region = *m_print->regions()[region_id];
if (! region.config().extra_perimeters || region.config().perimeters == 0 || region.config().fill_density == 0 || this->layer_count() < 2)
continue;
BOOST_LOG_TRIVIAL(debug) << "Generating extra perimeters for region " << region_id << " in parallel - start";
tbb::parallel_for(
tbb::blocked_range<size_t>(0, m_layers.size() - 1),
[this, &region, region_id](const tbb::blocked_range<size_t>& range) {
for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) {
m_print->throw_if_canceled();
LayerRegion &layerm = *m_layers[layer_idx]->m_regions[region_id];
const LayerRegion &upper_layerm = *m_layers[layer_idx+1]->m_regions[region_id];
const Polygons upper_layerm_polygons = upper_layerm.slices;
// Filter upper layer polygons in intersection_ppl by their bounding boxes?
// my $upper_layerm_poly_bboxes= [ map $_->bounding_box, @{$upper_layerm_polygons} ];
const double total_loop_length = total_length(upper_layerm_polygons);
const coord_t perimeter_spacing = layerm.flow(frPerimeter).scaled_spacing();
const Flow ext_perimeter_flow = layerm.flow(frExternalPerimeter);
const coord_t ext_perimeter_width = ext_perimeter_flow.scaled_width();
const coord_t ext_perimeter_spacing = ext_perimeter_flow.scaled_spacing();
for (Surface &slice : layerm.slices.surfaces) {
for (;;) {
// compute the total thickness of perimeters
const coord_t perimeters_thickness = ext_perimeter_width/2 + ext_perimeter_spacing/2
+ (region.config().perimeters-1 + slice.extra_perimeters) * perimeter_spacing;
// define a critical area where we don't want the upper slice to fall into
// (it should either lay over our perimeters or outside this area)
const coord_t critical_area_depth = coord_t(perimeter_spacing * 1.5);
const Polygons critical_area = diff(
offset(slice.expolygon, float(- perimeters_thickness)),
offset(slice.expolygon, float(- perimeters_thickness - critical_area_depth))
);
// check whether a portion of the upper slices falls inside the critical area
const Polylines intersection = intersection_pl(to_polylines(upper_layerm_polygons), critical_area);
// only add an additional loop if at least 30% of the slice loop would benefit from it
if (total_length(intersection) <= total_loop_length*0.3)
break;
/*
if (0) {
require "Slic3r/SVG.pm";
Slic3r::SVG::output(
"extra.svg",
no_arrows => 1,
expolygons => union_ex($critical_area),
polylines => [ map $_->split_at_first_point, map $_->p, @{$upper_layerm->slices} ],
);
}
*/
++ slice.extra_perimeters;
}
#ifdef DEBUG
if (slice.extra_perimeters > 0)
printf(" adding %d more perimeter(s) at layer %zu\n", slice.extra_perimeters, layer_idx);
#endif
}
}
});
m_print->throw_if_canceled();
BOOST_LOG_TRIVIAL(debug) << "Generating extra perimeters for region " << region_id << " in parallel - end";
}
BOOST_LOG_TRIVIAL(debug) << "Generating perimeters in parallel - start";
tbb::parallel_for(
tbb::blocked_range<size_t>(0, m_layers.size()),
[this](const tbb::blocked_range<size_t>& range) {
for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) {
m_print->throw_if_canceled();
m_layers[layer_idx]->make_perimeters();
}
}
);
m_print->throw_if_canceled();
BOOST_LOG_TRIVIAL(debug) << "Generating perimeters in parallel - end";
/*
simplify slices (both layer and region slices),
we only need the max resolution for perimeters
### This makes this method not-idempotent, so we keep it disabled for now.
###$self->_simplify_slices(&Slic3r::SCALED_RESOLUTION);
*/
this->set_done(posPerimeters);
}
void PrintObject::prepare_infill()
{
if (! this->set_started(posPrepareInfill))
return;
m_print->set_status(30, L("Preparing infill"));
// This will assign a type (top/bottom/internal) to $layerm->slices.
// Then the classifcation of $layerm->slices is transfered onto
// the $layerm->fill_surfaces by clipping $layerm->fill_surfaces
// by the cummulative area of the previous $layerm->fill_surfaces.
this->detect_surfaces_type();
m_print->throw_if_canceled();
// Decide what surfaces are to be filled.
// Here the stTop / stBottomBridge / stBottom infill is turned to just stInternal if zero top / bottom infill layers are configured.
// Also tiny stInternal surfaces are turned to stInternalSolid.
BOOST_LOG_TRIVIAL(info) << "Preparing fill surfaces..." << log_memory_info();
for (auto *layer : m_layers)
for (auto *region : layer->m_regions) {
region->prepare_fill_surfaces();
m_print->throw_if_canceled();
}
// this will detect bridges and reverse bridges
// and rearrange top/bottom/internal surfaces
// It produces enlarged overlapping bridging areas.
//
// 1) stBottomBridge / stBottom infill is grown by 3mm and clipped by the total infill area. Bridges are detected. The areas may overlap.
// 2) stTop is grown by 3mm and clipped by the grown bottom areas. The areas may overlap.
// 3) Clip the internal surfaces by the grown top/bottom surfaces.
// 4) Merge surfaces with the same style. This will mostly get rid of the overlaps.
//FIXME This does not likely merge surfaces, which are supported by a material with different colors, but same properties.
this->process_external_surfaces();
m_print->throw_if_canceled();
// Add solid fills to ensure the shell vertical thickness.
this->discover_vertical_shells();
m_print->throw_if_canceled();
// Debugging output.
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) {
for (const Layer *layer : m_layers) {
LayerRegion *layerm = layer->m_regions[region_id];
layerm->export_region_slices_to_svg_debug("6_discover_vertical_shells-final");
layerm->export_region_fill_surfaces_to_svg_debug("6_discover_vertical_shells-final");
} // for each layer
} // for each region
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
// Detect, which fill surfaces are near external layers.
// They will be split in internal and internal-solid surfaces.
// The purpose is to add a configurable number of solid layers to support the TOP surfaces
// and to add a configurable number of solid layers above the BOTTOM / BOTTOMBRIDGE surfaces
// to close these surfaces reliably.
//FIXME Vojtech: Is this a good place to add supporting infills below sloping perimeters?
this->discover_horizontal_shells();
m_print->throw_if_canceled();
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) {
for (const Layer *layer : m_layers) {
LayerRegion *layerm = layer->m_regions[region_id];
layerm->export_region_slices_to_svg_debug("7_discover_horizontal_shells-final");
layerm->export_region_fill_surfaces_to_svg_debug("7_discover_horizontal_shells-final");
} // for each layer
} // for each region
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
// Only active if config->infill_only_where_needed. This step trims the sparse infill,
// so it acts as an internal support. It maintains all other infill types intact.
// Here the internal surfaces and perimeters have to be supported by the sparse infill.
//FIXME The surfaces are supported by a sparse infill, but the sparse infill is only as large as the area to support.
// Likely the sparse infill will not be anchored correctly, so it will not work as intended.
// Also one wishes the perimeters to be supported by a full infill.
this->clip_fill_surfaces();
m_print->throw_if_canceled();
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) {
for (const Layer *layer : m_layers) {
LayerRegion *layerm = layer->m_regions[region_id];
layerm->export_region_slices_to_svg_debug("8_clip_surfaces-final");
layerm->export_region_fill_surfaces_to_svg_debug("8_clip_surfaces-final");
} // for each layer
} // for each region
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
// the following step needs to be done before combination because it may need
// to remove only half of the combined infill
this->bridge_over_infill();
m_print->throw_if_canceled();
// combine fill surfaces to honor the "infill every N layers" option
this->combine_infill();
m_print->throw_if_canceled();
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) {
for (const Layer *layer : m_layers) {
LayerRegion *layerm = layer->m_regions[region_id];
layerm->export_region_slices_to_svg_debug("9_prepare_infill-final");
layerm->export_region_fill_surfaces_to_svg_debug("9_prepare_infill-final");
} // for each layer
} // for each region
for (const Layer *layer : m_layers) {
layer->export_region_slices_to_svg_debug("9_prepare_infill-final");
layer->export_region_fill_surfaces_to_svg_debug("9_prepare_infill-final");
} // for each layer
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
this->set_done(posPrepareInfill);
}
void PrintObject::infill()
{
// prerequisites
this->prepare_infill();
if (this->set_started(posInfill)) {
BOOST_LOG_TRIVIAL(debug) << "Filling layers in parallel - start";
tbb::parallel_for(
tbb::blocked_range<size_t>(0, m_layers.size()),
[this](const tbb::blocked_range<size_t>& range) {
for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) {
m_print->throw_if_canceled();
m_layers[layer_idx]->make_fills();
}
}
);
m_print->throw_if_canceled();
BOOST_LOG_TRIVIAL(debug) << "Filling layers in parallel - end";
/* we could free memory now, but this would make this step not idempotent
### $_->fill_surfaces->clear for map @{$_->regions}, @{$object->layers};
*/
this->set_done(posInfill);
}
}
void PrintObject::generate_support_material()
{
if (this->set_started(posSupportMaterial)) {
this->clear_support_layers();
if ((m_config.support_material || m_config.raft_layers > 0) && m_layers.size() > 1) {
m_print->set_status(85, L("Generating support material"));
this->_generate_support_material();
m_print->throw_if_canceled();
} else {
#if 0
// Printing without supports. Empty layer means some objects or object parts are levitating,
// therefore they cannot be printed without supports.
for (const Layer *layer : m_layers)
if (layer->empty())
throw std::runtime_error("Levitating objects cannot be printed without supports.");
#endif
}
this->set_done(posSupportMaterial);
}
}
void PrintObject::clear_layers()
{
for (Layer *l : m_layers)
delete l;
m_layers.clear();
}
Layer* PrintObject::add_layer(int id, coordf_t height, coordf_t print_z, coordf_t slice_z)
{
m_layers.emplace_back(new Layer(id, this, height, print_z, slice_z));
return m_layers.back();
}
void PrintObject::clear_support_layers()
{
for (Layer *l : m_support_layers)
delete l;
m_support_layers.clear();
}
SupportLayer* PrintObject::add_support_layer(int id, coordf_t height, coordf_t print_z)
{
m_support_layers.emplace_back(new SupportLayer(id, this, height, print_z, -1));
return m_support_layers.back();
}
SupportLayerPtrs::const_iterator PrintObject::insert_support_layer(SupportLayerPtrs::const_iterator pos, size_t id, coordf_t height, coordf_t print_z, coordf_t slice_z)
{
return m_support_layers.insert(pos, new SupportLayer(id, this, height, print_z, slice_z));
}
// Called by Print::apply().
// This method only accepts PrintObjectConfig and PrintRegionConfig option keys.
bool PrintObject::invalidate_state_by_config_options(const std::vector<t_config_option_key> &opt_keys)
{
if (opt_keys.empty())
return false;
std::vector<PrintObjectStep> steps;
bool invalidated = false;
for (const t_config_option_key &opt_key : opt_keys) {
if ( opt_key == "perimeters"
|| opt_key == "extra_perimeters"
|| opt_key == "gap_fill_speed"
|| opt_key == "overhangs"
|| opt_key == "first_layer_extrusion_width"
|| opt_key == "perimeter_extrusion_width"
|| opt_key == "infill_overlap"
|| opt_key == "thin_walls"
|| opt_key == "external_perimeters_first") {
steps.emplace_back(posPerimeters);
} else if (
opt_key == "layer_height"
|| opt_key == "first_layer_height"
|| opt_key == "raft_layers"
|| opt_key == "slice_closing_radius") {
steps.emplace_back(posSlice);
}
else if (
opt_key == "clip_multipart_objects"
|| opt_key == "elefant_foot_compensation"
|| opt_key == "support_material_contact_distance"
|| opt_key == "xy_size_compensation") {
steps.emplace_back(posSlice);
} else if (opt_key == "support_material") {
steps.emplace_back(posSupportMaterial);
if (m_config.support_material_contact_distance == 0.) {
// Enabling / disabling supports while soluble support interface is enabled.
// This changes the bridging logic (bridging enabled without supports, disabled with supports).
// Reset everything.
// See GH #1482 for details.
steps.emplace_back(posSlice);
}
} else if (
opt_key == "support_material_auto"
|| opt_key == "support_material_angle"
|| opt_key == "support_material_buildplate_only"
|| opt_key == "support_material_enforce_layers"
|| opt_key == "support_material_extruder"
|| opt_key == "support_material_extrusion_width"
|| opt_key == "support_material_interface_layers"
|| opt_key == "support_material_interface_contact_loops"
|| opt_key == "support_material_interface_extruder"
|| opt_key == "support_material_interface_spacing"
|| opt_key == "support_material_pattern"
|| opt_key == "support_material_xy_spacing"
|| opt_key == "support_material_spacing"
|| opt_key == "support_material_synchronize_layers"
|| opt_key == "support_material_threshold"
|| opt_key == "support_material_with_sheath"
|| opt_key == "dont_support_bridges"
|| opt_key == "first_layer_extrusion_width") {
steps.emplace_back(posSupportMaterial);
} else if (
opt_key == "interface_shells"
|| opt_key == "infill_only_where_needed"
|| opt_key == "infill_every_layers"
|| opt_key == "solid_infill_every_layers"
|| opt_key == "bottom_solid_layers"
|| opt_key == "top_solid_layers"
|| opt_key == "solid_infill_below_area"
|| opt_key == "infill_extruder"
|| opt_key == "solid_infill_extruder"
|| opt_key == "infill_extrusion_width"
|| opt_key == "ensure_vertical_shell_thickness"
|| opt_key == "bridge_angle") {
steps.emplace_back(posPrepareInfill);
} else if (
opt_key == "top_fill_pattern"
|| opt_key == "bottom_fill_pattern"
|| opt_key == "external_fill_link_max_length"
|| opt_key == "fill_angle"
|| opt_key == "fill_pattern"
|| opt_key == "fill_link_max_length"
|| opt_key == "top_infill_extrusion_width"
|| opt_key == "first_layer_extrusion_width") {
steps.emplace_back(posInfill);
} else if (
opt_key == "fill_density"
|| opt_key == "solid_infill_extrusion_width") {
steps.emplace_back(posPerimeters);
steps.emplace_back(posPrepareInfill);
} else if (
opt_key == "external_perimeter_extrusion_width"
|| opt_key == "perimeter_extruder") {
steps.emplace_back(posPerimeters);
steps.emplace_back(posSupportMaterial);
} else if (opt_key == "bridge_flow_ratio") {
steps.emplace_back(posPerimeters);
steps.emplace_back(posInfill);
} else if (
opt_key == "seam_position"
|| opt_key == "seam_preferred_direction"
|| opt_key == "seam_preferred_direction_jitter"
|| opt_key == "support_material_speed"
|| opt_key == "support_material_interface_speed"
|| opt_key == "bridge_speed"
|| opt_key == "external_perimeter_speed"
|| opt_key == "infill_speed"
|| opt_key == "perimeter_speed"
|| opt_key == "small_perimeter_speed"
|| opt_key == "solid_infill_speed"
|| opt_key == "top_solid_infill_speed") {
invalidated |= m_print->invalidate_step(psGCodeExport);
} else if (
opt_key == "wipe_into_infill"
|| opt_key == "wipe_into_objects") {
invalidated |= m_print->invalidate_step(psWipeTower);
invalidated |= m_print->invalidate_step(psGCodeExport);
} else {
// for legacy, if we can't handle this option let's invalidate all steps
this->invalidate_all_steps();
invalidated = true;
}
}
sort_remove_duplicates(steps);
for (PrintObjectStep step : steps)
invalidated |= this->invalidate_step(step);
return invalidated;
}
bool PrintObject::invalidate_step(PrintObjectStep step)
{
bool invalidated = Inherited::invalidate_step(step);
// propagate to dependent steps
if (step == posPerimeters) {
invalidated |= this->invalidate_steps({ posPrepareInfill, posInfill });
invalidated |= m_print->invalidate_steps({ psSkirt, psBrim });
} else if (step == posPrepareInfill) {
invalidated |= this->invalidate_step(posInfill);
} else if (step == posInfill) {
invalidated |= m_print->invalidate_steps({ psSkirt, psBrim });
} else if (step == posSlice) {
invalidated |= this->invalidate_steps({ posPerimeters, posPrepareInfill, posInfill, posSupportMaterial });
invalidated |= m_print->invalidate_steps({ psSkirt, psBrim });
this->m_slicing_params.valid = false;
} else if (step == posSupportMaterial) {
invalidated |= m_print->invalidate_steps({ psSkirt, psBrim });
this->m_slicing_params.valid = false;
}
// Wipe tower depends on the ordering of extruders, which in turn depends on everything.
// It also decides about what the wipe_into_infill / wipe_into_object features will do,
// and that too depends on many of the settings.
invalidated |= m_print->invalidate_step(psWipeTower);
// Invalidate G-code export in any case.
invalidated |= m_print->invalidate_step(psGCodeExport);
return invalidated;
}
bool PrintObject::invalidate_all_steps()
{
// First call the "invalidate" functions, which may cancel background processing.
bool result = Inherited::invalidate_all_steps() | m_print->invalidate_all_steps();
// Then reset some of the depending values.
this->m_slicing_params.valid = false;
this->region_volumes.clear();
return result;
}
bool PrintObject::has_support_material() const
{
return m_config.support_material
|| m_config.raft_layers > 0
|| m_config.support_material_enforce_layers > 0;
}
// This function analyzes slices of a region (SurfaceCollection slices).
// Each region slice (instance of Surface) is analyzed, whether it is supported or whether it is the top surface.
// Initially all slices are of type stInternal.
// Slices are compared against the top / bottom slices and regions and classified to the following groups:
// stTop - Part of a region, which is not covered by any upper layer. This surface will be filled with a top solid infill.
// stBottomBridge - Part of a region, which is not fully supported, but it hangs in the air, or it hangs losely on a support or a raft.
// stBottom - Part of a region, which is not supported by the same region, but it is supported either by another region, or by a soluble interface layer.
// stInternal - Part of a region, which is supported by the same region type.
// If a part of a region is of stBottom and stTop, the stBottom wins.
void PrintObject::detect_surfaces_type()
{
BOOST_LOG_TRIVIAL(info) << "Detecting solid surfaces..." << log_memory_info();
// Interface shells: the intersecting parts are treated as self standing objects supporting each other.
// Each of the objects will have a full number of top / bottom layers, even if these top / bottom layers
// are completely hidden inside a collective body of intersecting parts.
// This is useful if one of the parts is to be dissolved, or if it is transparent and the internal shells
// should be visible.
bool interface_shells = m_config.interface_shells.value;
for (size_t idx_region = 0; idx_region < this->region_volumes.size(); ++ idx_region) {
BOOST_LOG_TRIVIAL(debug) << "Detecting solid surfaces for region " << idx_region << " in parallel - start";
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
for (Layer *layer : m_layers)
layer->m_regions[idx_region]->export_region_fill_surfaces_to_svg_debug("1_detect_surfaces_type-initial");
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
// If interface shells are allowed, the region->surfaces cannot be overwritten as they may be used by other threads.
// Cache the result of the following parallel_loop.
std::vector<Surfaces> surfaces_new;
if (interface_shells)
surfaces_new.assign(m_layers.size(), Surfaces());
tbb::parallel_for(
tbb::blocked_range<size_t>(0, m_layers.size()),
[this, idx_region, interface_shells, &surfaces_new](const tbb::blocked_range<size_t>& range) {
// If we have raft layers, consider bottom layer as a bridge just like any other bottom surface lying on the void.
SurfaceType surface_type_bottom_1st =
(m_config.raft_layers.value > 0 && m_config.support_material_contact_distance.value > 0) ?
stBottomBridge : stBottom;
// If we have soluble support material, don't bridge. The overhang will be squished against a soluble layer separating
// the support from the print.
SurfaceType surface_type_bottom_other =
(m_config.support_material.value && m_config.support_material_contact_distance.value == 0) ?
stBottom : stBottomBridge;
for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++ idx_layer) {
m_print->throw_if_canceled();
// BOOST_LOG_TRIVIAL(trace) << "Detecting solid surfaces for region " << idx_region << " and layer " << layer->print_z;
Layer *layer = m_layers[idx_layer];
LayerRegion *layerm = layer->get_region(idx_region);
// comparison happens against the *full* slices (considering all regions)
// unless internal shells are requested
Layer *upper_layer = (idx_layer + 1 < this->layer_count()) ? m_layers[idx_layer + 1] : nullptr;
Layer *lower_layer = (idx_layer > 0) ? m_layers[idx_layer - 1] : nullptr;
// collapse very narrow parts (using the safety offset in the diff is not enough)
float offset = layerm->flow(frExternalPerimeter).scaled_width() / 10.f;
Polygons layerm_slices_surfaces = to_polygons(layerm->slices.surfaces);
// find top surfaces (difference between current surfaces
// of current layer and upper one)
Surfaces top;
if (upper_layer) {
Polygons upper_slices = interface_shells ?
to_polygons(upper_layer->get_region(idx_region)->slices.surfaces) :
to_polygons(upper_layer->slices);
surfaces_append(top,
//FIXME implement offset2_ex working over ExPolygons, that should be a bit more efficient than calling offset_ex twice.
offset_ex(offset_ex(diff_ex(layerm_slices_surfaces, upper_slices, true), -offset), offset),
stTop);
} else {
// if no upper layer, all surfaces of this one are solid
// we clone surfaces because we're going to clear the slices collection
top = layerm->slices.surfaces;
for (Surface &surface : top)
surface.surface_type = stTop;
}
// Find bottom surfaces (difference between current surfaces of current layer and lower one).
Surfaces bottom;
if (lower_layer) {
#if 0
//FIXME Why is this branch failing t\multi.t ?
Polygons lower_slices = interface_shells ?
to_polygons(lower_layer->get_region(idx_region)->slices.surfaces) :
to_polygons(lower_layer->slices);
surfaces_append(bottom,
offset2_ex(diff(layerm_slices_surfaces, lower_slices, true), -offset, offset),
surface_type_bottom_other);
#else
// Any surface lying on the void is a true bottom bridge (an overhang)
surfaces_append(
bottom,
offset2_ex(
diff(layerm_slices_surfaces, to_polygons(lower_layer->slices), true),
-offset, offset),
surface_type_bottom_other);
// if user requested internal shells, we need to identify surfaces
// lying on other slices not belonging to this region
if (interface_shells) {
// non-bridging bottom surfaces: any part of this layer lying
// on something else, excluding those lying on our own region
surfaces_append(
bottom,
offset2_ex(
diff(
intersection(layerm_slices_surfaces, to_polygons(lower_layer->slices)), // supported
to_polygons(lower_layer->get_region(idx_region)->slices.surfaces),
true),
-offset, offset),
stBottom);
}
#endif
} else {
// if no lower layer, all surfaces of this one are solid
// we clone surfaces because we're going to clear the slices collection
bottom = layerm->slices.surfaces;
for (Surface &surface : bottom)
surface.surface_type = surface_type_bottom_1st;
}
// now, if the object contained a thin membrane, we could have overlapping bottom
// and top surfaces; let's do an intersection to discover them and consider them
// as bottom surfaces (to allow for bridge detection)
if (! top.empty() && ! bottom.empty()) {
// Polygons overlapping = intersection(to_polygons(top), to_polygons(bottom));
// Slic3r::debugf " layer %d contains %d membrane(s)\n", $layerm->layer->id, scalar(@$overlapping)
// if $Slic3r::debug;
Polygons top_polygons = to_polygons(std::move(top));
top.clear();
surfaces_append(top,
diff_ex(top_polygons, to_polygons(bottom), false),
stTop);
}
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
{
static int iRun = 0;
std::vector<std::pair<Slic3r::ExPolygons, SVG::ExPolygonAttributes>> expolygons_with_attributes;
expolygons_with_attributes.emplace_back(std::make_pair(union_ex(top), SVG::ExPolygonAttributes("green")));
expolygons_with_attributes.emplace_back(std::make_pair(union_ex(bottom), SVG::ExPolygonAttributes("brown")));
expolygons_with_attributes.emplace_back(std::make_pair(to_expolygons(layerm->slices.surfaces), SVG::ExPolygonAttributes("black")));
SVG::export_expolygons(debug_out_path("1_detect_surfaces_type_%d_region%d-layer_%f.svg", iRun ++, idx_region, layer->print_z).c_str(), expolygons_with_attributes);
}
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
// save surfaces to layer
Surfaces &surfaces_out = interface_shells ? surfaces_new[idx_layer] : layerm->slices.surfaces;
surfaces_out.clear();
// find internal surfaces (difference between top/bottom surfaces and others)
{
Polygons topbottom = to_polygons(top);
polygons_append(topbottom, to_polygons(bottom));
surfaces_append(surfaces_out,
diff_ex(layerm_slices_surfaces, topbottom, false),
stInternal);
}
surfaces_append(surfaces_out, std::move(top));
surfaces_append(surfaces_out, std::move(bottom));
// Slic3r::debugf " layer %d has %d bottom, %d top and %d internal surfaces\n",
// $layerm->layer->id, scalar(@bottom), scalar(@top), scalar(@internal) if $Slic3r::debug;
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
layerm->export_region_slices_to_svg_debug("detect_surfaces_type-final");
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
}
}
); // for each layer of a region
m_print->throw_if_canceled();
if (interface_shells) {
// Move surfaces_new to layerm->slices.surfaces
for (size_t idx_layer = 0; idx_layer < m_layers.size(); ++ idx_layer)
m_layers[idx_layer]->get_region(idx_region)->slices.surfaces = std::move(surfaces_new[idx_layer]);
}
BOOST_LOG_TRIVIAL(debug) << "Detecting solid surfaces for region " << idx_region << " - clipping in parallel - start";
// Fill in layerm->fill_surfaces by trimming the layerm->slices by the cummulative layerm->fill_surfaces.
tbb::parallel_for(
tbb::blocked_range<size_t>(0, m_layers.size()),
[this, idx_region, interface_shells, &surfaces_new](const tbb::blocked_range<size_t>& range) {
for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++ idx_layer) {
m_print->throw_if_canceled();
LayerRegion *layerm = m_layers[idx_layer]->get_region(idx_region);
layerm->slices_to_fill_surfaces_clipped();
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
layerm->export_region_fill_surfaces_to_svg_debug("1_detect_surfaces_type-final");
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
} // for each layer of a region
});
m_print->throw_if_canceled();
BOOST_LOG_TRIVIAL(debug) << "Detecting solid surfaces for region " << idx_region << " - clipping in parallel - end";
} // for each this->print->region_count
// Mark the object to have the region slices classified (typed, which also means they are split based on whether they are supported, bridging, top layers etc.)
this->typed_slices = true;
}
void PrintObject::process_external_surfaces()
{
BOOST_LOG_TRIVIAL(info) << "Processing external surfaces..." << log_memory_info();
// Cached surfaces covered by some extrusion, defining regions, over which the from the surfaces one layer higher are allowed to expand.
std::vector<Polygons> surfaces_covered;
// Is there any printing region, that has zero infill? If so, then we don't want the expansion to be performed over the complete voids, but only
// over voids, which are supported by the layer below.
bool has_voids = false;
for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id)
if (! this->region_volumes.empty() && this->print()->regions()[region_id]->config().fill_density == 0) {
has_voids = true;
break;
}
if (has_voids && m_layers.size() > 1) {
// All but stInternal fill surfaces will get expanded and possibly trimmed.
std::vector<unsigned char> layer_expansions_and_voids(m_layers.size(), false);
for (size_t layer_idx = 0; layer_idx < m_layers.size(); ++ layer_idx) {
const Layer *layer = m_layers[layer_idx];
bool expansions = false;
bool voids = false;
for (const LayerRegion *layerm : layer->regions()) {
for (const Surface &surface : layerm->fill_surfaces.surfaces) {
if (surface.surface_type == stInternal)
voids = true;
else
expansions = true;
if (voids && expansions) {
layer_expansions_and_voids[layer_idx] = true;
goto end;
}
}
}
end:;
}
BOOST_LOG_TRIVIAL(debug) << "Collecting surfaces covered with extrusions in parallel - start";
surfaces_covered.resize(m_layers.size() - 1, Polygons());
auto unsupported_width = - float(scale_(0.3 * EXTERNAL_INFILL_MARGIN));
tbb::parallel_for(
tbb::blocked_range<size_t>(0, m_layers.size() - 1),
[this, &surfaces_covered, &layer_expansions_and_voids, unsupported_width](const tbb::blocked_range<size_t>& range) {
for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx)
if (layer_expansions_and_voids[layer_idx + 1]) {
m_print->throw_if_canceled();
Polygons voids;
for (const LayerRegion *layerm : m_layers[layer_idx]->regions()) {
if (layerm->region()->config().fill_density.value == 0.)
for (const Surface &surface : layerm->fill_surfaces.surfaces)
// Shrink the holes, let the layer above expand slightly inside the unsupported areas.
polygons_append(voids, offset(surface.expolygon, unsupported_width));
}
surfaces_covered[layer_idx] = diff(to_polygons(this->m_layers[layer_idx]->slices.expolygons), voids);
}
}
);
m_print->throw_if_canceled();
BOOST_LOG_TRIVIAL(debug) << "Collecting surfaces covered with extrusions in parallel - end";
}
for (size_t region_id = 0; region_id < this->region_volumes.size(); ++region_id) {
BOOST_LOG_TRIVIAL(debug) << "Processing external surfaces for region " << region_id << " in parallel - start";
tbb::parallel_for(
tbb::blocked_range<size_t>(0, m_layers.size()),
[this, &surfaces_covered, region_id](const tbb::blocked_range<size_t>& range) {
for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) {
m_print->throw_if_canceled();
// BOOST_LOG_TRIVIAL(trace) << "Processing external surface, layer" << m_layers[layer_idx]->print_z;
m_layers[layer_idx]->get_region((int)region_id)->process_external_surfaces(
(layer_idx == 0) ? nullptr : m_layers[layer_idx - 1],
(layer_idx == 0 || surfaces_covered.empty() || surfaces_covered[layer_idx - 1].empty()) ? nullptr : &surfaces_covered[layer_idx - 1]);
}
}
);
m_print->throw_if_canceled();
BOOST_LOG_TRIVIAL(debug) << "Processing external surfaces for region " << region_id << " in parallel - end";
}
}
void PrintObject::discover_vertical_shells()
{
PROFILE_FUNC();
BOOST_LOG_TRIVIAL(info) << "Discovering vertical shells..." << log_memory_info();
struct DiscoverVerticalShellsCacheEntry
{
// Collected polygons, offsetted
Polygons top_surfaces;
Polygons bottom_surfaces;
Polygons holes;
};
std::vector<DiscoverVerticalShellsCacheEntry> cache_top_botom_regions(m_layers.size(), DiscoverVerticalShellsCacheEntry());
bool top_bottom_surfaces_all_regions = this->region_volumes.size() > 1 && ! m_config.interface_shells.value;
if (top_bottom_surfaces_all_regions) {
// This is a multi-material print and interface_shells are disabled, meaning that the vertical shell thickness
// is calculated over all materials.
// Is the "ensure vertical wall thickness" applicable to any region?
bool has_extra_layers = false;
for (size_t idx_region = 0; idx_region < this->region_volumes.size(); ++ idx_region) {
const PrintRegion &region = *m_print->get_region(idx_region);
if (region.config().ensure_vertical_shell_thickness.value &&
(region.config().top_solid_layers.value > 1 || region.config().bottom_solid_layers.value > 1)) {
has_extra_layers = true;
}
}
if (! has_extra_layers)
// The "ensure vertical wall thickness" feature is not applicable to any of the regions. Quit.
return;
BOOST_LOG_TRIVIAL(debug) << "Discovering vertical shells in parallel - start : cache top / bottom";
//FIXME Improve the heuristics for a grain size.
size_t grain_size = std::max(m_layers.size() / 16, size_t(1));
tbb::parallel_for(
tbb::blocked_range<size_t>(0, m_layers.size(), grain_size),
[this, &cache_top_botom_regions](const tbb::blocked_range<size_t>& range) {
const SurfaceType surfaces_bottom[2] = { stBottom, stBottomBridge };
const size_t num_regions = this->region_volumes.size();
for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++ idx_layer) {
m_print->throw_if_canceled();
const Layer &layer = *m_layers[idx_layer];
DiscoverVerticalShellsCacheEntry &cache = cache_top_botom_regions[idx_layer];
// Simulate single set of perimeters over all merged regions.
float perimeter_offset = 0.f;
float perimeter_min_spacing = FLT_MAX;
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
static size_t debug_idx = 0;
++ debug_idx;
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
for (size_t idx_region = 0; idx_region < num_regions; ++ idx_region) {
LayerRegion &layerm = *layer.m_regions[idx_region];
float min_perimeter_infill_spacing = float(layerm.flow(frSolidInfill).scaled_spacing()) * 1.05f;
// Top surfaces.
append(cache.top_surfaces, offset(to_expolygons(layerm.slices.filter_by_type(stTop)), min_perimeter_infill_spacing));
append(cache.top_surfaces, offset(to_expolygons(layerm.fill_surfaces.filter_by_type(stTop)), min_perimeter_infill_spacing));
// Bottom surfaces.
append(cache.bottom_surfaces, offset(to_expolygons(layerm.slices.filter_by_types(surfaces_bottom, 2)), min_perimeter_infill_spacing));
append(cache.bottom_surfaces, offset(to_expolygons(layerm.fill_surfaces.filter_by_types(surfaces_bottom, 2)), min_perimeter_infill_spacing));
// Calculate the maximum perimeter offset as if the slice was extruded with a single extruder only.
// First find the maxium number of perimeters per region slice.
unsigned int perimeters = 0;
for (Surface &s : layerm.slices.surfaces)
perimeters = std::max<unsigned int>(perimeters, s.extra_perimeters);
perimeters += layerm.region()->config().perimeters.value;
// Then calculate the infill offset.
if (perimeters > 0) {
Flow extflow = layerm.flow(frExternalPerimeter);
Flow flow = layerm.flow(frPerimeter);
perimeter_offset = std::max(perimeter_offset,
0.5f * float(extflow.scaled_width() + extflow.scaled_spacing()) + (float(perimeters) - 1.f) * flow.scaled_spacing());
perimeter_min_spacing = std::min(perimeter_min_spacing, float(std::min(extflow.scaled_spacing(), flow.scaled_spacing())));
}
polygons_append(cache.holes, to_polygons(layerm.fill_expolygons));
}
// Save some computing time by reducing the number of polygons.
cache.top_surfaces = union_(cache.top_surfaces, false);
cache.bottom_surfaces = union_(cache.bottom_surfaces, false);
// For a multi-material print, simulate perimeter / infill split as if only a single extruder has been used for the whole print.
if (perimeter_offset > 0.) {
// The layer.slices are forced to merge by expanding them first.
polygons_append(cache.holes, offset(offset_ex(layer.slices, 0.3f * perimeter_min_spacing), - perimeter_offset - 0.3f * perimeter_min_spacing));
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
{
Slic3r::SVG svg(debug_out_path("discover_vertical_shells-extra-holes-%d.svg", debug_idx), get_extents(layer.slices.expolygons));
svg.draw(layer.slices.expolygons, "blue");
svg.draw(union_ex(cache.holes), "red");
svg.draw_outline(union_ex(cache.holes), "black", "blue", scale_(0.05));
svg.Close();
}
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
}
cache.holes = union_(cache.holes, false);
}
});
m_print->throw_if_canceled();
BOOST_LOG_TRIVIAL(debug) << "Discovering vertical shells in parallel - end : cache top / bottom";
}
for (size_t idx_region = 0; idx_region < this->region_volumes.size(); ++ idx_region) {
PROFILE_BLOCK(discover_vertical_shells_region);
const PrintRegion &region = *m_print->get_region(idx_region);
if (! region.config().ensure_vertical_shell_thickness.value)
// This region will be handled by discover_horizontal_shells().
continue;
int n_extra_top_layers = std::max(0, region.config().top_solid_layers.value - 1);
int n_extra_bottom_layers = std::max(0, region.config().bottom_solid_layers.value - 1);
if (n_extra_top_layers + n_extra_bottom_layers == 0)
// Zero or 1 layer, there is no additional vertical wall thickness enforced.
continue;
//FIXME Improve the heuristics for a grain size.
size_t grain_size = std::max(m_layers.size() / 16, size_t(1));
if (! top_bottom_surfaces_all_regions) {
// This is either a single material print, or a multi-material print and interface_shells are enabled, meaning that the vertical shell thickness
// is calculated over a single material.
BOOST_LOG_TRIVIAL(debug) << "Discovering vertical shells for region " << idx_region << " in parallel - start : cache top / bottom";
tbb::parallel_for(
tbb::blocked_range<size_t>(0, m_layers.size(), grain_size),
[this, idx_region, &cache_top_botom_regions](const tbb::blocked_range<size_t>& range) {
const SurfaceType surfaces_bottom[2] = { stBottom, stBottomBridge };
for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++ idx_layer) {
m_print->throw_if_canceled();
Layer &layer = *m_layers[idx_layer];
LayerRegion &layerm = *layer.m_regions[idx_region];
float min_perimeter_infill_spacing = float(layerm.flow(frSolidInfill).scaled_spacing()) * 1.05f;
// Top surfaces.
auto &cache = cache_top_botom_regions[idx_layer];
cache.top_surfaces = offset(to_expolygons(layerm.slices.filter_by_type(stTop)), min_perimeter_infill_spacing);
append(cache.top_surfaces, offset(to_expolygons(layerm.fill_surfaces.filter_by_type(stTop)), min_perimeter_infill_spacing));
// Bottom surfaces.
cache.bottom_surfaces = offset(to_expolygons(layerm.slices.filter_by_types(surfaces_bottom, 2)), min_perimeter_infill_spacing);
append(cache.bottom_surfaces, offset(to_expolygons(layerm.fill_surfaces.filter_by_types(surfaces_bottom, 2)), min_perimeter_infill_spacing));
// Holes over all regions. Only collect them once, they are valid for all idx_region iterations.
if (cache.holes.empty()) {
for (size_t idx_region = 0; idx_region < layer.regions().size(); ++ idx_region)
polygons_append(cache.holes, to_polygons(layer.regions()[idx_region]->fill_expolygons));
}
}
});
m_print->throw_if_canceled();
BOOST_LOG_TRIVIAL(debug) << "Discovering vertical shells for region " << idx_region << " in parallel - end : cache top / bottom";
}
BOOST_LOG_TRIVIAL(debug) << "Discovering vertical shells for region " << idx_region << " in parallel - start : ensure vertical wall thickness";
tbb::parallel_for(
tbb::blocked_range<size_t>(0, m_layers.size(), grain_size),
[this, idx_region, n_extra_top_layers, n_extra_bottom_layers, &cache_top_botom_regions]
(const tbb::blocked_range<size_t>& range) {
// printf("discover_vertical_shells from %d to %d\n", range.begin(), range.end());
for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++ idx_layer) {
PROFILE_BLOCK(discover_vertical_shells_region_layer);
m_print->throw_if_canceled();
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
static size_t debug_idx = 0;
++ debug_idx;
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
Layer *layer = m_layers[idx_layer];
LayerRegion *layerm = layer->m_regions[idx_region];
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
layerm->export_region_slices_to_svg_debug("4_discover_vertical_shells-initial");
layerm->export_region_fill_surfaces_to_svg_debug("4_discover_vertical_shells-initial");
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
Flow solid_infill_flow = layerm->flow(frSolidInfill);
coord_t infill_line_spacing = solid_infill_flow.scaled_spacing();
// Find a union of perimeters below / above this surface to guarantee a minimum shell thickness.
Polygons shell;
Polygons holes;
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
ExPolygons shell_ex;
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
float min_perimeter_infill_spacing = float(infill_line_spacing) * 1.05f;
{
PROFILE_BLOCK(discover_vertical_shells_region_layer_collect);
#if 0
// #ifdef SLIC3R_DEBUG_SLICE_PROCESSING
{
Slic3r::SVG svg_cummulative(debug_out_path("discover_vertical_shells-perimeters-before-union-run%d.svg", debug_idx), this->bounding_box());
for (int n = (int)idx_layer - n_extra_bottom_layers; n <= (int)idx_layer + n_extra_top_layers; ++ n) {
if (n < 0 || n >= (int)m_layers.size())
continue;
ExPolygons &expolys = m_layers[n]->perimeter_expolygons;
for (size_t i = 0; i < expolys.size(); ++ i) {
Slic3r::SVG svg(debug_out_path("discover_vertical_shells-perimeters-before-union-run%d-layer%d-expoly%d.svg", debug_idx, n, i), get_extents(expolys[i]));
svg.draw(expolys[i]);
svg.draw_outline(expolys[i].contour, "black", scale_(0.05));
svg.draw_outline(expolys[i].holes, "blue", scale_(0.05));
svg.Close();
svg_cummulative.draw(expolys[i]);
svg_cummulative.draw_outline(expolys[i].contour, "black", scale_(0.05));
svg_cummulative.draw_outline(expolys[i].holes, "blue", scale_(0.05));
}
}
}
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
// Reset the top / bottom inflated regions caches of entries, which are out of the moving window.
bool hole_first = true;
for (int n = (int)idx_layer - n_extra_bottom_layers; n <= (int)idx_layer + n_extra_top_layers; ++ n)
if (n >= 0 && n < (int)m_layers.size()) {
const DiscoverVerticalShellsCacheEntry &cache = cache_top_botom_regions[n];
if (hole_first) {
hole_first = false;
polygons_append(holes, cache.holes);
}
else if (! holes.empty()) {
holes = intersection(holes, cache.holes);
}
size_t n_shell_old = shell.size();
if (n > int(idx_layer))
// Collect top surfaces.
polygons_append(shell, cache.top_surfaces);
else if (n < int(idx_layer))
// Collect bottom and bottom bridge surfaces.
polygons_append(shell, cache.bottom_surfaces);
// Running the union_ using the Clipper library piece by piece is cheaper
// than running the union_ all at once.
if (n_shell_old < shell.size())
shell = union_(shell, false);
}
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
{
Slic3r::SVG svg(debug_out_path("discover_vertical_shells-perimeters-before-union-%d.svg", debug_idx), get_extents(shell));
svg.draw(shell);
svg.draw_outline(shell, "black", scale_(0.05));
svg.Close();
}
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
#if 0
{
PROFILE_BLOCK(discover_vertical_shells_region_layer_shell_);
// shell = union_(shell, true);
shell = union_(shell, false);
}
#endif
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
shell_ex = union_ex(shell, true);
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
}
//if (shell.empty())
// continue;
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
{
Slic3r::SVG svg(debug_out_path("discover_vertical_shells-perimeters-after-union-%d.svg", debug_idx), get_extents(shell));
svg.draw(shell_ex);
svg.draw_outline(shell_ex, "black", "blue", scale_(0.05));
svg.Close();
}
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
{
Slic3r::SVG svg(debug_out_path("discover_vertical_shells-internal-wshell-%d.svg", debug_idx), get_extents(shell));
svg.draw(layerm->fill_surfaces.filter_by_type(stInternal), "yellow", 0.5);
svg.draw_outline(layerm->fill_surfaces.filter_by_type(stInternal), "black", "blue", scale_(0.05));
svg.draw(shell_ex, "blue", 0.5);
svg.draw_outline(shell_ex, "black", "blue", scale_(0.05));
svg.Close();
}
{
Slic3r::SVG svg(debug_out_path("discover_vertical_shells-internalvoid-wshell-%d.svg", debug_idx), get_extents(shell));
svg.draw(layerm->fill_surfaces.filter_by_type(stInternalVoid), "yellow", 0.5);
svg.draw_outline(layerm->fill_surfaces.filter_by_type(stInternalVoid), "black", "blue", scale_(0.05));
svg.draw(shell_ex, "blue", 0.5);
svg.draw_outline(shell_ex, "black", "blue", scale_(0.05));
svg.Close();
}
{
Slic3r::SVG svg(debug_out_path("discover_vertical_shells-internalvoid-wshell-%d.svg", debug_idx), get_extents(shell));
svg.draw(layerm->fill_surfaces.filter_by_type(stInternalVoid), "yellow", 0.5);
svg.draw_outline(layerm->fill_surfaces.filter_by_type(stInternalVoid), "black", "blue", scale_(0.05));
svg.draw(shell_ex, "blue", 0.5);
svg.draw_outline(shell_ex, "black", "blue", scale_(0.05));
svg.Close();
}
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
// Trim the shells region by the internal & internal void surfaces.
const SurfaceType surfaceTypesInternal[] = { stInternal, stInternalVoid, stInternalSolid };
const Polygons polygonsInternal = to_polygons(layerm->fill_surfaces.filter_by_types(surfaceTypesInternal, 3));
shell = intersection(shell, polygonsInternal, true);
polygons_append(shell, diff(polygonsInternal, holes));
if (shell.empty())
continue;
// Append the internal solids, so they will be merged with the new ones.
polygons_append(shell, to_polygons(layerm->fill_surfaces.filter_by_type(stInternalSolid)));
// These regions will be filled by a rectilinear full infill. Currently this type of infill
// only fills regions, which fit at least a single line. To avoid gaps in the sparse infill,
// make sure that this region does not contain parts narrower than the infill spacing width.
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
Polygons shell_before = shell;
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
#if 1
// Intentionally inflate a bit more than how much the region has been shrunk,
// so there will be some overlap between this solid infill and the other infill regions (mainly the sparse infill).
shell = offset(offset_ex(union_ex(shell), - 0.5f * min_perimeter_infill_spacing), 0.8f * min_perimeter_infill_spacing, ClipperLib::jtSquare);
if (shell.empty())
continue;
#else
// Ensure each region is at least 3x infill line width wide, so it could be filled in.
// float margin = float(infill_line_spacing) * 3.f;
float margin = float(infill_line_spacing) * 1.5f;
// we use a higher miterLimit here to handle areas with acute angles
// in those cases, the default miterLimit would cut the corner and we'd
// get a triangle in $too_narrow; if we grow it below then the shell
// would have a different shape from the external surface and we'd still
// have the same angle, so the next shell would be grown even more and so on.
Polygons too_narrow = diff(shell, offset2(shell, -margin, margin, ClipperLib::jtMiter, 5.), true);
if (! too_narrow.empty()) {
// grow the collapsing parts and add the extra area to the neighbor layer
// as well as to our original surfaces so that we support this
// additional area in the next shell too
// make sure our grown surfaces don't exceed the fill area
polygons_append(shell, intersection(offset(too_narrow, margin), polygonsInternal));
}
#endif
ExPolygons new_internal_solid = intersection_ex(polygonsInternal, shell, false);
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
{
Slic3r::SVG svg(debug_out_path("discover_vertical_shells-regularized-%d.svg", debug_idx), get_extents(shell_before));
// Source shell.
svg.draw(union_ex(shell_before, true));
// Shell trimmed to the internal surfaces.
svg.draw_outline(union_ex(shell, true), "black", "blue", scale_(0.05));
// Regularized infill region.
svg.draw_outline(new_internal_solid, "red", "magenta", scale_(0.05));
svg.Close();
}
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
// Trim the internal & internalvoid by the shell.
Slic3r::ExPolygons new_internal = diff_ex(
to_polygons(layerm->fill_surfaces.filter_by_type(stInternal)),
shell,
false
);
Slic3r::ExPolygons new_internal_void = diff_ex(
to_polygons(layerm->fill_surfaces.filter_by_type(stInternalVoid)),
shell,
false
);
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
{
SVG::export_expolygons(debug_out_path("discover_vertical_shells-new_internal-%d.svg", debug_idx), get_extents(shell), new_internal, "black", "blue", scale_(0.05));
SVG::export_expolygons(debug_out_path("discover_vertical_shells-new_internal_void-%d.svg", debug_idx), get_extents(shell), new_internal_void, "black", "blue", scale_(0.05));
SVG::export_expolygons(debug_out_path("discover_vertical_shells-new_internal_solid-%d.svg", debug_idx), get_extents(shell), new_internal_solid, "black", "blue", scale_(0.05));
}
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
// Assign resulting internal surfaces to layer.
const SurfaceType surfaceTypesKeep[] = { stTop, stBottom, stBottomBridge };
layerm->fill_surfaces.keep_types(surfaceTypesKeep, sizeof(surfaceTypesKeep)/sizeof(SurfaceType));
layerm->fill_surfaces.append(new_internal, stInternal);
layerm->fill_surfaces.append(new_internal_void, stInternalVoid);
layerm->fill_surfaces.append(new_internal_solid, stInternalSolid);
} // for each layer
});
m_print->throw_if_canceled();
BOOST_LOG_TRIVIAL(debug) << "Discovering vertical shells for region " << idx_region << " in parallel - end";
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
for (size_t idx_layer = 0; idx_layer < m_layers.size(); ++idx_layer) {
LayerRegion *layerm = m_layers[idx_layer]->get_region(idx_region);
layerm->export_region_slices_to_svg_debug("4_discover_vertical_shells-final");
layerm->export_region_fill_surfaces_to_svg_debug("4_discover_vertical_shells-final");
}
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
} // for each region
// Write the profiler measurements to file
// PROFILE_UPDATE();
// PROFILE_OUTPUT(debug_out_path("discover_vertical_shells-profile.txt").c_str());
}
/* This method applies bridge flow to the first internal solid layer above
sparse infill */
void PrintObject::bridge_over_infill()
{
BOOST_LOG_TRIVIAL(info) << "Bridge over infill..." << log_memory_info();
for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) {
const PrintRegion &region = *m_print->regions()[region_id];
// skip bridging in case there are no voids
if (region.config().fill_density.value == 100) continue;
// get bridge flow
Flow bridge_flow = region.flow(
frSolidInfill,
-1, // layer height, not relevant for bridge flow
true, // bridge
false, // first layer
-1, // custom width, not relevant for bridge flow
*this
);
for (LayerPtrs::iterator layer_it = m_layers.begin(); layer_it != m_layers.end(); ++ layer_it) {
// skip first layer
if (layer_it == m_layers.begin())
continue;
Layer* layer = *layer_it;
LayerRegion* layerm = layer->m_regions[region_id];
// extract the stInternalSolid surfaces that might be transformed into bridges
Polygons internal_solid;
layerm->fill_surfaces.filter_by_type(stInternalSolid, &internal_solid);
// check whether the lower area is deep enough for absorbing the extra flow
// (for obvious physical reasons but also for preventing the bridge extrudates
// from overflowing in 3D preview)
ExPolygons to_bridge;
{
Polygons to_bridge_pp = internal_solid;
// iterate through lower layers spanned by bridge_flow
double bottom_z = layer->print_z - bridge_flow.height;
for (int i = int(layer_it - m_layers.begin()) - 1; i >= 0; --i) {
const Layer* lower_layer = m_layers[i];
// stop iterating if layer is lower than bottom_z
if (lower_layer->print_z < bottom_z) break;
// iterate through regions and collect internal surfaces
Polygons lower_internal;
for (LayerRegion *lower_layerm : lower_layer->m_regions)
lower_layerm->fill_surfaces.filter_by_type(stInternal, &lower_internal);
// intersect such lower internal surfaces with the candidate solid surfaces
to_bridge_pp = intersection(to_bridge_pp, lower_internal);
}
// there's no point in bridging too thin/short regions
//FIXME Vojtech: The offset2 function is not a geometric offset,
// therefore it may create 1) gaps, and 2) sharp corners, which are outside the original contour.
// The gaps will be filled by a separate region, which makes the infill less stable and it takes longer.
{
float min_width = float(bridge_flow.scaled_width()) * 3.f;
to_bridge_pp = offset2(to_bridge_pp, -min_width, +min_width);
}
if (to_bridge_pp.empty()) continue;
// convert into ExPolygons
to_bridge = union_ex(to_bridge_pp);
}
#ifdef SLIC3R_DEBUG
printf("Bridging " PRINTF_ZU " internal areas at layer " PRINTF_ZU "\n", to_bridge.size(), layer->id());
#endif
// compute the remaning internal solid surfaces as difference
ExPolygons not_to_bridge = diff_ex(internal_solid, to_polygons(to_bridge), true);
to_bridge = intersection_ex(to_polygons(to_bridge), internal_solid, true);
// build the new collection of fill_surfaces
layerm->fill_surfaces.remove_type(stInternalSolid);
for (ExPolygon &ex : to_bridge)
layerm->fill_surfaces.surfaces.push_back(Surface(stInternalBridge, ex));
for (ExPolygon &ex : not_to_bridge)
layerm->fill_surfaces.surfaces.push_back(Surface(stInternalSolid, ex));
/*
# exclude infill from the layers below if needed
# see discussion at https://github.com/alexrj/Slic3r/issues/240
# Update: do not exclude any infill. Sparse infill is able to absorb the excess material.
if (0) {
my $excess = $layerm->extruders->{infill}->bridge_flow->width - $layerm->height;
for (my $i = $layer_id-1; $excess >= $self->get_layer($i)->height; $i--) {
Slic3r::debugf " skipping infill below those areas at layer %d\n", $i;
foreach my $lower_layerm (@{$self->get_layer($i)->regions}) {
my @new_surfaces = ();
# subtract the area from all types of surfaces
foreach my $group (@{$lower_layerm->fill_surfaces->group}) {
push @new_surfaces, map $group->[0]->clone(expolygon => $_),
@{diff_ex(
[ map $_->p, @$group ],
[ map @$_, @$to_bridge ],
)};
push @new_surfaces, map Slic3r::Surface->new(
expolygon => $_,
surface_type => stInternalVoid,
), @{intersection_ex(
[ map $_->p, @$group ],
[ map @$_, @$to_bridge ],
)};
}
$lower_layerm->fill_surfaces->clear;
$lower_layerm->fill_surfaces->append($_) for @new_surfaces;
}
$excess -= $self->get_layer($i)->height;
}
}
*/
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
layerm->export_region_slices_to_svg_debug("7_bridge_over_infill");
layerm->export_region_fill_surfaces_to_svg_debug("7_bridge_over_infill");
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
m_print->throw_if_canceled();
}
}
}
static void clamp_exturder_to_default(ConfigOptionInt &opt, size_t num_extruders)
{
if (opt.value > (int)num_extruders)
// assign the default extruder
opt.value = 1;
}
PrintObjectConfig PrintObject::object_config_from_model_object(const PrintObjectConfig &default_object_config, const ModelObject &object, size_t num_extruders)
{
PrintObjectConfig config = default_object_config;
normalize_and_apply_config(config, object.config);
// Clamp invalid extruders to the default extruder (with index 1).
clamp_exturder_to_default(config.support_material_extruder, num_extruders);
clamp_exturder_to_default(config.support_material_interface_extruder, num_extruders);
return config;
}
PrintRegionConfig PrintObject::region_config_from_model_volume(const PrintRegionConfig &default_region_config, const DynamicPrintConfig *layer_range_config, const ModelVolume &volume, size_t num_extruders)
{
PrintRegionConfig config = default_region_config;
normalize_and_apply_config(config, volume.get_object()->config);
if (layer_range_config != nullptr)
normalize_and_apply_config(config, *layer_range_config);
normalize_and_apply_config(config, volume.config);
if (! volume.material_id().empty())
normalize_and_apply_config(config, volume.material()->config);
// Clamp invalid extruders to the default extruder (with index 1).
clamp_exturder_to_default(config.infill_extruder, num_extruders);
clamp_exturder_to_default(config.perimeter_extruder, num_extruders);
clamp_exturder_to_default(config.solid_infill_extruder, num_extruders);
return config;
}
void PrintObject::update_slicing_parameters()
{
if (! m_slicing_params.valid)
m_slicing_params = SlicingParameters::create_from_config(
this->print()->config(), m_config, unscale<double>(this->size(2)), this->object_extruders());
}
SlicingParameters PrintObject::slicing_parameters(const DynamicPrintConfig& full_config, const ModelObject& model_object, float object_max_z)
{
PrintConfig print_config;
PrintObjectConfig object_config;
PrintRegionConfig default_region_config;
print_config.apply(full_config, true);
object_config.apply(full_config, true);
default_region_config.apply(full_config, true);
size_t num_extruders = print_config.nozzle_diameter.size();
object_config = object_config_from_model_object(object_config, model_object, num_extruders);
std::vector<unsigned int> object_extruders;
for (const ModelVolume* model_volume : model_object.volumes)
if (model_volume->is_model_part()) {
PrintRegion::collect_object_printing_extruders(
print_config,
region_config_from_model_volume(default_region_config, nullptr, *model_volume, num_extruders),
object_extruders);
for (const std::pair<const t_layer_height_range, DynamicPrintConfig> &range_and_config : model_object.layer_config_ranges)
if (range_and_config.second.has("perimeter_extruder") ||
range_and_config.second.has("infill_extruder") ||
range_and_config.second.has("solid_infill_extruder"))
PrintRegion::collect_object_printing_extruders(
print_config,
region_config_from_model_volume(default_region_config, &range_and_config.second, *model_volume, num_extruders),
object_extruders);
}
sort_remove_duplicates(object_extruders);
if (object_max_z <= 0.f)
object_max_z = (float)model_object.raw_bounding_box().size().z();
return SlicingParameters::create_from_config(print_config, object_config, object_max_z, object_extruders);
}
// returns 0-based indices of extruders used to print the object (without brim, support and other helper extrusions)
std::vector<unsigned int> PrintObject::object_extruders() const
{
std::vector<unsigned int> extruders;
extruders.reserve(this->region_volumes.size() * 3);
for (size_t idx_region = 0; idx_region < this->region_volumes.size(); ++ idx_region)
if (! this->region_volumes[idx_region].empty())
m_print->get_region(idx_region)->collect_object_printing_extruders(extruders);
sort_remove_duplicates(extruders);
return extruders;
}
bool PrintObject::update_layer_height_profile(const ModelObject &model_object, const SlicingParameters &slicing_parameters, std::vector<coordf_t> &layer_height_profile)
{
bool updated = false;
if (layer_height_profile.empty()) {
layer_height_profile = model_object.layer_height_profile;
updated = true;
}
// Verify the layer_height_profile.
if (! layer_height_profile.empty() &&
// Must not be of even length.
((layer_height_profile.size() & 1) != 0 ||
// Last entry must be at the top of the object.
std::abs(layer_height_profile[layer_height_profile.size() - 2] - slicing_parameters.object_print_z_height()) > 1e-3))
layer_height_profile.clear();
if (layer_height_profile.empty()) {
//layer_height_profile = layer_height_profile_adaptive(slicing_parameters, model_object.layer_config_ranges, model_object.volumes);
layer_height_profile = layer_height_profile_from_ranges(slicing_parameters, model_object.layer_config_ranges);
updated = true;
}
return updated;
}
// 1) Decides Z positions of the layers,
// 2) Initializes layers and their regions
// 3) Slices the object meshes
// 4) Slices the modifier meshes and reclassifies the slices of the object meshes by the slices of the modifier meshes
// 5) Applies size compensation (offsets the slices in XY plane)
// 6) Replaces bad slices by the slices reconstructed from the upper/lower layer
// Resulting expolygons of layer regions are marked as Internal.
//
// this should be idempotent
void PrintObject::_slice(const std::vector<coordf_t> &layer_height_profile)
{
BOOST_LOG_TRIVIAL(info) << "Slicing objects..." << log_memory_info();
this->typed_slices = false;
#ifdef SLIC3R_PROFILE
// Disable parallelization so the Shiny profiler works
static tbb::task_scheduler_init *tbb_init = nullptr;
tbb_init = new tbb::task_scheduler_init(1);
#endif
// 1) Initialize layers and their slice heights.
std::vector<float> slice_zs;
{
this->clear_layers();
// Object layers (pairs of bottom/top Z coordinate), without the raft.
std::vector<coordf_t> object_layers = generate_object_layers(m_slicing_params, layer_height_profile);
// Reserve object layers for the raft. Last layer of the raft is the contact layer.
int id = int(m_slicing_params.raft_layers());
slice_zs.reserve(object_layers.size());
Layer *prev = nullptr;
for (size_t i_layer = 0; i_layer < object_layers.size(); i_layer += 2) {
coordf_t lo = object_layers[i_layer];
coordf_t hi = object_layers[i_layer + 1];
coordf_t slice_z = 0.5 * (lo + hi);
Layer *layer = this->add_layer(id ++, hi - lo, hi + m_slicing_params.object_print_z_min, slice_z);
slice_zs.push_back(float(slice_z));
if (prev != nullptr) {
prev->upper_layer = layer;
layer->lower_layer = prev;
}
// Make sure all layers contain layer region objects for all regions.
for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id)
layer->add_region(this->print()->regions()[region_id]);
prev = layer;
}
}
// Count model parts and modifier meshes, check whether the model parts are of the same region.
int all_volumes_single_region = -2; // not set yet
bool has_z_ranges = false;
size_t num_volumes = 0;
size_t num_modifiers = 0;
for (int region_id = 0; region_id < (int)this->region_volumes.size(); ++ region_id) {
int last_volume_id = -1;
for (const std::pair<t_layer_height_range, int> &volume_and_range : this->region_volumes[region_id]) {
const int volume_id = volume_and_range.second;
const ModelVolume *model_volume = this->model_object()->volumes[volume_id];
if (model_volume->is_model_part()) {
if (last_volume_id == volume_id) {
has_z_ranges = true;
} else {
last_volume_id = volume_id;
if (all_volumes_single_region == -2)
// first model volume met
all_volumes_single_region = region_id;
else if (all_volumes_single_region != region_id)
// multiple volumes met and they are not equal
all_volumes_single_region = -1;
++ num_volumes;
}
} else if (model_volume->is_modifier())
++ num_modifiers;
}
}
assert(num_volumes > 0);
// Slice all non-modifier volumes.
bool clipped = false;
bool upscaled = false;
if (! has_z_ranges && (! m_config.clip_multipart_objects.value || all_volumes_single_region >= 0)) {
// Cheap path: Slice regions without mutual clipping.
// The cheap path is possible if no clipping is allowed or if slicing volumes of just a single region.
for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) {
BOOST_LOG_TRIVIAL(debug) << "Slicing objects - region " << region_id;
// slicing in parallel
std::vector<ExPolygons> expolygons_by_layer = this->slice_region(region_id, slice_zs);
m_print->throw_if_canceled();
BOOST_LOG_TRIVIAL(debug) << "Slicing objects - append slices " << region_id << " start";
for (size_t layer_id = 0; layer_id < expolygons_by_layer.size(); ++ layer_id)
m_layers[layer_id]->regions()[region_id]->slices.append(std::move(expolygons_by_layer[layer_id]), stInternal);
m_print->throw_if_canceled();
BOOST_LOG_TRIVIAL(debug) << "Slicing objects - append slices " << region_id << " end";
}
} else {
// Expensive path: Slice one volume after the other in the order they are presented at the user interface,
// clip the last volumes with the first.
// First slice the volumes.
struct SlicedVolume {
SlicedVolume(int volume_id, int region_id, std::vector<ExPolygons> &&expolygons_by_layer) :
volume_id(volume_id), region_id(region_id), expolygons_by_layer(std::move(expolygons_by_layer)) {}
int volume_id;
int region_id;
std::vector<ExPolygons> expolygons_by_layer;
};
std::vector<SlicedVolume> sliced_volumes;
sliced_volumes.reserve(num_volumes);
for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) {
const std::vector<std::pair<t_layer_height_range, int>> &volumes_and_ranges = this->region_volumes[region_id];
for (size_t i = 0; i < volumes_and_ranges.size(); ) {
int volume_id = volumes_and_ranges[i].second;
const ModelVolume *model_volume = this->model_object()->volumes[volume_id];
if (model_volume->is_model_part()) {
BOOST_LOG_TRIVIAL(debug) << "Slicing objects - volume " << volume_id;
// Find the ranges of this volume. Ranges in volumes_and_ranges must not overlap for a single volume.
std::vector<t_layer_height_range> ranges;
ranges.emplace_back(volumes_and_ranges[i].first);
size_t j = i + 1;
for (; j < volumes_and_ranges.size() && volume_id == volumes_and_ranges[j].second; ++ j)
if (! ranges.empty() && std::abs(ranges.back().second - volumes_and_ranges[j].first.first) < EPSILON)
ranges.back().second = volumes_and_ranges[j].first.second;
else
ranges.emplace_back(volumes_and_ranges[j].first);
// slicing in parallel
sliced_volumes.emplace_back(volume_id, (int)region_id, this->slice_volume(slice_zs, ranges, *model_volume));
i = j;
} else
++ i;
}
}
// Second clip the volumes in the order they are presented at the user interface.
BOOST_LOG_TRIVIAL(debug) << "Slicing objects - parallel clipping - start";
tbb::parallel_for(
tbb::blocked_range<size_t>(0, slice_zs.size()),
[this, &sliced_volumes, num_modifiers](const tbb::blocked_range<size_t>& range) {
float delta = float(scale_(m_config.xy_size_compensation.value));
// Only upscale together with clipping if there are no modifiers, as the modifiers shall be applied before upscaling
// (upscaling may grow the object outside of the modifier mesh).
bool upscale = delta > 0 && num_modifiers == 0;
for (size_t layer_id = range.begin(); layer_id < range.end(); ++ layer_id) {
m_print->throw_if_canceled();
// Trim volumes in a single layer, one by the other, possibly apply upscaling.
{
Polygons processed;
for (SlicedVolume &sliced_volume : sliced_volumes) {
ExPolygons slices = std::move(sliced_volume.expolygons_by_layer[layer_id]);
if (upscale)
slices = offset_ex(std::move(slices), delta);
if (! processed.empty())
// Trim by the slices of already processed regions.
slices = diff_ex(to_polygons(std::move(slices)), processed);
if (size_t(&sliced_volume - &sliced_volumes.front()) + 1 < sliced_volumes.size())
// Collect the already processed regions to trim the to be processed regions.
polygons_append(processed, slices);
sliced_volume.expolygons_by_layer[layer_id] = std::move(slices);
}
}
// Collect and union volumes of a single region.
for (int region_id = 0; region_id < (int)this->region_volumes.size(); ++ region_id) {
ExPolygons expolygons;
size_t num_volumes = 0;
for (SlicedVolume &sliced_volume : sliced_volumes)
if (sliced_volume.region_id == region_id && ! sliced_volume.expolygons_by_layer[layer_id].empty()) {
++ num_volumes;
append(expolygons, std::move(sliced_volume.expolygons_by_layer[layer_id]));
}
if (num_volumes > 1)
// Merge the islands using a positive / negative offset.
expolygons = offset_ex(offset_ex(expolygons, float(scale_(EPSILON))), -float(scale_(EPSILON)));
m_layers[layer_id]->regions()[region_id]->slices.append(std::move(expolygons), stInternal);
}
}
});
BOOST_LOG_TRIVIAL(debug) << "Slicing objects - parallel clipping - end";
clipped = true;
upscaled = m_config.xy_size_compensation.value > 0 && num_modifiers == 0;
}
// Slice all modifier volumes.
if (this->region_volumes.size() > 1) {
for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) {
BOOST_LOG_TRIVIAL(debug) << "Slicing modifier volumes - region " << region_id;
// slicing in parallel
std::vector<ExPolygons> expolygons_by_layer = this->slice_modifiers(region_id, slice_zs);
m_print->throw_if_canceled();
if (expolygons_by_layer.empty())
continue;
// loop through the other regions and 'steal' the slices belonging to this one
BOOST_LOG_TRIVIAL(debug) << "Slicing modifier volumes - stealing " << region_id << " start";
tbb::parallel_for(
tbb::blocked_range<size_t>(0, m_layers.size()),
[this, &expolygons_by_layer, region_id](const tbb::blocked_range<size_t>& range) {
for (size_t layer_id = range.begin(); layer_id < range.end(); ++ layer_id) {
for (size_t other_region_id = 0; other_region_id < this->region_volumes.size(); ++ other_region_id) {
if (region_id == other_region_id)
continue;
Layer *layer = m_layers[layer_id];
LayerRegion *layerm = layer->m_regions[region_id];
LayerRegion *other_layerm = layer->m_regions[other_region_id];
if (layerm == nullptr || other_layerm == nullptr || other_layerm->slices.empty() || expolygons_by_layer[layer_id].empty())
continue;
Polygons other_slices = to_polygons(other_layerm->slices);
ExPolygons my_parts = intersection_ex(other_slices, to_polygons(expolygons_by_layer[layer_id]));
if (my_parts.empty())
continue;
// Remove such parts from original region.
other_layerm->slices.set(diff_ex(other_slices, to_polygons(my_parts)), stInternal);
// Append new parts to our region.
layerm->slices.append(std::move(my_parts), stInternal);
}
}
});
m_print->throw_if_canceled();
BOOST_LOG_TRIVIAL(debug) << "Slicing modifier volumes - stealing " << region_id << " end";
}
}
BOOST_LOG_TRIVIAL(debug) << "Slicing objects - removing top empty layers";
while (! m_layers.empty()) {
const Layer *layer = m_layers.back();
if (! layer->empty())
goto end;
delete layer;
m_layers.pop_back();
if (! m_layers.empty())
m_layers.back()->upper_layer = nullptr;
}
m_print->throw_if_canceled();
end:
;
BOOST_LOG_TRIVIAL(debug) << "Slicing objects - make_slices in parallel - begin";
tbb::parallel_for(
tbb::blocked_range<size_t>(0, m_layers.size()),
[this, upscaled, clipped](const tbb::blocked_range<size_t>& range) {
for (size_t layer_id = range.begin(); layer_id < range.end(); ++ layer_id) {
m_print->throw_if_canceled();
Layer *layer = m_layers[layer_id];
// Apply size compensation and perform clipping of multi-part objects.
float delta = float(scale_(m_config.xy_size_compensation.value));
float elephant_foot_compensation = 0.f;
if (layer_id == 0)
elephant_foot_compensation = float(scale_(m_config.elefant_foot_compensation.value));
if (layer->m_regions.size() == 1) {
// Optimized version for a single region layer.
if (layer_id == 0) {
if (delta > elephant_foot_compensation) {
delta -= elephant_foot_compensation;
elephant_foot_compensation = 0.f;
} else if (delta > 0)
elephant_foot_compensation -= delta;
}
if (delta != 0.f || elephant_foot_compensation > 0.f) {
// Single region, growing or shrinking.
LayerRegion *layerm = layer->m_regions.front();
// Apply the XY compensation.
ExPolygons expolygons = (delta == 0.f) ?
to_expolygons(std::move(layerm->slices.surfaces)) :
offset_ex(to_expolygons(std::move(layerm->slices.surfaces)), delta);
// Apply the elephant foot compensation.
if (elephant_foot_compensation > 0) {
float elephant_foot_spacing = float(layerm->flow(frExternalPerimeter).scaled_elephant_foot_spacing());
float external_perimeter_nozzle = float(scale_(this->print()->config().nozzle_diameter.get_at(layerm->region()->config().perimeter_extruder.value - 1)));
// Apply the elephant foot compensation by steps of 1/10 nozzle diameter.
float steps = std::ceil(elephant_foot_compensation / (0.1f * external_perimeter_nozzle));
size_t nsteps = size_t(steps);
float step = elephant_foot_compensation / steps;
for (size_t i = 0; i < nsteps; ++ i) {
Polygons tmp = offset(expolygons, - step);
append(tmp, diff(to_polygons(expolygons), offset(offset_ex(expolygons, -elephant_foot_spacing - step), elephant_foot_spacing + step)));
expolygons = union_ex(tmp);
}
}
layerm->slices.set(std::move(expolygons), stInternal);
}
} else {
bool upscale = ! upscaled && delta > 0.f;
bool clip = ! clipped && m_config.clip_multipart_objects.value;
if (upscale || clip) {
// Multiple regions, growing or just clipping one region by the other.
// When clipping the regions, priority is given to the first regions.
Polygons processed;
for (size_t region_id = 0; region_id < layer->m_regions.size(); ++ region_id) {
LayerRegion *layerm = layer->m_regions[region_id];
ExPolygons slices = to_expolygons(std::move(layerm->slices.surfaces));
if (upscale)
slices = offset_ex(std::move(slices), delta);
if (region_id > 0 && clip)
// Trim by the slices of already processed regions.
slices = diff_ex(to_polygons(std::move(slices)), processed);
if (clip && (region_id + 1 < layer->m_regions.size()))
// Collect the already processed regions to trim the to be processed regions.
polygons_append(processed, slices);
layerm->slices.set(std::move(slices), stInternal);
}
}
if (delta < 0.f) {
// Apply the negative XY compensation.
Polygons trimming = offset(layer->merged(float(EPSILON)), delta - float(EPSILON));
for (size_t region_id = 0; region_id < layer->m_regions.size(); ++ region_id)
layer->m_regions[region_id]->trim_surfaces(trimming);
}
if (elephant_foot_compensation > 0.f) {
// Apply the elephant foot compensation.
std::vector<float> elephant_foot_spacing;
elephant_foot_spacing.reserve(layer->m_regions.size());
float external_perimeter_nozzle = 0.f;
for (size_t region_id = 0; region_id < layer->m_regions.size(); ++ region_id) {
LayerRegion *layerm = layer->m_regions[region_id];
elephant_foot_spacing.emplace_back(float(layerm->flow(frExternalPerimeter).scaled_elephant_foot_spacing()));
external_perimeter_nozzle += float(scale_(this->print()->config().nozzle_diameter.get_at(layerm->region()->config().perimeter_extruder.value - 1)));
}
external_perimeter_nozzle /= (float)layer->m_regions.size();
// Apply the elephant foot compensation by steps of 1/10 nozzle diameter.
float steps = std::ceil(elephant_foot_compensation / (0.1f * external_perimeter_nozzle));
size_t nsteps = size_t(steps);
float step = elephant_foot_compensation / steps;
for (size_t i = 0; i < nsteps; ++ i) {
Polygons trimming_polygons = offset(layer->merged(float(EPSILON)), - step - float(EPSILON));
for (size_t region_id = 0; region_id < layer->m_regions.size(); ++ region_id)
layer->m_regions[region_id]->elephant_foot_compensation_step(elephant_foot_spacing[region_id] + step, trimming_polygons);
}
}
}
// Merge all regions' slices to get islands, chain them by a shortest path.
layer->make_slices();
}
});
m_print->throw_if_canceled();
BOOST_LOG_TRIVIAL(debug) << "Slicing objects - make_slices in parallel - end";
}
// To be used only if there are no layer span specific configurations applied, which would lead to z ranges being generated for this region.
std::vector<ExPolygons> PrintObject::slice_region(size_t region_id, const std::vector<float> &z) const
{
std::vector<const ModelVolume*> volumes;
if (region_id < this->region_volumes.size()) {
for (const std::pair<t_layer_height_range, int> &volume_and_range : this->region_volumes[region_id]) {
const ModelVolume *volume = this->model_object()->volumes[volume_and_range.second];
if (volume->is_model_part())
volumes.emplace_back(volume);
}
}
return this->slice_volumes(z, volumes);
}
// Z ranges are not applicable to modifier meshes, therefore a sinle volume will be found in volume_and_range at most once.
std::vector<ExPolygons> PrintObject::slice_modifiers(size_t region_id, const std::vector<float> &slice_zs) const
{
std::vector<ExPolygons> out;
if (region_id < this->region_volumes.size())
{
std::vector<std::vector<t_layer_height_range>> volume_ranges;
const std::vector<std::pair<t_layer_height_range, int>> &volumes_and_ranges = this->region_volumes[region_id];
volume_ranges.reserve(volumes_and_ranges.size());
for (size_t i = 0; i < volumes_and_ranges.size(); ) {
int volume_id = volumes_and_ranges[i].second;
const ModelVolume *model_volume = this->model_object()->volumes[volume_id];
if (model_volume->is_modifier()) {
std::vector<t_layer_height_range> ranges;
ranges.emplace_back(volumes_and_ranges[i].first);
size_t j = i + 1;
for (; j < volumes_and_ranges.size() && volume_id == volumes_and_ranges[j].second; ++ j) {
if (! ranges.empty() && std::abs(ranges.back().second - volumes_and_ranges[j].first.first) < EPSILON)
ranges.back().second = volumes_and_ranges[j].first.second;
else
ranges.emplace_back(volumes_and_ranges[j].first);
}
volume_ranges.emplace_back(std::move(ranges));
i = j;
} else
++ i;
}
if (! volume_ranges.empty())
{
bool equal_ranges = true;
for (size_t i = 1; i < volume_ranges.size(); ++ i) {
assert(! volume_ranges[i].empty());
if (volume_ranges.front() != volume_ranges[i]) {
equal_ranges = false;
break;
}
}
if (equal_ranges && volume_ranges.front().size() == 1 && volume_ranges.front().front() == t_layer_height_range(0, DBL_MAX)) {
// No modifier in this region was split to layer spans.
std::vector<const ModelVolume*> volumes;
for (const std::pair<t_layer_height_range, int> &volume_and_range : this->region_volumes[region_id]) {
const ModelVolume *volume = this->model_object()->volumes[volume_and_range.second];
if (volume->is_modifier())
volumes.emplace_back(volume);
}
out = this->slice_volumes(slice_zs, volumes);
} else {
// Some modifier in this region was split to layer spans.
std::vector<char> merge;
for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) {
const std::vector<std::pair<t_layer_height_range, int>> &volumes_and_ranges = this->region_volumes[region_id];
for (size_t i = 0; i < volumes_and_ranges.size(); ) {
int volume_id = volumes_and_ranges[i].second;
const ModelVolume *model_volume = this->model_object()->volumes[volume_id];
if (model_volume->is_modifier()) {
BOOST_LOG_TRIVIAL(debug) << "Slicing modifiers - volume " << volume_id;
// Find the ranges of this volume. Ranges in volumes_and_ranges must not overlap for a single volume.
std::vector<t_layer_height_range> ranges;
ranges.emplace_back(volumes_and_ranges[i].first);
size_t j = i + 1;
for (; j < volumes_and_ranges.size() && volume_id == volumes_and_ranges[j].second; ++ j)
ranges.emplace_back(volumes_and_ranges[j].first);
// slicing in parallel
std::vector<ExPolygons> this_slices = this->slice_volume(slice_zs, ranges, *model_volume);
if (out.empty()) {
out = std::move(this_slices);
merge.assign(out.size(), false);
} else {
for (size_t i = 0; i < out.size(); ++ i)
if (! this_slices[i].empty()) {
if (! out[i].empty()) {
append(out[i], this_slices[i]);
merge[i] = true;
} else
out[i] = std::move(this_slices[i]);
}
}
i = j;
} else
++ i;
}
}
for (size_t i = 0; i < merge.size(); ++ i)
if (merge[i])
out[i] = union_ex(out[i]);
}
}
}
return out;
}
std::vector<ExPolygons> PrintObject::slice_support_volumes(const ModelVolumeType &model_volume_type) const
{
std::vector<const ModelVolume*> volumes;
for (const ModelVolume *volume : this->model_object()->volumes)
if (volume->type() == model_volume_type)
volumes.emplace_back(volume);
std::vector<float> zs;
zs.reserve(this->layers().size());
for (const Layer *l : this->layers())
zs.emplace_back((float)l->slice_z);
return this->slice_volumes(zs, volumes);
}
std::vector<ExPolygons> PrintObject::slice_volumes(const std::vector<float> &z, const std::vector<const ModelVolume*> &volumes) const
{
std::vector<ExPolygons> layers;
if (! volumes.empty()) {
// Compose mesh.
//FIXME better to perform slicing over each volume separately and then to use a Boolean operation to merge them.
TriangleMesh mesh(volumes.front()->mesh());
mesh.transform(volumes.front()->get_matrix(), true);
assert(mesh.repaired);
if (volumes.size() == 1 && mesh.repaired) {
//FIXME The admesh repair function may break the face connectivity, rather refresh it here as the slicing code relies on it.
stl_check_facets_exact(&mesh.stl);
}
for (size_t idx_volume = 1; idx_volume < volumes.size(); ++ idx_volume) {
const ModelVolume &model_volume = *volumes[idx_volume];
TriangleMesh vol_mesh(model_volume.mesh());
vol_mesh.transform(model_volume.get_matrix(), true);
mesh.merge(vol_mesh);
}
if (mesh.stl.stats.number_of_facets > 0) {
mesh.transform(m_trafo, true);
// apply XY shift
mesh.translate(- unscale<float>(m_copies_shift(0)), - unscale<float>(m_copies_shift(1)), 0);
// perform actual slicing
const Print *print = this->print();
auto callback = TriangleMeshSlicer::throw_on_cancel_callback_type([print](){print->throw_if_canceled();});
// TriangleMeshSlicer needs shared vertices, also this calls the repair() function.
mesh.require_shared_vertices();
TriangleMeshSlicer mslicer;
mslicer.init(&mesh, callback);
mslicer.slice(z, float(m_config.slice_closing_radius.value), &layers, callback);
m_print->throw_if_canceled();
}
}
return layers;
}
std::vector<ExPolygons> PrintObject::slice_volume(const std::vector<float> &z, const ModelVolume &volume) const
{
std::vector<ExPolygons> layers;
if (! z.empty()) {
// Compose mesh.
//FIXME better to split the mesh into separate shells, perform slicing over each shell separately and then to use a Boolean operation to merge them.
TriangleMesh mesh(volume.mesh());
mesh.transform(volume.get_matrix(), true);
if (mesh.repaired) {
//FIXME The admesh repair function may break the face connectivity, rather refresh it here as the slicing code relies on it.
stl_check_facets_exact(&mesh.stl);
}
if (mesh.stl.stats.number_of_facets > 0) {
mesh.transform(m_trafo, true);
// apply XY shift
mesh.translate(- unscale<float>(m_copies_shift(0)), - unscale<float>(m_copies_shift(1)), 0);
// perform actual slicing
TriangleMeshSlicer mslicer;
const Print *print = this->print();
auto callback = TriangleMeshSlicer::throw_on_cancel_callback_type([print](){print->throw_if_canceled();});
// TriangleMeshSlicer needs the shared vertices.
mesh.require_shared_vertices();
mslicer.init(&mesh, callback);
mslicer.slice(z, float(m_config.slice_closing_radius.value), &layers, callback);
m_print->throw_if_canceled();
}
}
return layers;
}
// Filter the zs not inside the ranges. The ranges are closed at the botton and open at the top, they are sorted lexicographically and non overlapping.
std::vector<ExPolygons> PrintObject::slice_volume(const std::vector<float> &z, const std::vector<t_layer_height_range> &ranges, const ModelVolume &volume) const
{
std::vector<ExPolygons> out;
if (! z.empty() && ! ranges.empty()) {
if (ranges.size() == 1 && z.front() >= ranges.front().first && z.back() < ranges.front().second) {
// All layers fit into a single range.
out = this->slice_volume(z, volume);
} else {
std::vector<float> z_filtered;
std::vector<std::pair<size_t, size_t>> n_filtered;
z_filtered.reserve(z.size());
n_filtered.reserve(2 * ranges.size());
size_t i = 0;
for (const t_layer_height_range &range : ranges) {
for (; i < z.size() && z[i] < range.first; ++ i) ;
size_t first = i;
for (; i < z.size() && z[i] < range.second; ++ i)
z_filtered.emplace_back(z[i]);
if (i > first)
n_filtered.emplace_back(std::make_pair(first, i));
}
if (! n_filtered.empty()) {
std::vector<ExPolygons> layers = this->slice_volume(z_filtered, volume);
out.assign(z.size(), ExPolygons());
i = 0;
for (const std::pair<size_t, size_t> &span : n_filtered)
for (size_t j = span.first; j < span.second; ++ j)
out[j] = std::move(layers[i ++]);
}
}
}
return out;
}
std::string PrintObject::_fix_slicing_errors()
{
// Collect layers with slicing errors.
// These layers will be fixed in parallel.
std::vector<size_t> buggy_layers;
buggy_layers.reserve(m_layers.size());
for (size_t idx_layer = 0; idx_layer < m_layers.size(); ++ idx_layer)
if (m_layers[idx_layer]->slicing_errors)
buggy_layers.push_back(idx_layer);
BOOST_LOG_TRIVIAL(debug) << "Slicing objects - fixing slicing errors in parallel - begin";
tbb::parallel_for(
tbb::blocked_range<size_t>(0, buggy_layers.size()),
[this, &buggy_layers](const tbb::blocked_range<size_t>& range) {
for (size_t buggy_layer_idx = range.begin(); buggy_layer_idx < range.end(); ++ buggy_layer_idx) {
m_print->throw_if_canceled();
size_t idx_layer = buggy_layers[buggy_layer_idx];
Layer *layer = m_layers[idx_layer];
assert(layer->slicing_errors);
// Try to repair the layer surfaces by merging all contours and all holes from neighbor layers.
// BOOST_LOG_TRIVIAL(trace) << "Attempting to repair layer" << idx_layer;
for (size_t region_id = 0; region_id < layer->m_regions.size(); ++ region_id) {
LayerRegion *layerm = layer->m_regions[region_id];
// Find the first valid layer below / above the current layer.
const Surfaces *upper_surfaces = nullptr;
const Surfaces *lower_surfaces = nullptr;
for (size_t j = idx_layer + 1; j < m_layers.size(); ++ j)
if (! m_layers[j]->slicing_errors) {
upper_surfaces = &m_layers[j]->regions()[region_id]->slices.surfaces;
break;
}
for (int j = int(idx_layer) - 1; j >= 0; -- j)
if (! m_layers[j]->slicing_errors) {
lower_surfaces = &m_layers[j]->regions()[region_id]->slices.surfaces;
break;
}
// Collect outer contours and holes from the valid layers above & below.
Polygons outer;
outer.reserve(
((upper_surfaces == nullptr) ? 0 : upper_surfaces->size()) +
((lower_surfaces == nullptr) ? 0 : lower_surfaces->size()));
size_t num_holes = 0;
if (upper_surfaces)
for (const auto &surface : *upper_surfaces) {
outer.push_back(surface.expolygon.contour);
num_holes += surface.expolygon.holes.size();
}
if (lower_surfaces)
for (const auto &surface : *lower_surfaces) {
outer.push_back(surface.expolygon.contour);
num_holes += surface.expolygon.holes.size();
}
Polygons holes;
holes.reserve(num_holes);
if (upper_surfaces)
for (const auto &surface : *upper_surfaces)
polygons_append(holes, surface.expolygon.holes);
if (lower_surfaces)
for (const auto &surface : *lower_surfaces)
polygons_append(holes, surface.expolygon.holes);
layerm->slices.set(diff_ex(union_(outer), holes, false), stInternal);
}
// Update layer slices after repairing the single regions.
layer->make_slices();
}
});
m_print->throw_if_canceled();
BOOST_LOG_TRIVIAL(debug) << "Slicing objects - fixing slicing errors in parallel - end";
// remove empty layers from bottom
while (! m_layers.empty() && m_layers.front()->slices.expolygons.empty()) {
delete m_layers.front();
m_layers.erase(m_layers.begin());
m_layers.front()->lower_layer = nullptr;
for (size_t i = 0; i < m_layers.size(); ++ i)
m_layers[i]->set_id(m_layers[i]->id() - 1);
}
return buggy_layers.empty() ? "" :
"The model has overlapping or self-intersecting facets. I tried to repair it, "
"however you might want to check the results or repair the input file and retry.\n";
}
// Simplify the sliced model, if "resolution" configuration parameter > 0.
// The simplification is problematic, because it simplifies the slices independent from each other,
// which makes the simplified discretization visible on the object surface.
void PrintObject::_simplify_slices(double distance)
{
BOOST_LOG_TRIVIAL(debug) << "Slicing objects - siplifying slices in parallel - begin";
tbb::parallel_for(
tbb::blocked_range<size_t>(0, m_layers.size()),
[this, distance](const tbb::blocked_range<size_t>& range) {
for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) {
m_print->throw_if_canceled();
Layer *layer = m_layers[layer_idx];
for (size_t region_idx = 0; region_idx < layer->m_regions.size(); ++ region_idx)
layer->m_regions[region_idx]->slices.simplify(distance);
layer->slices.simplify(distance);
}
});
BOOST_LOG_TRIVIAL(debug) << "Slicing objects - siplifying slices in parallel - end";
}
void PrintObject::_make_perimeters()
{
if (! this->set_started(posPerimeters))
return;
BOOST_LOG_TRIVIAL(info) << "Generating perimeters..." << log_memory_info();
// merge slices if they were split into types
if (this->typed_slices) {
for (Layer *layer : m_layers)
layer->merge_slices();
this->typed_slices = false;
this->invalidate_step(posPrepareInfill);
}
// compare each layer to the one below, and mark those slices needing
// one additional inner perimeter, like the top of domed objects-
// this algorithm makes sure that at least one perimeter is overlapping
// but we don't generate any extra perimeter if fill density is zero, as they would be floating
// inside the object - infill_only_where_needed should be the method of choice for printing
// hollow objects
for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) {
const PrintRegion &region = *m_print->regions()[region_id];
if (! region.config().extra_perimeters || region.config().perimeters == 0 || region.config().fill_density == 0 || this->layer_count() < 2)
continue;
BOOST_LOG_TRIVIAL(debug) << "Generating extra perimeters for region " << region_id << " in parallel - start";
tbb::parallel_for(
tbb::blocked_range<size_t>(0, m_layers.size() - 1),
[this, &region, region_id](const tbb::blocked_range<size_t>& range) {
for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) {
LayerRegion &layerm = *m_layers[layer_idx]->regions()[region_id];
const LayerRegion &upper_layerm = *m_layers[layer_idx+1]->regions()[region_id];
const Polygons upper_layerm_polygons = upper_layerm.slices;
// Filter upper layer polygons in intersection_ppl by their bounding boxes?
// my $upper_layerm_poly_bboxes= [ map $_->bounding_box, @{$upper_layerm_polygons} ];
const double total_loop_length = total_length(upper_layerm_polygons);
const coord_t perimeter_spacing = layerm.flow(frPerimeter).scaled_spacing();
const Flow ext_perimeter_flow = layerm.flow(frExternalPerimeter);
const coord_t ext_perimeter_width = ext_perimeter_flow.scaled_width();
const coord_t ext_perimeter_spacing = ext_perimeter_flow.scaled_spacing();
for (Surface &slice : layerm.slices.surfaces) {
for (;;) {
// compute the total thickness of perimeters
const coord_t perimeters_thickness = ext_perimeter_width/2 + ext_perimeter_spacing/2
+ (region.config().perimeters-1 + slice.extra_perimeters) * perimeter_spacing;
// define a critical area where we don't want the upper slice to fall into
// (it should either lay over our perimeters or outside this area)
const coord_t critical_area_depth = coord_t(perimeter_spacing * 1.5);
const Polygons critical_area = diff(
offset(slice.expolygon, float(- perimeters_thickness)),
offset(slice.expolygon, float(- perimeters_thickness - critical_area_depth))
);
// check whether a portion of the upper slices falls inside the critical area
const Polylines intersection = intersection_pl(to_polylines(upper_layerm_polygons), critical_area);
// only add an additional loop if at least 30% of the slice loop would benefit from it
if (total_length(intersection) <= total_loop_length*0.3)
break;
/*
if (0) {
require "Slic3r/SVG.pm";
Slic3r::SVG::output(
"extra.svg",
no_arrows => 1,
expolygons => union_ex($critical_area),
polylines => [ map $_->split_at_first_point, map $_->p, @{$upper_layerm->slices} ],
);
}
*/
++ slice.extra_perimeters;
}
#ifdef DEBUG
if (slice.extra_perimeters > 0)
printf(" adding %d more perimeter(s) at layer %zu\n", slice.extra_perimeters, layer_idx);
#endif
}
}
});
BOOST_LOG_TRIVIAL(debug) << "Generating extra perimeters for region " << region_id << " in parallel - end";
}
BOOST_LOG_TRIVIAL(debug) << "Generating perimeters in parallel - start";
tbb::parallel_for(
tbb::blocked_range<size_t>(0, m_layers.size()),
[this](const tbb::blocked_range<size_t>& range) {
for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx)
m_layers[layer_idx]->make_perimeters();
}
);
BOOST_LOG_TRIVIAL(debug) << "Generating perimeters in parallel - end";
/*
simplify slices (both layer and region slices),
we only need the max resolution for perimeters
### This makes this method not-idempotent, so we keep it disabled for now.
###$self->_simplify_slices(&Slic3r::SCALED_RESOLUTION);
*/
this->set_done(posPerimeters);
}
// Only active if config->infill_only_where_needed. This step trims the sparse infill,
// so it acts as an internal support. It maintains all other infill types intact.
// Here the internal surfaces and perimeters have to be supported by the sparse infill.
//FIXME The surfaces are supported by a sparse infill, but the sparse infill is only as large as the area to support.
// Likely the sparse infill will not be anchored correctly, so it will not work as intended.
// Also one wishes the perimeters to be supported by a full infill.
// Idempotence of this method is guaranteed by the fact that we don't remove things from
// fill_surfaces but we only turn them into VOID surfaces, thus preserving the boundaries.
void PrintObject::clip_fill_surfaces()
{
if (! m_config.infill_only_where_needed.value ||
! std::any_of(this->print()->regions().begin(), this->print()->regions().end(),
[](const PrintRegion *region) { return region->config().fill_density > 0; }))
return;
// We only want infill under ceilings; this is almost like an
// internal support material.
// Proceed top-down, skipping the bottom layer.
Polygons upper_internal;
for (int layer_id = int(m_layers.size()) - 1; layer_id > 0; -- layer_id) {
Layer *layer = m_layers[layer_id];
Layer *lower_layer = m_layers[layer_id - 1];
// Detect things that we need to support.
// Cummulative slices.
Polygons slices;
polygons_append(slices, layer->slices.expolygons);
// Cummulative fill surfaces.
Polygons fill_surfaces;
// Solid surfaces to be supported.
Polygons overhangs;
for (const LayerRegion *layerm : layer->m_regions)
for (const Surface &surface : layerm->fill_surfaces.surfaces) {
Polygons polygons = to_polygons(surface.expolygon);
if (surface.is_solid())
polygons_append(overhangs, polygons);
polygons_append(fill_surfaces, std::move(polygons));
}
Polygons lower_layer_fill_surfaces;
Polygons lower_layer_internal_surfaces;
for (const LayerRegion *layerm : lower_layer->m_regions)
for (const Surface &surface : layerm->fill_surfaces.surfaces) {
Polygons polygons = to_polygons(surface.expolygon);
if (surface.surface_type == stInternal || surface.surface_type == stInternalVoid)
polygons_append(lower_layer_internal_surfaces, polygons);
polygons_append(lower_layer_fill_surfaces, std::move(polygons));
}
// We also need to support perimeters when there's at least one full unsupported loop
{
// Get perimeters area as the difference between slices and fill_surfaces
// Only consider the area that is not supported by lower perimeters
Polygons perimeters = intersection(diff(slices, fill_surfaces), lower_layer_fill_surfaces);
// Only consider perimeter areas that are at least one extrusion width thick.
//FIXME Offset2 eats out from both sides, while the perimeters are create outside in.
//Should the pw not be half of the current value?
float pw = FLT_MAX;
for (const LayerRegion *layerm : layer->m_regions)
pw = std::min(pw, (float)layerm->flow(frPerimeter).scaled_width());
// Append such thick perimeters to the areas that need support
polygons_append(overhangs, offset2(perimeters, -pw, +pw));
}
// Find new internal infill.
polygons_append(overhangs, std::move(upper_internal));
upper_internal = intersection(overhangs, lower_layer_internal_surfaces);
// Apply new internal infill to regions.
for (LayerRegion *layerm : lower_layer->m_regions) {
if (layerm->region()->config().fill_density.value == 0)
continue;
SurfaceType internal_surface_types[] = { stInternal, stInternalVoid };
Polygons internal;
for (Surface &surface : layerm->fill_surfaces.surfaces)
if (surface.surface_type == stInternal || surface.surface_type == stInternalVoid)
polygons_append(internal, std::move(surface.expolygon));
layerm->fill_surfaces.remove_types(internal_surface_types, 2);
layerm->fill_surfaces.append(intersection_ex(internal, upper_internal, true), stInternal);
layerm->fill_surfaces.append(diff_ex (internal, upper_internal, true), stInternalVoid);
// If there are voids it means that our internal infill is not adjacent to
// perimeters. In this case it would be nice to add a loop around infill to
// make it more robust and nicer. TODO.
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
layerm->export_region_fill_surfaces_to_svg_debug("6_clip_fill_surfaces");
#endif
}
m_print->throw_if_canceled();
}
}
void PrintObject::discover_horizontal_shells()
{
BOOST_LOG_TRIVIAL(trace) << "discover_horizontal_shells()";
for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) {
for (size_t i = 0; i < m_layers.size(); ++ i) {
m_print->throw_if_canceled();
LayerRegion *layerm = m_layers[i]->regions()[region_id];
const PrintRegionConfig &region_config = layerm->region()->config();
if (region_config.solid_infill_every_layers.value > 0 && region_config.fill_density.value > 0 &&
(i % region_config.solid_infill_every_layers) == 0) {
// Insert a solid internal layer. Mark stInternal surfaces as stInternalSolid or stInternalBridge.
SurfaceType type = (region_config.fill_density == 100) ? stInternalSolid : stInternalBridge;
for (Surface &surface : layerm->fill_surfaces.surfaces)
if (surface.surface_type == stInternal)
surface.surface_type = type;
}
// If ensure_vertical_shell_thickness, then the rest has already been performed by discover_vertical_shells().
if (region_config.ensure_vertical_shell_thickness.value)
continue;
for (size_t idx_surface_type = 0; idx_surface_type < 3; ++ idx_surface_type) {
m_print->throw_if_canceled();
SurfaceType type = (idx_surface_type == 0) ? stTop : (idx_surface_type == 1) ? stBottom : stBottomBridge;
// Find slices of current type for current layer.
// Use slices instead of fill_surfaces, because they also include the perimeter area,
// which needs to be propagated in shells; we need to grow slices like we did for
// fill_surfaces though. Using both ungrown slices and grown fill_surfaces will
// not work in some situations, as there won't be any grown region in the perimeter
// area (this was seen in a model where the top layer had one extra perimeter, thus
// its fill_surfaces were thinner than the lower layer's infill), however it's the best
// solution so far. Growing the external slices by EXTERNAL_INFILL_MARGIN will put
// too much solid infill inside nearly-vertical slopes.
// Surfaces including the area of perimeters. Everything, that is visible from the top / bottom
// (not covered by a layer above / below).
// This does not contain the areas covered by perimeters!
Polygons solid;
for (const Surface &surface : layerm->slices.surfaces)
if (surface.surface_type == type)
polygons_append(solid, to_polygons(surface.expolygon));
// Infill areas (slices without the perimeters).
for (const Surface &surface : layerm->fill_surfaces.surfaces)
if (surface.surface_type == type)
polygons_append(solid, to_polygons(surface.expolygon));
if (solid.empty())
continue;
// Slic3r::debugf "Layer %d has %s surfaces\n", $i, ($type == stTop) ? 'top' : 'bottom';
size_t solid_layers = (type == stTop) ? region_config.top_solid_layers.value : region_config.bottom_solid_layers.value;
for (int n = (type == stTop) ? i-1 : i+1; std::abs(n - (int)i) < solid_layers; (type == stTop) ? -- n : ++ n) {
if (n < 0 || n >= int(m_layers.size()))
continue;
// Slic3r::debugf " looking for neighbors on layer %d...\n", $n;
// Reference to the lower layer of a TOP surface, or an upper layer of a BOTTOM surface.
LayerRegion *neighbor_layerm = m_layers[n]->regions()[region_id];
// find intersection between neighbor and current layer's surfaces
// intersections have contours and holes
// we update $solid so that we limit the next neighbor layer to the areas that were
// found on this one - in other words, solid shells on one layer (for a given external surface)
// are always a subset of the shells found on the previous shell layer
// this approach allows for DWIM in hollow sloping vases, where we want bottom
// shells to be generated in the base but not in the walls (where there are many
// narrow bottom surfaces): reassigning $solid will consider the 'shadow' of the
// upper perimeter as an obstacle and shell will not be propagated to more upper layers
//FIXME How does it work for stInternalBRIDGE? This is set for sparse infill. Likely this does not work.
Polygons new_internal_solid;
{
Polygons internal;
for (const Surface &surface : neighbor_layerm->fill_surfaces.surfaces)
if (surface.surface_type == stInternal || surface.surface_type == stInternalSolid)
polygons_append(internal, to_polygons(surface.expolygon));
new_internal_solid = intersection(solid, internal, true);
}
if (new_internal_solid.empty()) {
// No internal solid needed on this layer. In order to decide whether to continue
// searching on the next neighbor (thus enforcing the configured number of solid
// layers, use different strategies according to configured infill density:
if (region_config.fill_density.value == 0) {
// If user expects the object to be void (for example a hollow sloping vase),
// don't continue the search. In this case, we only generate the external solid
// shell if the object would otherwise show a hole (gap between perimeters of
// the two layers), and internal solid shells are a subset of the shells found
// on each previous layer.
goto EXTERNAL;
} else {
// If we have internal infill, we can generate internal solid shells freely.
continue;
}
}
if (region_config.fill_density.value == 0) {
// if we're printing a hollow object we discard any solid shell thinner
// than a perimeter width, since it's probably just crossing a sloping wall
// and it's not wanted in a hollow print even if it would make sense when
// obeying the solid shell count option strictly (DWIM!)
float margin = float(neighbor_layerm->flow(frExternalPerimeter).scaled_width());
Polygons too_narrow = diff(
new_internal_solid,
offset2(new_internal_solid, -margin, +margin, jtMiter, 5),
true);
// Trim the regularized region by the original region.
if (! too_narrow.empty())
new_internal_solid = solid = diff(new_internal_solid, too_narrow);
}
// make sure the new internal solid is wide enough, as it might get collapsed
// when spacing is added in Fill.pm
{
//FIXME Vojtech: Disable this and you will be sorry.
// https://github.com/prusa3d/PrusaSlicer/issues/26 bottom
float margin = 3.f * layerm->flow(frSolidInfill).scaled_width(); // require at least this size
// we use a higher miterLimit here to handle areas with acute angles
// in those cases, the default miterLimit would cut the corner and we'd
// get a triangle in $too_narrow; if we grow it below then the shell
// would have a different shape from the external surface and we'd still
// have the same angle, so the next shell would be grown even more and so on.
Polygons too_narrow = diff(
new_internal_solid,
offset2(new_internal_solid, -margin, +margin, ClipperLib::jtMiter, 5),
true);
if (! too_narrow.empty()) {
// grow the collapsing parts and add the extra area to the neighbor layer
// as well as to our original surfaces so that we support this
// additional area in the next shell too
// make sure our grown surfaces don't exceed the fill area
Polygons internal;
for (const Surface &surface : neighbor_layerm->fill_surfaces.surfaces)
if (surface.is_internal() && !surface.is_bridge())
polygons_append(internal, to_polygons(surface.expolygon));
polygons_append(new_internal_solid,
intersection(
offset(too_narrow, +margin),
// Discard bridges as they are grown for anchoring and we can't
// remove such anchors. (This may happen when a bridge is being
// anchored onto a wall where little space remains after the bridge
// is grown, and that little space is an internal solid shell so
// it triggers this too_narrow logic.)
internal));
solid = new_internal_solid;
}
}
// internal-solid are the union of the existing internal-solid surfaces
// and new ones
SurfaceCollection backup = std::move(neighbor_layerm->fill_surfaces);
polygons_append(new_internal_solid, to_polygons(backup.filter_by_type(stInternalSolid)));
ExPolygons internal_solid = union_ex(new_internal_solid, false);
// assign new internal-solid surfaces to layer
neighbor_layerm->fill_surfaces.set(internal_solid, stInternalSolid);
// subtract intersections from layer surfaces to get resulting internal surfaces
Polygons polygons_internal = to_polygons(std::move(internal_solid));
ExPolygons internal = diff_ex(
to_polygons(backup.filter_by_type(stInternal)),
polygons_internal,
true);
// assign resulting internal surfaces to layer
neighbor_layerm->fill_surfaces.append(internal, stInternal);
polygons_append(polygons_internal, to_polygons(std::move(internal)));
// assign top and bottom surfaces to layer
SurfaceType surface_types_solid[] = { stTop, stBottom, stBottomBridge };
backup.keep_types(surface_types_solid, 3);
std::vector<SurfacesPtr> top_bottom_groups;
backup.group(&top_bottom_groups);
for (SurfacesPtr &group : top_bottom_groups)
neighbor_layerm->fill_surfaces.append(
diff_ex(to_polygons(group), polygons_internal),
// Use an existing surface as a template, it carries the bridge angle etc.
*group.front());
}
EXTERNAL:;
} // foreach type (stTop, stBottom, stBottomBridge)
} // for each layer
} // for each region
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) {
for (const Layer *layer : m_layers) {
const LayerRegion *layerm = layer->m_regions[region_id];
layerm->export_region_slices_to_svg_debug("5_discover_horizontal_shells");
layerm->export_region_fill_surfaces_to_svg_debug("5_discover_horizontal_shells");
} // for each layer
} // for each region
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
}
// combine fill surfaces across layers to honor the "infill every N layers" option
// Idempotence of this method is guaranteed by the fact that we don't remove things from
// fill_surfaces but we only turn them into VOID surfaces, thus preserving the boundaries.
void PrintObject::combine_infill()
{
// Work on each region separately.
for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) {
const PrintRegion *region = this->print()->regions()[region_id];
const size_t every = region->config().infill_every_layers.value;
if (every < 2 || region->config().fill_density == 0.)
continue;
// Limit the number of combined layers to the maximum height allowed by this regions' nozzle.
//FIXME limit the layer height to max_layer_height
double nozzle_diameter = std::min(
this->print()->config().nozzle_diameter.get_at(region->config().infill_extruder.value - 1),
this->print()->config().nozzle_diameter.get_at(region->config().solid_infill_extruder.value - 1));
// define the combinations
std::vector<size_t> combine(m_layers.size(), 0);
{
double current_height = 0.;
size_t num_layers = 0;
for (size_t layer_idx = 0; layer_idx < m_layers.size(); ++ layer_idx) {
m_print->throw_if_canceled();
const Layer *layer = m_layers[layer_idx];
if (layer->id() == 0)
// Skip first print layer (which may not be first layer in array because of raft).
continue;
// Check whether the combination of this layer with the lower layers' buffer
// would exceed max layer height or max combined layer count.
if (current_height + layer->height >= nozzle_diameter + EPSILON || num_layers >= every) {
// Append combination to lower layer.
combine[layer_idx - 1] = num_layers;
current_height = 0.;
num_layers = 0;
}
current_height += layer->height;
++ num_layers;
}
// Append lower layers (if any) to uppermost layer.
combine[m_layers.size() - 1] = num_layers;
}
// loop through layers to which we have assigned layers to combine
for (size_t layer_idx = 0; layer_idx < m_layers.size(); ++ layer_idx) {
m_print->throw_if_canceled();
size_t num_layers = combine[layer_idx];
if (num_layers <= 1)
continue;
// Get all the LayerRegion objects to be combined.
std::vector<LayerRegion*> layerms;
layerms.reserve(num_layers);
for (size_t i = layer_idx + 1 - num_layers; i <= layer_idx; ++ i)
layerms.emplace_back(m_layers[i]->regions()[region_id]);
// We need to perform a multi-layer intersection, so let's split it in pairs.
// Initialize the intersection with the candidates of the lowest layer.
ExPolygons intersection = to_expolygons(layerms.front()->fill_surfaces.filter_by_type(stInternal));
// Start looping from the second layer and intersect the current intersection with it.
for (size_t i = 1; i < layerms.size(); ++ i)
intersection = intersection_ex(
to_polygons(intersection),
to_polygons(layerms[i]->fill_surfaces.filter_by_type(stInternal)),
false);
double area_threshold = layerms.front()->infill_area_threshold();
if (! intersection.empty() && area_threshold > 0.)
intersection.erase(std::remove_if(intersection.begin(), intersection.end(),
[area_threshold](const ExPolygon &expoly) { return expoly.area() <= area_threshold; }),
intersection.end());
if (intersection.empty())
continue;
// Slic3r::debugf " combining %d %s regions from layers %d-%d\n",
// scalar(@$intersection),
// ($type == stInternal ? 'internal' : 'internal-solid'),
// $layer_idx-($every-1), $layer_idx;
// intersection now contains the regions that can be combined across the full amount of layers,
// so let's remove those areas from all layers.
Polygons intersection_with_clearance;
intersection_with_clearance.reserve(intersection.size());
float clearance_offset =
0.5f * layerms.back()->flow(frPerimeter).scaled_width() +
// Because fill areas for rectilinear and honeycomb are grown
// later to overlap perimeters, we need to counteract that too.
((region->config().fill_pattern == ipRectilinear ||
region->config().fill_pattern == ipGrid ||
region->config().fill_pattern == ipLine ||
region->config().fill_pattern == ipHoneycomb) ? 1.5f : 0.5f) *
layerms.back()->flow(frSolidInfill).scaled_width();
for (ExPolygon &expoly : intersection)
polygons_append(intersection_with_clearance, offset(expoly, clearance_offset));
for (LayerRegion *layerm : layerms) {
Polygons internal = to_polygons(layerm->fill_surfaces.filter_by_type(stInternal));
layerm->fill_surfaces.remove_type(stInternal);
layerm->fill_surfaces.append(diff_ex(internal, intersection_with_clearance, false), stInternal);
if (layerm == layerms.back()) {
// Apply surfaces back with adjusted depth to the uppermost layer.
Surface templ(stInternal, ExPolygon());
templ.thickness = 0.;
for (LayerRegion *layerm2 : layerms)
templ.thickness += layerm2->layer()->height;
templ.thickness_layers = (unsigned short)layerms.size();
layerm->fill_surfaces.append(intersection, templ);
} else {
// Save void surfaces.
layerm->fill_surfaces.append(
intersection_ex(internal, intersection_with_clearance, false),
stInternalVoid);
}
}
}
}
}
void PrintObject::_generate_support_material()
{
PrintObjectSupportMaterial support_material(this, m_slicing_params);
support_material.generate(*this);
}
} // namespace Slic3r