0d70a2be69
Renamed its_create_neighbors_index() / its_create_neighbors_index_par() to its_face_neighbors() / its_face_neighbors_par(). New variant of its_face_edge_ids() to create edge IDs from face neighbors. Fixed some incorrect use of _NDEBUG, it should be NDEBUG. PrintObject::slice_support_volumes() returns newly Polygons, which are cheaper than ExPolygons. Updated SeamPlacer and SupportMaterial to use regions defined as Polygons, not ExPolygons. TriangleSelector::get_facets_strict() returning a patch with T-joints retriangulated. New slice_mesh_slabs() - slicing projections of a triangle patch into top / bottom layers of slices, for MMU top / bottom segmentation. TriangleMeshSlicer - use 64 mutexes instead of one when scattering sliced triangles into layers. This makes a big difference on modern many core desktop computers. When applying MM segmented regions to input regions, the split regions are now re-merged with 10x higher positive offset epsilon to avoid creating gaps. When testing for existence of paint-on supports or seam, use a more efficient has_facets() test, which does not deserialize into the expensive TriangleSelector tree structure. GLIndexedVertexArray newly uses Eigen::AlignedBox<float, 3> for efficiency instead of our double based BoundingBoxf3. Improved MMU painting refresh speed by optimizing generation of the vertex buffers. Refactored MMU segmentation - projection of painted surfaces from top / bottom. 1) Parallelized. 2) Using the new slice_mesh_slabs() instead of projecting one triangle by the other and merging them with Clipper.
864 lines
48 KiB
C++
864 lines
48 KiB
C++
#include "ElephantFootCompensation.hpp"
|
|
#include "I18N.hpp"
|
|
#include "Layer.hpp"
|
|
#include "MultiMaterialSegmentation.hpp"
|
|
#include "Print.hpp"
|
|
#include "ClipperUtils.hpp"
|
|
|
|
#include <boost/log/trivial.hpp>
|
|
|
|
#include <tbb/parallel_for.h>
|
|
|
|
//! macro used to mark string used at localization, return same string
|
|
#define L(s) Slic3r::I18N::translate(s)
|
|
|
|
namespace Slic3r {
|
|
|
|
LayerPtrs new_layers(
|
|
PrintObject *print_object,
|
|
// Object layers (pairs of bottom/top Z coordinate), without the raft.
|
|
const std::vector<coordf_t> &object_layers)
|
|
{
|
|
LayerPtrs out;
|
|
out.reserve(object_layers.size());
|
|
auto id = int(print_object->slicing_parameters().raft_layers());
|
|
coordf_t zmin = print_object->slicing_parameters().object_print_z_min;
|
|
Layer *prev = nullptr;
|
|
for (size_t i_layer = 0; i_layer < object_layers.size(); i_layer += 2) {
|
|
coordf_t lo = object_layers[i_layer];
|
|
coordf_t hi = object_layers[i_layer + 1];
|
|
coordf_t slice_z = 0.5 * (lo + hi);
|
|
Layer *layer = new Layer(id ++, print_object, hi - lo, hi + zmin, slice_z);
|
|
out.emplace_back(layer);
|
|
if (prev != nullptr) {
|
|
prev->upper_layer = layer;
|
|
layer->lower_layer = prev;
|
|
}
|
|
prev = layer;
|
|
}
|
|
return out;
|
|
}
|
|
|
|
//FIXME The admesh repair function may break the face connectivity, rather refresh it here as the slicing code relies on it.
|
|
// This function will go away once we get rid of admesh from ModelVolume.
|
|
static indexed_triangle_set get_mesh_its_fix_mesh_connectivity(TriangleMesh mesh)
|
|
{
|
|
assert(mesh.repaired && mesh.has_shared_vertices());
|
|
if (mesh.stl.stats.number_of_facets > 0) {
|
|
assert(mesh.repaired && mesh.has_shared_vertices());
|
|
auto nr_degenerated = mesh.stl.stats.degenerate_facets;
|
|
stl_check_facets_exact(&mesh.stl);
|
|
if (nr_degenerated != mesh.stl.stats.degenerate_facets)
|
|
// stl_check_facets_exact() removed some newly degenerated faces. Some faces could become degenerate after some mesh transformation.
|
|
stl_generate_shared_vertices(&mesh.stl, mesh.its);
|
|
} else
|
|
mesh.its.clear();
|
|
return std::move(mesh.its);
|
|
}
|
|
|
|
// Slice single triangle mesh.
|
|
static std::vector<ExPolygons> slice_volume(
|
|
const ModelVolume &volume,
|
|
const std::vector<float> &zs,
|
|
const MeshSlicingParamsEx ¶ms,
|
|
const std::function<void()> &throw_on_cancel_callback)
|
|
{
|
|
std::vector<ExPolygons> layers;
|
|
if (! zs.empty()) {
|
|
indexed_triangle_set its = get_mesh_its_fix_mesh_connectivity(volume.mesh());
|
|
if (its.indices.size() > 0) {
|
|
MeshSlicingParamsEx params2 { params };
|
|
params2.trafo = params2.trafo * volume.get_matrix();
|
|
if (params2.trafo.rotation().determinant() < 0.)
|
|
its_flip_triangles(its);
|
|
layers = slice_mesh_ex(its, zs, params2, throw_on_cancel_callback);
|
|
throw_on_cancel_callback();
|
|
}
|
|
}
|
|
return layers;
|
|
}
|
|
|
|
// Slice single triangle mesh.
|
|
// Filter the zs not inside the ranges. The ranges are closed at the bottom and open at the top, they are sorted lexicographically and non overlapping.
|
|
static std::vector<ExPolygons> slice_volume(
|
|
const ModelVolume &volume,
|
|
const std::vector<float> &z,
|
|
const std::vector<t_layer_height_range> &ranges,
|
|
const MeshSlicingParamsEx ¶ms,
|
|
const std::function<void()> &throw_on_cancel_callback)
|
|
{
|
|
std::vector<ExPolygons> out;
|
|
if (! z.empty() && ! ranges.empty()) {
|
|
if (ranges.size() == 1 && z.front() >= ranges.front().first && z.back() < ranges.front().second) {
|
|
// All layers fit into a single range.
|
|
out = slice_volume(volume, z, params, throw_on_cancel_callback);
|
|
} else {
|
|
std::vector<float> z_filtered;
|
|
std::vector<std::pair<size_t, size_t>> n_filtered;
|
|
z_filtered.reserve(z.size());
|
|
n_filtered.reserve(2 * ranges.size());
|
|
size_t i = 0;
|
|
for (const t_layer_height_range &range : ranges) {
|
|
for (; i < z.size() && z[i] < range.first; ++ i) ;
|
|
size_t first = i;
|
|
for (; i < z.size() && z[i] < range.second; ++ i)
|
|
z_filtered.emplace_back(z[i]);
|
|
if (i > first)
|
|
n_filtered.emplace_back(std::make_pair(first, i));
|
|
}
|
|
if (! n_filtered.empty()) {
|
|
std::vector<ExPolygons> layers = slice_volume(volume, z_filtered, params, throw_on_cancel_callback);
|
|
out.assign(z.size(), ExPolygons());
|
|
i = 0;
|
|
for (const std::pair<size_t, size_t> &span : n_filtered)
|
|
for (size_t j = span.first; j < span.second; ++ j)
|
|
out[j] = std::move(layers[i ++]);
|
|
}
|
|
}
|
|
}
|
|
return out;
|
|
}
|
|
|
|
struct VolumeSlices
|
|
{
|
|
ObjectID volume_id;
|
|
std::vector<ExPolygons> slices;
|
|
};
|
|
|
|
static inline bool model_volume_needs_slicing(const ModelVolume &mv)
|
|
{
|
|
ModelVolumeType type = mv.type();
|
|
return type == ModelVolumeType::MODEL_PART || type == ModelVolumeType::NEGATIVE_VOLUME || type == ModelVolumeType::PARAMETER_MODIFIER;
|
|
}
|
|
|
|
// Slice printable volumes, negative volumes and modifier volumes, sorted by ModelVolume::id().
|
|
// Apply closing radius.
|
|
// Apply positive XY compensation to ModelVolumeType::MODEL_PART and ModelVolumeType::PARAMETER_MODIFIER, not to ModelVolumeType::NEGATIVE_VOLUME.
|
|
// Apply contour simplification.
|
|
static std::vector<VolumeSlices> slice_volumes_inner(
|
|
const PrintConfig &print_config,
|
|
const PrintObjectConfig &print_object_config,
|
|
const Transform3d &object_trafo,
|
|
ModelVolumePtrs model_volumes,
|
|
const std::vector<PrintObjectRegions::LayerRangeRegions> &layer_ranges,
|
|
const std::vector<float> &zs,
|
|
const std::function<void()> &throw_on_cancel_callback)
|
|
{
|
|
model_volumes_sort_by_id(model_volumes);
|
|
|
|
std::vector<VolumeSlices> out;
|
|
out.reserve(model_volumes.size());
|
|
|
|
std::vector<t_layer_height_range> slicing_ranges;
|
|
if (layer_ranges.size() > 1)
|
|
slicing_ranges.reserve(layer_ranges.size());
|
|
|
|
MeshSlicingParamsEx params_base;
|
|
params_base.closing_radius = print_object_config.slice_closing_radius.value;
|
|
params_base.extra_offset = 0;
|
|
params_base.trafo = object_trafo;
|
|
params_base.resolution = print_config.resolution.value;
|
|
|
|
switch (print_object_config.slicing_mode.value) {
|
|
case SlicingMode::Regular: params_base.mode = MeshSlicingParams::SlicingMode::Regular; break;
|
|
case SlicingMode::EvenOdd: params_base.mode = MeshSlicingParams::SlicingMode::EvenOdd; break;
|
|
case SlicingMode::CloseHoles: params_base.mode = MeshSlicingParams::SlicingMode::Positive; break;
|
|
}
|
|
|
|
params_base.mode_below = params_base.mode;
|
|
|
|
const auto extra_offset = std::max(0.f, float(print_object_config.xy_size_compensation.value));
|
|
|
|
for (const ModelVolume *model_volume : model_volumes)
|
|
if (model_volume_needs_slicing(*model_volume)) {
|
|
MeshSlicingParamsEx params { params_base };
|
|
if (! model_volume->is_negative_volume())
|
|
params.extra_offset = extra_offset;
|
|
if (layer_ranges.size() == 1) {
|
|
if (const PrintObjectRegions::LayerRangeRegions &layer_range = layer_ranges.front(); layer_range.has_volume(model_volume->id())) {
|
|
if (model_volume->is_model_part() && print_config.spiral_vase) {
|
|
auto it = std::find_if(layer_range.volume_regions.begin(), layer_range.volume_regions.end(),
|
|
[model_volume](const auto &slice){ return model_volume == slice.model_volume; });
|
|
params.mode = MeshSlicingParams::SlicingMode::PositiveLargestContour;
|
|
// Slice the bottom layers with SlicingMode::Regular.
|
|
// This needs to be in sync with LayerRegion::make_perimeters() spiral_vase!
|
|
const PrintRegionConfig ®ion_config = it->region->config();
|
|
params.slicing_mode_normal_below_layer = size_t(region_config.bottom_solid_layers.value);
|
|
for (; params.slicing_mode_normal_below_layer < zs.size() && zs[params.slicing_mode_normal_below_layer] < region_config.bottom_solid_min_thickness - EPSILON;
|
|
++ params.slicing_mode_normal_below_layer);
|
|
}
|
|
out.push_back({
|
|
model_volume->id(),
|
|
slice_volume(*model_volume, zs, params, throw_on_cancel_callback)
|
|
});
|
|
}
|
|
} else {
|
|
assert(! print_config.spiral_vase);
|
|
slicing_ranges.clear();
|
|
for (const PrintObjectRegions::LayerRangeRegions &layer_range : layer_ranges)
|
|
if (layer_range.has_volume(model_volume->id()))
|
|
slicing_ranges.emplace_back(layer_range.layer_height_range);
|
|
if (! slicing_ranges.empty())
|
|
out.push_back({
|
|
model_volume->id(),
|
|
slice_volume(*model_volume, zs, slicing_ranges, params, throw_on_cancel_callback)
|
|
});
|
|
}
|
|
if (! out.empty() && out.back().slices.empty())
|
|
out.pop_back();
|
|
}
|
|
|
|
return out;
|
|
}
|
|
|
|
static inline VolumeSlices& volume_slices_find_by_id(std::vector<VolumeSlices> &volume_slices, const ObjectID id)
|
|
{
|
|
auto it = lower_bound_by_predicate(volume_slices.begin(), volume_slices.end(), [id](const VolumeSlices &vs) { return vs.volume_id < id; });
|
|
assert(it != volume_slices.end() && it->volume_id == id);
|
|
return *it;
|
|
}
|
|
|
|
static inline bool overlap_in_xy(const PrintObjectRegions::BoundingBox &l, const PrintObjectRegions::BoundingBox &r)
|
|
{
|
|
return ! (l.max().x() < r.min().x() || l.min().x() > r.max().x() ||
|
|
l.max().y() < r.min().y() || l.min().y() > r.max().y());
|
|
}
|
|
|
|
static std::vector<PrintObjectRegions::LayerRangeRegions>::const_iterator layer_range_first(const std::vector<PrintObjectRegions::LayerRangeRegions> &layer_ranges, double z)
|
|
{
|
|
auto it = lower_bound_by_predicate(layer_ranges.begin(), layer_ranges.end(),
|
|
[z](const PrintObjectRegions::LayerRangeRegions &lr) { return lr.layer_height_range.second < z; });
|
|
assert(it != layer_ranges.end() && it->layer_height_range.first <= z && z <= it->layer_height_range.second);
|
|
if (z == it->layer_height_range.second)
|
|
if (auto it_next = it; ++ it_next != layer_ranges.end() && it_next->layer_height_range.first == z)
|
|
it = it_next;
|
|
assert(it != layer_ranges.end() && it->layer_height_range.first <= z && z <= it->layer_height_range.second);
|
|
return it;
|
|
}
|
|
|
|
static std::vector<PrintObjectRegions::LayerRangeRegions>::const_iterator layer_range_next(
|
|
const std::vector<PrintObjectRegions::LayerRangeRegions> &layer_ranges,
|
|
std::vector<PrintObjectRegions::LayerRangeRegions>::const_iterator it,
|
|
double z)
|
|
{
|
|
for (; it->layer_height_range.second <= z; ++ it)
|
|
assert(it != layer_ranges.end());
|
|
assert(it != layer_ranges.end() && it->layer_height_range.first <= z && z < it->layer_height_range.second);
|
|
return it;
|
|
}
|
|
|
|
static std::vector<std::vector<ExPolygons>> slices_to_regions(
|
|
ModelVolumePtrs model_volumes,
|
|
const PrintObjectRegions &print_object_regions,
|
|
const std::vector<float> &zs,
|
|
std::vector<VolumeSlices> &&volume_slices,
|
|
// If clipping is disabled, then ExPolygons produced by different volumes will never be merged, thus they will be allowed to overlap.
|
|
// It is up to the model designer to handle these overlaps.
|
|
const bool clip_multipart_objects,
|
|
const std::function<void()> &throw_on_cancel_callback)
|
|
{
|
|
model_volumes_sort_by_id(model_volumes);
|
|
|
|
std::vector<std::vector<ExPolygons>> slices_by_region(print_object_regions.all_regions.size(), std::vector<ExPolygons>(zs.size(), ExPolygons()));
|
|
|
|
// First shuffle slices into regions if there is no overlap with another region possible, collect zs of the complex cases.
|
|
std::vector<std::pair<size_t, float>> zs_complex;
|
|
{
|
|
size_t z_idx = 0;
|
|
for (const PrintObjectRegions::LayerRangeRegions &layer_range : print_object_regions.layer_ranges) {
|
|
for (; z_idx < zs.size() && zs[z_idx] < layer_range.layer_height_range.first; ++ z_idx) ;
|
|
if (layer_range.volume_regions.empty()) {
|
|
} else if (layer_range.volume_regions.size() == 1) {
|
|
const ModelVolume *model_volume = layer_range.volume_regions.front().model_volume;
|
|
assert(model_volume != nullptr);
|
|
if (model_volume->is_model_part()) {
|
|
VolumeSlices &slices_src = volume_slices_find_by_id(volume_slices, model_volume->id());
|
|
auto &slices_dst = slices_by_region[layer_range.volume_regions.front().region->print_object_region_id()];
|
|
for (; z_idx < zs.size() && zs[z_idx] < layer_range.layer_height_range.second; ++ z_idx)
|
|
slices_dst[z_idx] = std::move(slices_src.slices[z_idx]);
|
|
}
|
|
} else {
|
|
zs_complex.reserve(zs.size());
|
|
for (; z_idx < zs.size() && zs[z_idx] < layer_range.layer_height_range.second; ++ z_idx) {
|
|
float z = zs[z_idx];
|
|
int idx_first_printable_region = -1;
|
|
bool complex = false;
|
|
for (int idx_region = 0; idx_region < int(layer_range.volume_regions.size()); ++ idx_region) {
|
|
const PrintObjectRegions::VolumeRegion ®ion = layer_range.volume_regions[idx_region];
|
|
if (region.bbox->min().z() <= z && region.bbox->max().z() >= z) {
|
|
if (idx_first_printable_region == -1 && region.model_volume->is_model_part())
|
|
idx_first_printable_region = idx_region;
|
|
else if (idx_first_printable_region != -1) {
|
|
// Test for overlap with some other region.
|
|
for (int idx_region2 = idx_first_printable_region; idx_region2 < idx_region; ++ idx_region2) {
|
|
const PrintObjectRegions::VolumeRegion ®ion2 = layer_range.volume_regions[idx_region2];
|
|
if (region2.bbox->min().z() <= z && region2.bbox->max().z() >= z && overlap_in_xy(*region.bbox, *region2.bbox)) {
|
|
complex = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (complex)
|
|
zs_complex.push_back({ z_idx, z });
|
|
else if (idx_first_printable_region >= 0) {
|
|
const PrintObjectRegions::VolumeRegion ®ion = layer_range.volume_regions[idx_first_printable_region];
|
|
slices_by_region[region.region->print_object_region_id()][z_idx] = std::move(volume_slices_find_by_id(volume_slices, region.model_volume->id()).slices[z_idx]);
|
|
}
|
|
}
|
|
}
|
|
throw_on_cancel_callback();
|
|
}
|
|
}
|
|
|
|
// Second perform region clipping and assignment in parallel.
|
|
if (! zs_complex.empty()) {
|
|
std::vector<std::vector<VolumeSlices*>> layer_ranges_regions_to_slices(print_object_regions.layer_ranges.size(), std::vector<VolumeSlices*>());
|
|
for (const PrintObjectRegions::LayerRangeRegions &layer_range : print_object_regions.layer_ranges) {
|
|
std::vector<VolumeSlices*> &layer_range_regions_to_slices = layer_ranges_regions_to_slices[&layer_range - print_object_regions.layer_ranges.data()];
|
|
layer_range_regions_to_slices.reserve(layer_range.volume_regions.size());
|
|
for (const PrintObjectRegions::VolumeRegion ®ion : layer_range.volume_regions)
|
|
layer_range_regions_to_slices.push_back(&volume_slices_find_by_id(volume_slices, region.model_volume->id()));
|
|
}
|
|
tbb::parallel_for(
|
|
tbb::blocked_range<size_t>(0, zs_complex.size()),
|
|
[&slices_by_region, &print_object_regions, &zs_complex, &layer_ranges_regions_to_slices, clip_multipart_objects, &throw_on_cancel_callback]
|
|
(const tbb::blocked_range<size_t> &range) {
|
|
float z = zs_complex[range.begin()].second;
|
|
auto it_layer_range = layer_range_first(print_object_regions.layer_ranges, z);
|
|
// Per volume_regions slices at this Z height.
|
|
struct RegionSlice {
|
|
ExPolygons expolygons;
|
|
// Identifier of this region in PrintObjectRegions::all_regions
|
|
int region_id;
|
|
ObjectID volume_id;
|
|
bool operator<(const RegionSlice &rhs) const {
|
|
bool this_empty = this->region_id < 0 || this->expolygons.empty();
|
|
bool rhs_empty = rhs.region_id < 0 || rhs.expolygons.empty();
|
|
// Sort the empty items to the end of the list.
|
|
// Sort by region_id & volume_id lexicographically.
|
|
return ! this_empty && (rhs_empty || (this->region_id < rhs.region_id || (this->region_id == rhs.region_id && volume_id < volume_id)));
|
|
}
|
|
};
|
|
std::vector<RegionSlice> temp_slices;
|
|
for (size_t zs_complex_idx = range.begin(); zs_complex_idx < range.end(); ++ zs_complex_idx) {
|
|
auto [z_idx, z] = zs_complex[zs_complex_idx];
|
|
it_layer_range = layer_range_next(print_object_regions.layer_ranges, it_layer_range, z);
|
|
const PrintObjectRegions::LayerRangeRegions &layer_range = *it_layer_range;
|
|
{
|
|
std::vector<VolumeSlices*> &layer_range_regions_to_slices = layer_ranges_regions_to_slices[it_layer_range - print_object_regions.layer_ranges.begin()];
|
|
// Per volume_regions slices at thiz Z height.
|
|
temp_slices.clear();
|
|
temp_slices.reserve(layer_range.volume_regions.size());
|
|
for (VolumeSlices* &slices : layer_range_regions_to_slices) {
|
|
const PrintObjectRegions::VolumeRegion &volume_region = layer_range.volume_regions[&slices - layer_range_regions_to_slices.data()];
|
|
temp_slices.push_back({ std::move(slices->slices[z_idx]), volume_region.region ? volume_region.region->print_object_region_id() : -1, volume_region.model_volume->id() });
|
|
}
|
|
}
|
|
for (int idx_region = 0; idx_region < int(layer_range.volume_regions.size()); ++ idx_region)
|
|
if (! temp_slices[idx_region].expolygons.empty()) {
|
|
const PrintObjectRegions::VolumeRegion ®ion = layer_range.volume_regions[idx_region];
|
|
if (region.model_volume->is_modifier()) {
|
|
assert(region.parent > -1);
|
|
bool next_region_same_modifier = idx_region + 1 < int(temp_slices.size()) && layer_range.volume_regions[idx_region + 1].model_volume == region.model_volume;
|
|
RegionSlice &parent_slice = temp_slices[region.parent];
|
|
RegionSlice &this_slice = temp_slices[idx_region];
|
|
ExPolygons source = std::move(this_slice.expolygons);
|
|
if (parent_slice.expolygons.empty()) {
|
|
this_slice .expolygons.clear();
|
|
} else {
|
|
this_slice .expolygons = intersection_ex(parent_slice.expolygons, source);
|
|
parent_slice.expolygons = diff_ex (parent_slice.expolygons, source);
|
|
}
|
|
if (next_region_same_modifier)
|
|
// To be used in the following iteration.
|
|
temp_slices[idx_region + 1].expolygons = std::move(source);
|
|
} else if ((region.model_volume->is_model_part() && clip_multipart_objects) || region.model_volume->is_negative_volume()) {
|
|
// Clip every non-zero region preceding it.
|
|
for (int idx_region2 = 0; idx_region2 < idx_region; ++ idx_region2)
|
|
if (! temp_slices[idx_region2].expolygons.empty()) {
|
|
if (const PrintObjectRegions::VolumeRegion ®ion2 = layer_range.volume_regions[idx_region2];
|
|
! region2.model_volume->is_negative_volume() && overlap_in_xy(*region.bbox, *region2.bbox))
|
|
temp_slices[idx_region2].expolygons = diff_ex(temp_slices[idx_region2].expolygons, temp_slices[idx_region].expolygons);
|
|
}
|
|
}
|
|
}
|
|
// Sort by region_id, push empty slices to the end.
|
|
std::sort(temp_slices.begin(), temp_slices.end());
|
|
// Remove the empty slices.
|
|
temp_slices.erase(std::find_if(temp_slices.begin(), temp_slices.end(), [](const auto &slice) { return slice.region_id == -1 || slice.expolygons.empty(); }), temp_slices.end());
|
|
// Merge slices and store them to the output.
|
|
for (int i = 0; i < int(temp_slices.size());) {
|
|
// Find a range of temp_slices with the same region_id.
|
|
int j = i;
|
|
bool merged = false;
|
|
ExPolygons &expolygons = temp_slices[i].expolygons;
|
|
for (++ j;
|
|
j < int(temp_slices.size()) &&
|
|
temp_slices[i].region_id == temp_slices[j].region_id &&
|
|
(clip_multipart_objects || temp_slices[i].volume_id == temp_slices[j].volume_id);
|
|
++ j)
|
|
if (ExPolygons &expolygons2 = temp_slices[j].expolygons; ! expolygons2.empty()) {
|
|
if (expolygons.empty()) {
|
|
expolygons = std::move(expolygons2);
|
|
} else {
|
|
append(expolygons, std::move(expolygons2));
|
|
merged = true;
|
|
}
|
|
}
|
|
if (merged)
|
|
expolygons = offset2_ex(expolygons, float(scale_(EPSILON)), -float(scale_(EPSILON)));
|
|
slices_by_region[temp_slices[i].region_id][z_idx] = std::move(expolygons);
|
|
i = j;
|
|
}
|
|
throw_on_cancel_callback();
|
|
}
|
|
});
|
|
}
|
|
|
|
return slices_by_region;
|
|
}
|
|
|
|
std::string fix_slicing_errors(LayerPtrs &layers, const std::function<void()> &throw_if_canceled)
|
|
{
|
|
// Collect layers with slicing errors.
|
|
// These layers will be fixed in parallel.
|
|
std::vector<size_t> buggy_layers;
|
|
buggy_layers.reserve(layers.size());
|
|
for (size_t idx_layer = 0; idx_layer < layers.size(); ++ idx_layer)
|
|
if (layers[idx_layer]->slicing_errors)
|
|
buggy_layers.push_back(idx_layer);
|
|
|
|
BOOST_LOG_TRIVIAL(debug) << "Slicing objects - fixing slicing errors in parallel - begin";
|
|
tbb::parallel_for(
|
|
tbb::blocked_range<size_t>(0, buggy_layers.size()),
|
|
[&layers, &throw_if_canceled, &buggy_layers](const tbb::blocked_range<size_t>& range) {
|
|
for (size_t buggy_layer_idx = range.begin(); buggy_layer_idx < range.end(); ++ buggy_layer_idx) {
|
|
throw_if_canceled();
|
|
size_t idx_layer = buggy_layers[buggy_layer_idx];
|
|
Layer *layer = layers[idx_layer];
|
|
assert(layer->slicing_errors);
|
|
// Try to repair the layer surfaces by merging all contours and all holes from neighbor layers.
|
|
// BOOST_LOG_TRIVIAL(trace) << "Attempting to repair layer" << idx_layer;
|
|
for (size_t region_id = 0; region_id < layer->region_count(); ++ region_id) {
|
|
LayerRegion *layerm = layer->get_region(region_id);
|
|
// Find the first valid layer below / above the current layer.
|
|
const Surfaces *upper_surfaces = nullptr;
|
|
const Surfaces *lower_surfaces = nullptr;
|
|
for (size_t j = idx_layer + 1; j < layers.size(); ++ j)
|
|
if (! layers[j]->slicing_errors) {
|
|
upper_surfaces = &layers[j]->regions()[region_id]->slices.surfaces;
|
|
break;
|
|
}
|
|
for (int j = int(idx_layer) - 1; j >= 0; -- j)
|
|
if (! layers[j]->slicing_errors) {
|
|
lower_surfaces = &layers[j]->regions()[region_id]->slices.surfaces;
|
|
break;
|
|
}
|
|
// Collect outer contours and holes from the valid layers above & below.
|
|
Polygons outer;
|
|
outer.reserve(
|
|
((upper_surfaces == nullptr) ? 0 : upper_surfaces->size()) +
|
|
((lower_surfaces == nullptr) ? 0 : lower_surfaces->size()));
|
|
size_t num_holes = 0;
|
|
if (upper_surfaces)
|
|
for (const auto &surface : *upper_surfaces) {
|
|
outer.push_back(surface.expolygon.contour);
|
|
num_holes += surface.expolygon.holes.size();
|
|
}
|
|
if (lower_surfaces)
|
|
for (const auto &surface : *lower_surfaces) {
|
|
outer.push_back(surface.expolygon.contour);
|
|
num_holes += surface.expolygon.holes.size();
|
|
}
|
|
Polygons holes;
|
|
holes.reserve(num_holes);
|
|
if (upper_surfaces)
|
|
for (const auto &surface : *upper_surfaces)
|
|
polygons_append(holes, surface.expolygon.holes);
|
|
if (lower_surfaces)
|
|
for (const auto &surface : *lower_surfaces)
|
|
polygons_append(holes, surface.expolygon.holes);
|
|
layerm->slices.set(diff_ex(union_(outer), holes), stInternal);
|
|
}
|
|
// Update layer slices after repairing the single regions.
|
|
layer->make_slices();
|
|
}
|
|
});
|
|
throw_if_canceled();
|
|
BOOST_LOG_TRIVIAL(debug) << "Slicing objects - fixing slicing errors in parallel - end";
|
|
|
|
// remove empty layers from bottom
|
|
while (! layers.empty() && (layers.front()->lslices.empty() || layers.front()->empty())) {
|
|
delete layers.front();
|
|
layers.erase(layers.begin());
|
|
layers.front()->lower_layer = nullptr;
|
|
for (size_t i = 0; i < layers.size(); ++ i)
|
|
layers[i]->set_id(layers[i]->id() - 1);
|
|
}
|
|
|
|
return buggy_layers.empty() ? "" :
|
|
"The model has overlapping or self-intersecting facets. I tried to repair it, "
|
|
"however you might want to check the results or repair the input file and retry.\n";
|
|
}
|
|
|
|
// Called by make_perimeters()
|
|
// 1) Decides Z positions of the layers,
|
|
// 2) Initializes layers and their regions
|
|
// 3) Slices the object meshes
|
|
// 4) Slices the modifier meshes and reclassifies the slices of the object meshes by the slices of the modifier meshes
|
|
// 5) Applies size compensation (offsets the slices in XY plane)
|
|
// 6) Replaces bad slices by the slices reconstructed from the upper/lower layer
|
|
// Resulting expolygons of layer regions are marked as Internal.
|
|
void PrintObject::slice()
|
|
{
|
|
if (! this->set_started(posSlice))
|
|
return;
|
|
m_print->set_status(10, L("Processing triangulated mesh"));
|
|
std::vector<coordf_t> layer_height_profile;
|
|
this->update_layer_height_profile(*this->model_object(), m_slicing_params, layer_height_profile);
|
|
m_print->throw_if_canceled();
|
|
m_typed_slices = false;
|
|
this->clear_layers();
|
|
m_layers = new_layers(this, generate_object_layers(m_slicing_params, layer_height_profile));
|
|
this->slice_volumes();
|
|
m_print->throw_if_canceled();
|
|
// Fix the model.
|
|
//FIXME is this the right place to do? It is done repeateadly at the UI and now here at the backend.
|
|
std::string warning = fix_slicing_errors(m_layers, [this](){ m_print->throw_if_canceled(); });
|
|
m_print->throw_if_canceled();
|
|
if (! warning.empty())
|
|
BOOST_LOG_TRIVIAL(info) << warning;
|
|
// Update bounding boxes, back up raw slices of complex models.
|
|
tbb::parallel_for(
|
|
tbb::blocked_range<size_t>(0, m_layers.size()),
|
|
[this](const tbb::blocked_range<size_t>& range) {
|
|
for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) {
|
|
m_print->throw_if_canceled();
|
|
Layer &layer = *m_layers[layer_idx];
|
|
layer.lslices_bboxes.clear();
|
|
layer.lslices_bboxes.reserve(layer.lslices.size());
|
|
for (const ExPolygon &expoly : layer.lslices)
|
|
layer.lslices_bboxes.emplace_back(get_extents(expoly));
|
|
layer.backup_untyped_slices();
|
|
}
|
|
});
|
|
if (m_layers.empty())
|
|
throw Slic3r::SlicingError("No layers were detected. You might want to repair your STL file(s) or check their size or thickness and retry.\n");
|
|
this->set_done(posSlice);
|
|
}
|
|
|
|
template<typename ThrowOnCancel>
|
|
static inline void apply_mm_segmentation(PrintObject &print_object, ThrowOnCancel throw_on_cancel)
|
|
{
|
|
// Returns MMU segmentation based on painting in MMU segmentation gizmo
|
|
std::vector<std::vector<std::pair<ExPolygon, size_t>>> segmentation = multi_material_segmentation_by_painting(print_object, throw_on_cancel);
|
|
assert(segmentation.size() == print_object.layer_count());
|
|
tbb::parallel_for(
|
|
tbb::blocked_range<size_t>(0, segmentation.size(), std::max(segmentation.size() / 128, size_t(1))),
|
|
[&print_object, &segmentation, throw_on_cancel](const tbb::blocked_range<size_t> &range) {
|
|
const auto &layer_ranges = print_object.shared_regions()->layer_ranges;
|
|
double z = print_object.get_layer(range.begin())->slice_z;
|
|
auto it_layer_range = layer_range_first(layer_ranges, z);
|
|
const size_t num_extruders = print_object.print()->config().nozzle_diameter.size();
|
|
struct ByExtruder {
|
|
ExPolygons expolygons;
|
|
BoundingBox bbox;
|
|
};
|
|
std::vector<ByExtruder> by_extruder;
|
|
struct ByRegion {
|
|
ExPolygons expolygons;
|
|
bool needs_merge { false };
|
|
};
|
|
std::vector<ByRegion> by_region;
|
|
for (size_t layer_id = range.begin(); layer_id < range.end(); ++ layer_id) {
|
|
throw_on_cancel();
|
|
Layer *layer = print_object.get_layer(layer_id);
|
|
it_layer_range = layer_range_next(layer_ranges, it_layer_range, layer->slice_z);
|
|
const PrintObjectRegions::LayerRangeRegions &layer_range = *it_layer_range;
|
|
// Gather per extruder expolygons.
|
|
by_extruder.assign(num_extruders, ByExtruder());
|
|
by_region.assign(layer->region_count(), ByRegion());
|
|
bool layer_split = false;
|
|
for (size_t extruder_id = 0; extruder_id < num_extruders; ++ extruder_id) {
|
|
ByExtruder ®ion = by_extruder[extruder_id];
|
|
for (const std::pair<ExPolygon, size_t> &colored_polygon : segmentation[layer_id])
|
|
if (colored_polygon.second == extruder_id)
|
|
region.expolygons.emplace_back(std::move(colored_polygon.first));
|
|
if (! region.expolygons.empty()) {
|
|
region.bbox = get_extents(region.expolygons);
|
|
layer_split = true;
|
|
}
|
|
}
|
|
if (! layer_split)
|
|
continue;
|
|
// Split LayerRegions by by_extruder regions.
|
|
// layer_range.painted_regions are sorted by extruder ID and parent PrintObject region ID.
|
|
auto it_painted_region = layer_range.painted_regions.begin();
|
|
for (int region_id = 0; region_id < int(layer->region_count()); ++ region_id)
|
|
if (LayerRegion &layerm = *layer->get_region(region_id); ! layerm.slices.surfaces.empty()) {
|
|
assert(layerm.region().print_object_region_id() == region_id);
|
|
const BoundingBox bbox = get_extents(layerm.slices.surfaces);
|
|
assert(it_painted_region < layer_range.painted_regions.end());
|
|
// Find the first it_painted_region which overrides this region.
|
|
for (; layer_range.volume_regions[it_painted_region->parent].region->print_object_region_id() < region_id; ++ it_painted_region)
|
|
assert(it_painted_region != layer_range.painted_regions.end());
|
|
assert(it_painted_region != layer_range.painted_regions.end());
|
|
assert(layer_range.volume_regions[it_painted_region->parent].region == &layerm.region());
|
|
// 1-based extruder ID
|
|
bool self_trimmed = false;
|
|
int self_extruder_id = -1;
|
|
for (int extruder_id = 1; extruder_id <= int(by_extruder.size()); ++ extruder_id)
|
|
if (ByExtruder &segmented = by_extruder[extruder_id - 1]; segmented.bbox.defined && bbox.overlap(segmented.bbox)) {
|
|
// Find the target region.
|
|
for (; int(it_painted_region->extruder_id) < extruder_id; ++ it_painted_region)
|
|
assert(it_painted_region != layer_range.painted_regions.end());
|
|
assert(layer_range.volume_regions[it_painted_region->parent].region == &layerm.region() && int(it_painted_region->extruder_id) == extruder_id);
|
|
//FIXME Don't trim by self, it is not reliable.
|
|
if (&layerm.region() == it_painted_region->region) {
|
|
self_extruder_id = extruder_id;
|
|
continue;
|
|
}
|
|
// Steal from this region.
|
|
int target_region_id = it_painted_region->region->print_object_region_id();
|
|
ExPolygons stolen = intersection_ex(layerm.slices.surfaces, segmented.expolygons);
|
|
if (! stolen.empty()) {
|
|
ByRegion &dst = by_region[target_region_id];
|
|
if (dst.expolygons.empty()) {
|
|
dst.expolygons = std::move(stolen);
|
|
} else {
|
|
append(dst.expolygons, std::move(stolen));
|
|
dst.needs_merge = true;
|
|
}
|
|
}
|
|
#if 0
|
|
if (&layerm.region() == it_painted_region->region)
|
|
// Slices of this LayerRegion were trimmed by a MMU region of the same PrintRegion.
|
|
self_trimmed = true;
|
|
#endif
|
|
}
|
|
if (! self_trimmed) {
|
|
// Trim slices of this LayerRegion with all the MMU regions.
|
|
Polygons mine = to_polygons(std::move(layerm.slices.surfaces));
|
|
for (auto &segmented : by_extruder)
|
|
if (&segmented - by_extruder.data() + 1 != self_extruder_id && segmented.bbox.defined && bbox.overlap(segmented.bbox)) {
|
|
mine = diff(mine, segmented.expolygons);
|
|
if (mine.empty())
|
|
break;
|
|
}
|
|
if (! mine.empty()) {
|
|
ByRegion &dst = by_region[layerm.region().print_object_region_id()];
|
|
if (dst.expolygons.empty()) {
|
|
dst.expolygons = union_ex(mine);
|
|
} else {
|
|
append(dst.expolygons, union_ex(mine));
|
|
dst.needs_merge = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// Re-create Surfaces of LayerRegions.
|
|
for (size_t region_id = 0; region_id < layer->region_count(); ++ region_id) {
|
|
ByRegion &src = by_region[region_id];
|
|
if (src.needs_merge)
|
|
// Multiple regions were merged into one.
|
|
src.expolygons = offset2_ex(src.expolygons, float(scale_(10 * EPSILON)), - float(scale_(10 * EPSILON)));
|
|
layer->get_region(region_id)->slices.set(std::move(src.expolygons), stInternal);
|
|
}
|
|
}
|
|
});
|
|
}
|
|
|
|
// 1) Decides Z positions of the layers,
|
|
// 2) Initializes layers and their regions
|
|
// 3) Slices the object meshes
|
|
// 4) Slices the modifier meshes and reclassifies the slices of the object meshes by the slices of the modifier meshes
|
|
// 5) Applies size compensation (offsets the slices in XY plane)
|
|
// 6) Replaces bad slices by the slices reconstructed from the upper/lower layer
|
|
// Resulting expolygons of layer regions are marked as Internal.
|
|
//
|
|
// this should be idempotent
|
|
void PrintObject::slice_volumes()
|
|
{
|
|
BOOST_LOG_TRIVIAL(info) << "Slicing volumes..." << log_memory_info();
|
|
const Print *print = this->print();
|
|
const auto throw_on_cancel_callback = std::function<void()>([print](){ print->throw_if_canceled(); });
|
|
|
|
// Clear old LayerRegions, allocate for new PrintRegions.
|
|
for (Layer* layer : m_layers) {
|
|
layer->m_regions.clear();
|
|
layer->m_regions.reserve(m_shared_regions->all_regions.size());
|
|
for (const std::unique_ptr<PrintRegion> &pr : m_shared_regions->all_regions)
|
|
layer->m_regions.emplace_back(new LayerRegion(layer, pr.get()));
|
|
}
|
|
|
|
std::vector<float> slice_zs = zs_from_layers(m_layers);
|
|
Transform3d trafo = this->trafo();
|
|
trafo.pretranslate(Vec3d(- unscale<double>(m_center_offset.x()), - unscale<double>(m_center_offset.y()), 0));
|
|
std::vector<std::vector<ExPolygons>> region_slices = slices_to_regions(this->model_object()->volumes, *m_shared_regions, slice_zs,
|
|
slice_volumes_inner(
|
|
print->config(), this->config(), trafo,
|
|
this->model_object()->volumes, m_shared_regions->layer_ranges, slice_zs, throw_on_cancel_callback),
|
|
m_config.clip_multipart_objects,
|
|
throw_on_cancel_callback);
|
|
|
|
for (size_t region_id = 0; region_id < region_slices.size(); ++ region_id) {
|
|
std::vector<ExPolygons> &by_layer = region_slices[region_id];
|
|
for (size_t layer_id = 0; layer_id < by_layer.size(); ++ layer_id)
|
|
m_layers[layer_id]->regions()[region_id]->slices.append(std::move(by_layer[layer_id]), stInternal);
|
|
}
|
|
region_slices.clear();
|
|
|
|
BOOST_LOG_TRIVIAL(debug) << "Slicing volumes - removing top empty layers";
|
|
while (! m_layers.empty()) {
|
|
const Layer *layer = m_layers.back();
|
|
if (! layer->empty())
|
|
break;
|
|
delete layer;
|
|
m_layers.pop_back();
|
|
}
|
|
if (! m_layers.empty())
|
|
m_layers.back()->upper_layer = nullptr;
|
|
m_print->throw_if_canceled();
|
|
|
|
// Is any ModelVolume MMU painted?
|
|
if (const auto& volumes = this->model_object()->volumes;
|
|
std::find_if(volumes.begin(), volumes.end(), [](const ModelVolume* v) { return !v->mmu_segmentation_facets.empty(); }) != volumes.end()) {
|
|
BOOST_LOG_TRIVIAL(debug) << "Slicing volumes - MMU segmentation";
|
|
apply_mm_segmentation(*this, [print]() { print->throw_if_canceled(); });
|
|
}
|
|
|
|
|
|
BOOST_LOG_TRIVIAL(debug) << "Slicing volumes - make_slices in parallel - begin";
|
|
{
|
|
// Compensation value, scaled. Only applying the negative scaling here, as the positive scaling has already been applied during slicing.
|
|
const auto xy_compensation_scaled = scaled<float>(std::min(m_config.xy_size_compensation.value, 0.));
|
|
const float elephant_foot_compensation_scaled = (m_config.raft_layers == 0) ?
|
|
// Only enable Elephant foot compensation if printing directly on the print bed.
|
|
float(scale_(m_config.elefant_foot_compensation.value)) :
|
|
0.f;
|
|
// Uncompensated slices for the first layer in case the Elephant foot compensation is applied.
|
|
ExPolygons lslices_1st_layer;
|
|
tbb::parallel_for(
|
|
tbb::blocked_range<size_t>(0, m_layers.size()),
|
|
[this, xy_compensation_scaled, elephant_foot_compensation_scaled, &lslices_1st_layer](const tbb::blocked_range<size_t>& range) {
|
|
for (size_t layer_id = range.begin(); layer_id < range.end(); ++ layer_id) {
|
|
m_print->throw_if_canceled();
|
|
Layer *layer = m_layers[layer_id];
|
|
// Apply size compensation and perform clipping of multi-part objects.
|
|
float elfoot = (layer_id == 0) ? elephant_foot_compensation_scaled : 0.f;
|
|
if (layer->m_regions.size() == 1) {
|
|
// Optimized version for a single region layer.
|
|
// Single region, growing or shrinking.
|
|
LayerRegion *layerm = layer->m_regions.front();
|
|
if (elfoot > 0) {
|
|
// Apply the elephant foot compensation and store the 1st layer slices without the Elephant foot compensation applied.
|
|
lslices_1st_layer = to_expolygons(std::move(layerm->slices.surfaces));
|
|
float delta = xy_compensation_scaled;
|
|
if (delta > elfoot) {
|
|
delta -= elfoot;
|
|
elfoot = 0.f;
|
|
} else if (delta > 0)
|
|
elfoot -= delta;
|
|
layerm->slices.set(
|
|
union_ex(
|
|
Slic3r::elephant_foot_compensation(
|
|
(delta == 0.f) ? lslices_1st_layer : offset_ex(lslices_1st_layer, delta),
|
|
layerm->flow(frExternalPerimeter), unscale<double>(elfoot))),
|
|
stInternal);
|
|
if (xy_compensation_scaled < 0.f)
|
|
lslices_1st_layer = offset_ex(std::move(lslices_1st_layer), xy_compensation_scaled);
|
|
} else if (xy_compensation_scaled < 0.f) {
|
|
// Apply the XY compensation.
|
|
layerm->slices.set(
|
|
offset_ex(to_expolygons(std::move(layerm->slices.surfaces)), xy_compensation_scaled),
|
|
stInternal);
|
|
}
|
|
} else {
|
|
if (xy_compensation_scaled < 0.f || elfoot > 0.f) {
|
|
// Apply the negative XY compensation.
|
|
Polygons trimming;
|
|
static const float eps = float(scale_(m_config.slice_closing_radius.value) * 1.5);
|
|
if (elfoot > 0.f) {
|
|
lslices_1st_layer = offset_ex(layer->merged(eps), std::min(xy_compensation_scaled, 0.f) - eps);
|
|
trimming = to_polygons(Slic3r::elephant_foot_compensation(lslices_1st_layer,
|
|
layer->m_regions.front()->flow(frExternalPerimeter), unscale<double>(elfoot)));
|
|
} else
|
|
trimming = offset(layer->merged(float(SCALED_EPSILON)), xy_compensation_scaled - float(SCALED_EPSILON));
|
|
for (size_t region_id = 0; region_id < layer->m_regions.size(); ++ region_id)
|
|
layer->m_regions[region_id]->trim_surfaces(trimming);
|
|
}
|
|
}
|
|
// Merge all regions' slices to get islands, chain them by a shortest path.
|
|
layer->make_slices();
|
|
}
|
|
});
|
|
if (elephant_foot_compensation_scaled > 0.f && ! m_layers.empty()) {
|
|
// The Elephant foot has been compensated, therefore the 1st layer's lslices are shrank with the Elephant foot compensation value.
|
|
// Store the uncompensated value there.
|
|
assert(m_layers.front()->id() == 0);
|
|
m_layers.front()->lslices = std::move(lslices_1st_layer);
|
|
}
|
|
}
|
|
|
|
m_print->throw_if_canceled();
|
|
BOOST_LOG_TRIVIAL(debug) << "Slicing volumes - make_slices in parallel - end";
|
|
}
|
|
|
|
std::vector<Polygons> PrintObject::slice_support_volumes(const ModelVolumeType model_volume_type) const
|
|
{
|
|
auto it_volume = this->model_object()->volumes.begin();
|
|
auto it_volume_end = this->model_object()->volumes.end();
|
|
for (; it_volume != it_volume_end && (*it_volume)->type() != model_volume_type; ++ it_volume) ;
|
|
std::vector<Polygons> slices;
|
|
if (it_volume != it_volume_end) {
|
|
// Found at least a single support volume of model_volume_type.
|
|
std::vector<float> zs = zs_from_layers(this->layers());
|
|
std::vector<char> merge_layers;
|
|
bool merge = false;
|
|
const Print *print = this->print();
|
|
auto throw_on_cancel_callback = std::function<void()>([print](){ print->throw_if_canceled(); });
|
|
MeshSlicingParamsEx params;
|
|
params.trafo = this->trafo();
|
|
params.trafo.pretranslate(Vec3d(-unscale<float>(m_center_offset.x()), -unscale<float>(m_center_offset.y()), 0));
|
|
for (; it_volume != it_volume_end; ++ it_volume)
|
|
if ((*it_volume)->type() == model_volume_type) {
|
|
std::vector<ExPolygons> slices2 = slice_volume(*(*it_volume), zs, params, throw_on_cancel_callback);
|
|
if (slices.empty()) {
|
|
slices.reserve(slices2.size());
|
|
for (ExPolygons &src : slices2)
|
|
slices.emplace_back(to_polygons(std::move(src)));
|
|
} else if (!slices2.empty()) {
|
|
if (merge_layers.empty())
|
|
merge_layers.assign(zs.size(), false);
|
|
for (size_t i = 0; i < zs.size(); ++ i) {
|
|
if (slices[i].empty())
|
|
slices[i] = to_polygons(std::move(slices2[i]));
|
|
else if (! slices2[i].empty()) {
|
|
append(slices[i], to_polygons(std::move(slices2[i])));
|
|
merge_layers[i] = true;
|
|
merge = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (merge) {
|
|
std::vector<Polygons*> to_merge;
|
|
to_merge.reserve(zs.size());
|
|
for (size_t i = 0; i < zs.size(); ++ i)
|
|
if (merge_layers[i])
|
|
to_merge.emplace_back(&slices[i]);
|
|
tbb::parallel_for(
|
|
tbb::blocked_range<size_t>(0, to_merge.size()),
|
|
[&to_merge](const tbb::blocked_range<size_t> &range) {
|
|
for (size_t i = range.begin(); i < range.end(); ++ i)
|
|
*to_merge[i] = union_(*to_merge[i]);
|
|
});
|
|
}
|
|
}
|
|
return slices;
|
|
}
|
|
|
|
} // namespace Slic3r
|