40a882d01e
due to avoiding the 128bit multiply operations: A filtered predicate is tried to calculate SlopesEqual() to minimize the invocation of 128bit multiply operations.
487 lines
19 KiB
C++
487 lines
19 KiB
C++
/*******************************************************************************
|
|
* *
|
|
* Author : Angus Johnson *
|
|
* Version : 6.2.9 *
|
|
* Date : 16 February 2015 *
|
|
* Website : http://www.angusj.com *
|
|
* Copyright : Angus Johnson 2010-2015 *
|
|
* *
|
|
* License: *
|
|
* Use, modification & distribution is subject to Boost Software License Ver 1. *
|
|
* http://www.boost.org/LICENSE_1_0.txt *
|
|
* *
|
|
* Attributions: *
|
|
* The code in this library is an extension of Bala Vatti's clipping algorithm: *
|
|
* "A generic solution to polygon clipping" *
|
|
* Communications of the ACM, Vol 35, Issue 7 (July 1992) pp 56-63. *
|
|
* http://portal.acm.org/citation.cfm?id=129906 *
|
|
* *
|
|
* Computer graphics and geometric modeling: implementation and algorithms *
|
|
* By Max K. Agoston *
|
|
* Springer; 1 edition (January 4, 2005) *
|
|
* http://books.google.com/books?q=vatti+clipping+agoston *
|
|
* *
|
|
* See also: *
|
|
* "Polygon Offsetting by Computing Winding Numbers" *
|
|
* Paper no. DETC2005-85513 pp. 565-575 *
|
|
* ASME 2005 International Design Engineering Technical Conferences *
|
|
* and Computers and Information in Engineering Conference (IDETC/CIE2005) *
|
|
* September 24-28, 2005 , Long Beach, California, USA *
|
|
* http://www.me.berkeley.edu/~mcmains/pubs/DAC05OffsetPolygon.pdf *
|
|
* *
|
|
*******************************************************************************/
|
|
|
|
#ifndef clipper_hpp
|
|
#define clipper_hpp
|
|
|
|
#include <inttypes.h>
|
|
|
|
#define CLIPPER_VERSION "6.2.6"
|
|
|
|
//use_xyz: adds a Z member to IntPoint. Adds a minor cost to perfomance.
|
|
//#define use_xyz
|
|
|
|
//use_lines: Enables line clipping. Adds a very minor cost to performance.
|
|
#define use_lines
|
|
|
|
//use_deprecated: Enables temporary support for the obsolete functions
|
|
//#define use_deprecated
|
|
|
|
#include <vector>
|
|
#include <deque>
|
|
#include <stdexcept>
|
|
#include <cstring>
|
|
#include <cstdlib>
|
|
#include <ostream>
|
|
#include <functional>
|
|
#include <queue>
|
|
|
|
namespace ClipperLib {
|
|
|
|
enum ClipType { ctIntersection, ctUnion, ctDifference, ctXor };
|
|
enum PolyType { ptSubject, ptClip };
|
|
//By far the most widely used winding rules for polygon filling are
|
|
//EvenOdd & NonZero (GDI, GDI+, XLib, OpenGL, Cairo, AGG, Quartz, SVG, Gr32)
|
|
//Others rules include Positive, Negative and ABS_GTR_EQ_TWO (only in OpenGL)
|
|
//see http://glprogramming.com/red/chapter11.html
|
|
enum PolyFillType { pftEvenOdd, pftNonZero, pftPositive, pftNegative };
|
|
|
|
// Point coordinate type
|
|
typedef int64_t cInt;
|
|
// Maximum cInt value to allow a cross product calculation using 32bit expressions.
|
|
static cInt const loRange = 0x3FFFFFFF;
|
|
// Maximum allowed cInt value.
|
|
static cInt const hiRange = 0x3FFFFFFFFFFFFFFFLL;
|
|
|
|
struct IntPoint {
|
|
cInt X;
|
|
cInt Y;
|
|
#ifdef use_xyz
|
|
cInt Z;
|
|
IntPoint(cInt x = 0, cInt y = 0, cInt z = 0): X(x), Y(y), Z(z) {};
|
|
#else
|
|
IntPoint(cInt x = 0, cInt y = 0): X(x), Y(y) {};
|
|
#endif
|
|
|
|
friend inline bool operator== (const IntPoint& a, const IntPoint& b)
|
|
{
|
|
return a.X == b.X && a.Y == b.Y;
|
|
}
|
|
friend inline bool operator!= (const IntPoint& a, const IntPoint& b)
|
|
{
|
|
return a.X != b.X || a.Y != b.Y;
|
|
}
|
|
};
|
|
//------------------------------------------------------------------------------
|
|
|
|
typedef std::vector< IntPoint > Path;
|
|
typedef std::vector< Path > Paths;
|
|
|
|
inline Path& operator <<(Path& poly, const IntPoint& p) {poly.push_back(p); return poly;}
|
|
inline Paths& operator <<(Paths& polys, const Path& p) {polys.push_back(p); return polys;}
|
|
|
|
std::ostream& operator <<(std::ostream &s, const IntPoint &p);
|
|
std::ostream& operator <<(std::ostream &s, const Path &p);
|
|
std::ostream& operator <<(std::ostream &s, const Paths &p);
|
|
|
|
struct DoublePoint
|
|
{
|
|
double X;
|
|
double Y;
|
|
DoublePoint(double x = 0, double y = 0) : X(x), Y(y) {}
|
|
DoublePoint(IntPoint ip) : X((double)ip.X), Y((double)ip.Y) {}
|
|
};
|
|
//------------------------------------------------------------------------------
|
|
|
|
#ifdef use_xyz
|
|
typedef void (*ZFillCallback)(IntPoint& e1bot, IntPoint& e1top, IntPoint& e2bot, IntPoint& e2top, IntPoint& pt);
|
|
#endif
|
|
|
|
enum InitOptions {ioReverseSolution = 1, ioStrictlySimple = 2, ioPreserveCollinear = 4};
|
|
enum JoinType {jtSquare, jtRound, jtMiter};
|
|
enum EndType {etClosedPolygon, etClosedLine, etOpenButt, etOpenSquare, etOpenRound};
|
|
|
|
class PolyNode;
|
|
typedef std::vector< PolyNode* > PolyNodes;
|
|
|
|
class PolyNode
|
|
{
|
|
public:
|
|
PolyNode() : Childs(), Parent(0), Index(0), m_IsOpen(false) {}
|
|
virtual ~PolyNode(){};
|
|
Path Contour;
|
|
PolyNodes Childs;
|
|
PolyNode* Parent;
|
|
// Traversal of the polygon tree in a depth first fashion.
|
|
PolyNode* GetNext() const { return Childs.empty() ? GetNextSiblingUp() : Childs.front(); }
|
|
bool IsHole() const;
|
|
bool IsOpen() const { return m_IsOpen; }
|
|
int ChildCount() const { return (int)Childs.size(); }
|
|
private:
|
|
unsigned Index; //node index in Parent.Childs
|
|
bool m_IsOpen;
|
|
JoinType m_jointype;
|
|
EndType m_endtype;
|
|
PolyNode* GetNextSiblingUp() const { return Parent ? ((Index == Parent->Childs.size() - 1) ? Parent->GetNextSiblingUp() : Parent->Childs[Index + 1]) : nullptr; }
|
|
void AddChild(PolyNode& child);
|
|
friend class Clipper; //to access Index
|
|
friend class ClipperOffset;
|
|
friend class PolyTree; //to implement the PolyTree::move operator
|
|
};
|
|
|
|
class PolyTree: public PolyNode
|
|
{
|
|
public:
|
|
PolyTree() {}
|
|
PolyTree(PolyTree &&src) { *this = std::move(src); }
|
|
virtual ~PolyTree(){Clear();};
|
|
PolyTree& operator=(PolyTree &&src) {
|
|
AllNodes = std::move(src.AllNodes);
|
|
Contour = std::move(src.Contour);
|
|
Childs = std::move(src.Childs);
|
|
Parent = nullptr;
|
|
Index = src.Index;
|
|
m_IsOpen = src.m_IsOpen;
|
|
m_jointype = src.m_jointype;
|
|
m_endtype = src.m_endtype;
|
|
for (size_t i = 0; i < Childs.size(); ++ i)
|
|
Childs[i]->Parent = this;
|
|
return *this;
|
|
}
|
|
PolyNode* GetFirst() const { return Childs.empty() ? nullptr : Childs.front(); }
|
|
void Clear() { AllNodes.clear(); Childs.clear(); }
|
|
int Total() const;
|
|
private:
|
|
PolyTree(const PolyTree &src) = delete;
|
|
PolyTree& operator=(const PolyTree &src) = delete;
|
|
std::vector<PolyNode> AllNodes;
|
|
friend class Clipper; //to access AllNodes
|
|
};
|
|
|
|
double Area(const Path &poly);
|
|
inline bool Orientation(const Path &poly) { return Area(poly) >= 0; }
|
|
int PointInPolygon(const IntPoint &pt, const Path &path);
|
|
|
|
void SimplifyPolygon(const Path &in_poly, Paths &out_polys, PolyFillType fillType = pftEvenOdd);
|
|
void SimplifyPolygons(const Paths &in_polys, Paths &out_polys, PolyFillType fillType = pftEvenOdd);
|
|
void SimplifyPolygons(Paths &polys, PolyFillType fillType = pftEvenOdd);
|
|
|
|
void CleanPolygon(const Path& in_poly, Path& out_poly, double distance = 1.415);
|
|
void CleanPolygon(Path& poly, double distance = 1.415);
|
|
void CleanPolygons(const Paths& in_polys, Paths& out_polys, double distance = 1.415);
|
|
void CleanPolygons(Paths& polys, double distance = 1.415);
|
|
|
|
void MinkowskiSum(const Path& pattern, const Path& path, Paths& solution, bool pathIsClosed);
|
|
void MinkowskiSum(const Path& pattern, const Paths& paths, Paths& solution, bool pathIsClosed);
|
|
void MinkowskiDiff(const Path& poly1, const Path& poly2, Paths& solution);
|
|
|
|
void PolyTreeToPaths(const PolyTree& polytree, Paths& paths);
|
|
void ClosedPathsFromPolyTree(const PolyTree& polytree, Paths& paths);
|
|
void OpenPathsFromPolyTree(PolyTree& polytree, Paths& paths);
|
|
|
|
void ReversePath(Path& p);
|
|
void ReversePaths(Paths& p);
|
|
|
|
struct IntRect { cInt left; cInt top; cInt right; cInt bottom; };
|
|
|
|
//enums that are used internally ...
|
|
enum EdgeSide { esLeft = 1, esRight = 2};
|
|
|
|
// namespace Internal {
|
|
//forward declarations (for stuff used internally) ...
|
|
struct TEdge {
|
|
// Bottom point of this edge (with minimum Y).
|
|
IntPoint Bot;
|
|
// Current position.
|
|
IntPoint Curr;
|
|
// Top point of this edge (with maximum Y).
|
|
IntPoint Top;
|
|
// Vector from Bot to Top.
|
|
IntPoint Delta;
|
|
// Slope (dx/dy). For horiontal edges, the slope is set to HORIZONTAL (-1.0E+40).
|
|
double Dx;
|
|
PolyType PolyTyp;
|
|
EdgeSide Side;
|
|
// Winding number delta. 1 or -1 depending on winding direction, 0 for open paths and flat closed paths.
|
|
int WindDelta;
|
|
int WindCnt;
|
|
int WindCnt2; //winding count of the opposite polytype
|
|
int OutIdx;
|
|
// Next edge in the input path.
|
|
TEdge *Next;
|
|
// Previous edge in the input path.
|
|
TEdge *Prev;
|
|
// Next edge in the Local Minima List chain.
|
|
TEdge *NextInLML;
|
|
TEdge *NextInAEL;
|
|
TEdge *PrevInAEL;
|
|
TEdge *NextInSEL;
|
|
TEdge *PrevInSEL;
|
|
};
|
|
|
|
struct IntersectNode {
|
|
IntersectNode(TEdge *Edge1, TEdge *Edge2, IntPoint Pt) :
|
|
Edge1(Edge1), Edge2(Edge2), Pt(Pt) {}
|
|
TEdge *Edge1;
|
|
TEdge *Edge2;
|
|
IntPoint Pt;
|
|
};
|
|
|
|
struct LocalMinimum {
|
|
cInt Y;
|
|
TEdge *LeftBound;
|
|
TEdge *RightBound;
|
|
};
|
|
|
|
// Point of an output polygon.
|
|
// 36B on 64bit system without use_xyz.
|
|
struct OutPt {
|
|
// 4B
|
|
int Idx;
|
|
// 16B without use_xyz / 24B with use_xyz
|
|
IntPoint Pt;
|
|
// 4B on 32bit system, 8B on 64bit system
|
|
OutPt *Next;
|
|
// 4B on 32bit system, 8B on 64bit system
|
|
OutPt *Prev;
|
|
};
|
|
|
|
struct OutRec;
|
|
struct Join {
|
|
Join(OutPt *OutPt1, OutPt *OutPt2, IntPoint OffPt) :
|
|
OutPt1(OutPt1), OutPt2(OutPt2), OffPt(OffPt) {}
|
|
OutPt *OutPt1;
|
|
OutPt *OutPt2;
|
|
IntPoint OffPt;
|
|
};
|
|
// }; // namespace Internal
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
//ClipperBase is the ancestor to the Clipper class. It should not be
|
|
//instantiated directly. This class simply abstracts the conversion of sets of
|
|
//polygon coordinates into edge objects that are stored in a LocalMinima list.
|
|
class ClipperBase
|
|
{
|
|
public:
|
|
ClipperBase() : m_UseFullRange(false), m_HasOpenPaths(false) {}
|
|
~ClipperBase() { Clear(); }
|
|
bool AddPath(const Path &pg, PolyType PolyTyp, bool Closed);
|
|
bool AddPaths(const Paths &ppg, PolyType PolyTyp, bool Closed);
|
|
void Clear();
|
|
IntRect GetBounds();
|
|
// By default, when three or more vertices are collinear in input polygons (subject or clip), the Clipper object removes the 'inner' vertices before clipping.
|
|
// When enabled the PreserveCollinear property prevents this default behavior to allow these inner vertices to appear in the solution.
|
|
bool PreserveCollinear() const {return m_PreserveCollinear;};
|
|
void PreserveCollinear(bool value) {m_PreserveCollinear = value;};
|
|
protected:
|
|
bool AddPathInternal(const Path &pg, int highI, PolyType PolyTyp, bool Closed, TEdge* edges);
|
|
TEdge* AddBoundsToLML(TEdge *e, bool IsClosed);
|
|
void Reset();
|
|
TEdge* ProcessBound(TEdge* E, bool IsClockwise);
|
|
TEdge* DescendToMin(TEdge *&E);
|
|
void AscendToMax(TEdge *&E, bool Appending, bool IsClosed);
|
|
|
|
// Local minima (Y, left edge, right edge) sorted by ascending Y.
|
|
std::vector<LocalMinimum> m_MinimaList;
|
|
|
|
// True if the input polygons have abs values higher than loRange, but lower than hiRange.
|
|
// False if the input polygons have abs values lower or equal to loRange.
|
|
bool m_UseFullRange;
|
|
// A vector of edges per each input path.
|
|
std::vector<std::vector<TEdge>> m_edges;
|
|
// Don't remove intermediate vertices of a collinear sequence of points.
|
|
bool m_PreserveCollinear;
|
|
// Is any of the paths inserted by AddPath() or AddPaths() open?
|
|
bool m_HasOpenPaths;
|
|
};
|
|
//------------------------------------------------------------------------------
|
|
|
|
class Clipper : public ClipperBase
|
|
{
|
|
public:
|
|
Clipper(int initOptions = 0);
|
|
~Clipper() { Clear(); }
|
|
void Clear() { ClipperBase::Clear(); DisposeAllOutRecs(); }
|
|
bool Execute(ClipType clipType,
|
|
Paths &solution,
|
|
PolyFillType fillType = pftEvenOdd)
|
|
{ return Execute(clipType, solution, fillType, fillType); }
|
|
bool Execute(ClipType clipType,
|
|
Paths &solution,
|
|
PolyFillType subjFillType,
|
|
PolyFillType clipFillType);
|
|
bool Execute(ClipType clipType,
|
|
PolyTree &polytree,
|
|
PolyFillType fillType = pftEvenOdd)
|
|
{ return Execute(clipType, polytree, fillType, fillType); }
|
|
bool Execute(ClipType clipType,
|
|
PolyTree &polytree,
|
|
PolyFillType subjFillType,
|
|
PolyFillType clipFillType);
|
|
bool ReverseSolution() const { return m_ReverseOutput; };
|
|
void ReverseSolution(bool value) {m_ReverseOutput = value;};
|
|
bool StrictlySimple() const {return m_StrictSimple;};
|
|
void StrictlySimple(bool value) {m_StrictSimple = value;};
|
|
//set the callback function for z value filling on intersections (otherwise Z is 0)
|
|
#ifdef use_xyz
|
|
void ZFillFunction(ZFillCallback zFillFunc) { m_ZFill = zFillFunc; }
|
|
#endif
|
|
protected:
|
|
void Reset();
|
|
virtual bool ExecuteInternal();
|
|
private:
|
|
|
|
// Output polygons.
|
|
std::vector<OutRec*> m_PolyOuts;
|
|
// Output points, allocated by a continuous sets of m_OutPtsChunkSize.
|
|
std::vector<OutPt*> m_OutPts;
|
|
// List of free output points, to be used before taking a point from m_OutPts or allocating a new chunk.
|
|
OutPt *m_OutPtsFree;
|
|
size_t m_OutPtsChunkSize;
|
|
size_t m_OutPtsChunkLast;
|
|
|
|
std::vector<Join> m_Joins;
|
|
std::vector<Join> m_GhostJoins;
|
|
std::vector<IntersectNode> m_IntersectList;
|
|
ClipType m_ClipType;
|
|
// A priority queue (a binary heap) of Y coordinates.
|
|
std::priority_queue<cInt> m_Scanbeam;
|
|
// Maxima are collected by ProcessEdgesAtTopOfScanbeam(), consumed by ProcessHorizontal().
|
|
std::vector<cInt> m_Maxima;
|
|
TEdge *m_ActiveEdges;
|
|
TEdge *m_SortedEdges;
|
|
PolyFillType m_ClipFillType;
|
|
PolyFillType m_SubjFillType;
|
|
bool m_ReverseOutput;
|
|
// Does the result go to a PolyTree or Paths?
|
|
bool m_UsingPolyTree;
|
|
bool m_StrictSimple;
|
|
#ifdef use_xyz
|
|
ZFillCallback m_ZFill; //custom callback
|
|
#endif
|
|
void SetWindingCount(TEdge& edge) const;
|
|
bool IsEvenOddFillType(const TEdge& edge) const
|
|
{ return (edge.PolyTyp == ptSubject) ? m_SubjFillType == pftEvenOdd : m_ClipFillType == pftEvenOdd; }
|
|
bool IsEvenOddAltFillType(const TEdge& edge) const
|
|
{ return (edge.PolyTyp == ptSubject) ? m_ClipFillType == pftEvenOdd : m_SubjFillType == pftEvenOdd; }
|
|
void InsertLocalMinimaIntoAEL(const cInt botY);
|
|
void InsertEdgeIntoAEL(TEdge *edge, TEdge* startEdge);
|
|
void AddEdgeToSEL(TEdge *edge);
|
|
void CopyAELToSEL();
|
|
void DeleteFromSEL(TEdge *e);
|
|
void DeleteFromAEL(TEdge *e);
|
|
void UpdateEdgeIntoAEL(TEdge *&e);
|
|
void SwapPositionsInSEL(TEdge *edge1, TEdge *edge2);
|
|
bool IsContributing(const TEdge& edge) const;
|
|
bool IsTopHorz(const cInt XPos);
|
|
void SwapPositionsInAEL(TEdge *edge1, TEdge *edge2);
|
|
void DoMaxima(TEdge *e);
|
|
void ProcessHorizontals();
|
|
void ProcessHorizontal(TEdge *horzEdge);
|
|
void AddLocalMaxPoly(TEdge *e1, TEdge *e2, const IntPoint &pt);
|
|
OutPt* AddLocalMinPoly(TEdge *e1, TEdge *e2, const IntPoint &pt);
|
|
OutRec* GetOutRec(int idx);
|
|
void AppendPolygon(TEdge *e1, TEdge *e2) const;
|
|
void IntersectEdges(TEdge *e1, TEdge *e2, IntPoint &pt);
|
|
OutRec* CreateOutRec();
|
|
OutPt* AddOutPt(TEdge *e, const IntPoint &pt);
|
|
OutPt* GetLastOutPt(TEdge *e);
|
|
OutPt* AllocateOutPt();
|
|
OutPt* DupOutPt(OutPt* outPt, bool InsertAfter);
|
|
// Add the point to a list of free points.
|
|
void DisposeOutPt(OutPt *pt) { pt->Next = m_OutPtsFree; m_OutPtsFree = pt; }
|
|
void DisposeOutPts(OutPt*& pp) { if (pp != nullptr) { pp->Prev->Next = m_OutPtsFree; m_OutPtsFree = pp; } }
|
|
void DisposeAllOutRecs();
|
|
bool ProcessIntersections(const cInt topY);
|
|
void BuildIntersectList(const cInt topY);
|
|
void ProcessEdgesAtTopOfScanbeam(const cInt topY);
|
|
void BuildResult(Paths& polys);
|
|
void BuildResult2(PolyTree& polytree);
|
|
void SetHoleState(TEdge *e, OutRec *outrec) const;
|
|
bool FixupIntersectionOrder();
|
|
void FixupOutPolygon(OutRec &outrec);
|
|
void FixupOutPolyline(OutRec &outrec);
|
|
bool FindOwnerFromSplitRecs(OutRec &outRec, OutRec *&currOrfl);
|
|
void FixHoleLinkage(OutRec &outrec);
|
|
bool JoinPoints(Join *j, OutRec* outRec1, OutRec* outRec2);
|
|
bool JoinHorz(OutPt* op1, OutPt* op1b, OutPt* op2, OutPt* op2b, const IntPoint &Pt, bool DiscardLeft);
|
|
void JoinCommonEdges();
|
|
void DoSimplePolygons();
|
|
void FixupFirstLefts1(OutRec* OldOutRec, OutRec* NewOutRec) const;
|
|
void FixupFirstLefts2(OutRec* OldOutRec, OutRec* NewOutRec) const;
|
|
#ifdef use_xyz
|
|
void SetZ(IntPoint& pt, TEdge& e1, TEdge& e2);
|
|
#endif
|
|
};
|
|
//------------------------------------------------------------------------------
|
|
|
|
class ClipperOffset
|
|
{
|
|
public:
|
|
ClipperOffset(double miterLimit = 2.0, double roundPrecision = 0.25, double shortestEdgeLength = 0.) :
|
|
MiterLimit(miterLimit), ArcTolerance(roundPrecision), ShortestEdgeLength(shortestEdgeLength), m_lowest(-1, 0) {}
|
|
~ClipperOffset() { Clear(); }
|
|
void AddPath(const Path& path, JoinType joinType, EndType endType);
|
|
void AddPaths(const Paths& paths, JoinType joinType, EndType endType);
|
|
void Execute(Paths& solution, double delta);
|
|
void Execute(PolyTree& solution, double delta);
|
|
void Clear();
|
|
double MiterLimit;
|
|
double ArcTolerance;
|
|
double ShortestEdgeLength;
|
|
private:
|
|
Paths m_destPolys;
|
|
Path m_srcPoly;
|
|
Path m_destPoly;
|
|
std::vector<DoublePoint> m_normals;
|
|
double m_delta, m_sinA, m_sin, m_cos;
|
|
double m_miterLim, m_StepsPerRad;
|
|
IntPoint m_lowest;
|
|
PolyNode m_polyNodes;
|
|
|
|
void FixOrientations();
|
|
void DoOffset(double delta);
|
|
void OffsetPoint(int j, int& k, JoinType jointype);
|
|
void DoSquare(int j, int k);
|
|
void DoMiter(int j, int k, double r);
|
|
void DoRound(int j, int k);
|
|
};
|
|
//------------------------------------------------------------------------------
|
|
|
|
class clipperException : public std::exception
|
|
{
|
|
public:
|
|
clipperException(const char* description): m_descr(description) {}
|
|
virtual ~clipperException() throw() {}
|
|
virtual const char* what() const throw() {return m_descr.c_str();}
|
|
private:
|
|
std::string m_descr;
|
|
};
|
|
//------------------------------------------------------------------------------
|
|
|
|
} //ClipperLib namespace
|
|
|
|
#endif //clipper_hpp
|
|
|
|
|