PrusaSlicer-NonPlainar/xs/src/libslic3r/PlaceholderParser.cpp
bubnikv 708f416c84 PlaceholderParser extended with {if}/{elsif}{else} blocks and
+ - * / == != <> numeric expressions.
2017-11-26 09:59:14 +01:00

872 lines
40 KiB
C++

#include "PlaceholderParser.hpp"
#include <cstring>
#include <ctime>
#include <iomanip>
#include <sstream>
#ifdef _MSC_VER
#include <stdlib.h> // provides **_environ
#else
#include <unistd.h> // provides **environ
#endif
#ifdef __APPLE__
#include <crt_externs.h>
#undef environ
#define environ (*_NSGetEnviron())
#else
#ifdef _MSC_VER
#define environ _environ
#else
extern char **environ;
#endif
#endif
#include <boost/algorithm/string.hpp>
// Spirit v2.5 allows you to suppress automatic generation
// of predefined terminals to speed up complation. With
// BOOST_SPIRIT_NO_PREDEFINED_TERMINALS defined, you are
// responsible in creating instances of the terminals that
// you need (e.g. see qi::uint_type uint_ below).
#define BOOST_SPIRIT_NO_PREDEFINED_TERMINALS
#define BOOST_RESULT_OF_USE_DECLTYPE
#define BOOST_SPIRIT_USE_PHOENIX_V3
#include <boost/config/warning_disable.hpp>
#include <boost/lexical_cast.hpp>
#include <boost/spirit/include/qi.hpp>
#include <boost/spirit/include/qi_lit.hpp>
#include <boost/spirit/include/phoenix_core.hpp>
#include <boost/spirit/include/phoenix_operator.hpp>
#include <boost/spirit/include/phoenix_fusion.hpp>
#include <boost/spirit/include/phoenix_stl.hpp>
#include <boost/spirit/include/phoenix_object.hpp>
#include <boost/fusion/include/adapt_struct.hpp>
#include <boost/spirit/repository/include/qi_iter_pos.hpp>
#include <boost/variant/recursive_variant.hpp>
#include <boost/phoenix/bind/bind_function.hpp>
#include <iostream>
#include <string>
namespace Slic3r {
PlaceholderParser::PlaceholderParser()
{
this->set("version", SLIC3R_VERSION);
this->apply_env_variables();
this->update_timestamp();
}
void PlaceholderParser::update_timestamp()
{
time_t rawtime;
time(&rawtime);
struct tm* timeinfo = localtime(&rawtime);
{
std::ostringstream ss;
ss << (1900 + timeinfo->tm_year);
ss << std::setw(2) << std::setfill('0') << (1 + timeinfo->tm_mon);
ss << std::setw(2) << std::setfill('0') << timeinfo->tm_mday;
ss << "-";
ss << std::setw(2) << std::setfill('0') << timeinfo->tm_hour;
ss << std::setw(2) << std::setfill('0') << timeinfo->tm_min;
ss << std::setw(2) << std::setfill('0') << timeinfo->tm_sec;
this->set("timestamp", ss.str());
}
this->set("year", 1900 + timeinfo->tm_year);
this->set("month", 1 + timeinfo->tm_mon);
this->set("day", timeinfo->tm_mday);
this->set("hour", timeinfo->tm_hour);
this->set("minute", timeinfo->tm_min);
this->set("second", timeinfo->tm_sec);
}
// Scalar configuration values are stored into m_single,
// vector configuration values are stored into m_multiple.
// All vector configuration values stored into the PlaceholderParser
// are expected to be addressed by the extruder ID, therefore
// if a vector configuration value is addressed without an index,
// a current extruder ID is used.
void PlaceholderParser::apply_config(const DynamicPrintConfig &rhs)
{
const ConfigDef *def = rhs.def();
for (const t_config_option_key &opt_key : rhs.keys()) {
const ConfigOptionDef *opt_def = def->get(opt_key);
if ((opt_def->multiline && boost::ends_with(opt_key, "_gcode")) || opt_key == "post_process")
continue;
const ConfigOption *opt = rhs.option(opt_key);
// Store a copy of the config option.
// Convert FloatOrPercent values to floats first.
//FIXME there are some ratio_over chains, which end with empty ratio_with.
// For example, XXX_extrusion_width parameters are not handled by get_abs_value correctly.
this->set(opt_key, (opt->type() == coFloatOrPercent) ?
new ConfigOptionFloat(rhs.get_abs_value(opt_key)) :
opt->clone());
}
}
void PlaceholderParser::apply_env_variables()
{
for (char** env = environ; *env; ++ env) {
if (strncmp(*env, "SLIC3R_", 7) == 0) {
std::stringstream ss(*env);
std::string key, value;
std::getline(ss, key, '=');
ss >> value;
this->set(key, value);
}
}
}
namespace spirit = boost::spirit;
namespace qi = boost::spirit::qi;
namespace px = boost::phoenix;
namespace client
{
template<typename Iterator>
struct OptWithPos {
OptWithPos() {}
OptWithPos(ConfigOptionConstPtr opt, boost::iterator_range<Iterator> it_range) : opt(opt), it_range(it_range) {}
ConfigOptionConstPtr opt = nullptr;
boost::iterator_range<Iterator> it_range;
};
template<typename ITERATOR>
std::ostream& operator<<(std::ostream& os, OptWithPos<ITERATOR> const& opt)
{
os << std::string(opt.it_range.begin(), opt.it_range.end());
return os;
}
template<typename Iterator>
struct expr
{
expr() : type(TYPE_EMPTY) { data.s = nullptr; }
explicit expr(bool b) : type(TYPE_BOOL) { data.b = b; }
explicit expr(bool b, const Iterator &it_begin, const Iterator &it_end) : type(TYPE_BOOL), it_range(it_begin, it_end) { data.b = b; }
explicit expr(int i) : type(TYPE_INT) { data.i = i; }
explicit expr(int i, const Iterator &it_begin, const Iterator &it_end) : type(TYPE_INT), it_range(it_begin, it_end) { data.i = i; }
explicit expr(double d) : type(TYPE_DOUBLE) { data.d = d; }
explicit expr(double d, const Iterator &it_begin, const Iterator &it_end) : type(TYPE_DOUBLE), it_range(it_begin, it_end) { data.d = d; }
explicit expr(const char *s) : type(TYPE_STRING) { data.s = new std::string(s); }
explicit expr(const std::string &s) : type(TYPE_STRING) { data.s = new std::string(s); }
explicit expr(const std::string &s, const Iterator &it_begin, const Iterator &it_end) :
type(TYPE_STRING), it_range(it_begin, it_end) { data.s = new std::string(s); }
expr(const expr &rhs) : type(rhs.type) { data.s = (rhs.type == TYPE_STRING) ? new std::string(*rhs.data.s) : rhs.data.s; }
explicit expr(expr &&rhs) : type(rhs.type) { data.s = rhs.data.s; rhs.data.s = nullptr; rhs.type = TYPE_EMPTY; }
explicit expr(expr &&rhs, const Iterator &it_begin, const Iterator &it_end) : type(rhs.type), it_range(it_begin, it_end)
{ data.s = rhs.data.s; rhs.data.s = nullptr; rhs.type = TYPE_EMPTY; }
~expr() { this->reset(); }
expr &operator=(const expr &rhs)
{
type = rhs.type;
data.s = (type == TYPE_STRING) ? new std::string(*rhs.data.s) : rhs.data.s;
return *this;
}
expr &operator=(expr &&rhs)
{
type = rhs.type;
data.s = rhs.data.s;
rhs.data.s = nullptr;
rhs.type = TYPE_EMPTY;
return *this;
}
void reset()
{
if (this->type == TYPE_STRING)
delete data.s;
data.s = nullptr;
this->type = TYPE_EMPTY;
}
bool& b() { return data.b; }
bool b() const { return data.b; }
void set_b(bool v) { this->reset(); this->data.b = v; this->type = TYPE_BOOL; }
int& i() { return data.i; }
int i() const { return data.i; }
void set_i(int v) { this->reset(); this->data.i = v; this->type = TYPE_INT; }
int as_i() const { return (this->type == TYPE_INT) ? this->i() : int(this->d()); }
double& d() { return data.d; }
double d() const { return data.d; }
void set_d(double v) { this->reset(); this->data.d = v; this->type = TYPE_DOUBLE; }
double as_d() const { return (this->type == TYPE_DOUBLE) ? this->d() : double(this->i()); }
std::string& s() { return *data.s; }
const std::string& s() const { return *data.s; }
void set_s(const std::string &s) { this->reset(); this->data.s = new std::string(s); this->type = TYPE_STRING; }
void set_s(std::string &&s) { this->reset(); this->data.s = new std::string(std::move(s)); this->type = TYPE_STRING; }
std::string to_string() const
{
std::string out;
switch (type) {
case TYPE_BOOL: out = boost::to_string(data.b); break;
case TYPE_INT: out = boost::to_string(data.i); break;
case TYPE_DOUBLE: out = boost::to_string(data.d); break;
case TYPE_STRING: out = *data.s; break;
}
return out;
}
union {
bool b;
int i;
double d;
std::string *s;
} data;
enum Type {
TYPE_EMPTY = 0,
TYPE_BOOL,
TYPE_INT,
TYPE_DOUBLE,
TYPE_STRING,
};
Type type;
// Range of input iterators covering this expression.
// Used for throwing parse exceptions.
boost::iterator_range<Iterator> it_range;
expr unary_minus(Iterator &start_pos) const
{
switch (this->type) {
case TYPE_INT :
return expr<Iterator>(- this->i(), start_pos, this->it_range.end());
case TYPE_DOUBLE:
return expr<Iterator>(- this->d(), start_pos, this->it_range.end());
default:
this->throw_exception("Cannot apply unary minus operator.");
}
assert(false);
// Suppress compiler warnings.
return expr();
}
expr &operator+=(const expr &rhs)
{
const char *err_msg = "Cannot multiply with non-numeric type.";
this->throw_if_not_numeric(err_msg);
rhs.throw_if_not_numeric(err_msg);
if (this->type == TYPE_DOUBLE || rhs.type == TYPE_DOUBLE) {
double d = this->as_d() + rhs.as_d();
this->data.d = d;
this->type = TYPE_DOUBLE;
} else
this->data.i += rhs.i();
this->it_range = boost::iterator_range<Iterator>(this->it_range.begin(), rhs.it_range.end());
return *this;
}
expr &operator-=(const expr &rhs)
{
const char *err_msg = "Cannot multiply with non-numeric type.";
this->throw_if_not_numeric(err_msg);
rhs.throw_if_not_numeric(err_msg);
if (this->type == TYPE_DOUBLE || rhs.type == TYPE_DOUBLE) {
double d = this->as_d() - rhs.as_d();
this->data.d = d;
this->type = TYPE_DOUBLE;
} else
this->data.i -= rhs.i();
this->it_range = boost::iterator_range<Iterator>(this->it_range.begin(), rhs.it_range.end());
return *this;
}
expr &operator*=(const expr &rhs)
{
const char *err_msg = "Cannot multiply with non-numeric type.";
this->throw_if_not_numeric(err_msg);
rhs.throw_if_not_numeric(err_msg);
if (this->type == TYPE_DOUBLE || rhs.type == TYPE_DOUBLE) {
double d = this->as_d() * rhs.as_d();
this->data.d = d;
this->type = TYPE_DOUBLE;
} else
this->data.i *= rhs.i();
this->it_range = boost::iterator_range<Iterator>(this->it_range.begin(), rhs.it_range.end());
return *this;
}
expr &operator/=(const expr &rhs)
{
this->throw_if_not_numeric("Cannot divide a non-numeric type.");
rhs.throw_if_not_numeric("Cannot divide with a non-numeric type.");
if ((this->type == TYPE_INT) ? (rhs.i() == 0) : (rhs.d() == 0.))
rhs.throw_exception("Division by zero");
if (this->type == TYPE_DOUBLE || rhs.type == TYPE_DOUBLE) {
double d = this->as_d() / rhs.as_d();
this->data.d = d;
this->type = TYPE_DOUBLE;
} else
this->data.i /= rhs.i();
this->it_range = boost::iterator_range<Iterator>(this->it_range.begin(), rhs.it_range.end());
return *this;
}
static void to_string2(expr &self, std::string &out)
{
out = self.to_string();
}
static void evaluate_boolean(expr &self, bool &out)
{
if (self.type != TYPE_BOOL)
self.throw_exception("Not a boolean expression");
out = self.b();
}
// Is lhs==rhs? Store the result into lhs.
static void compare_op(expr &lhs, expr &rhs, char op)
{
bool value = false;
if ((lhs.type == TYPE_INT || lhs.type == TYPE_DOUBLE) &&
(rhs.type == TYPE_INT || rhs.type == TYPE_DOUBLE)) {
// Both types are numeric.
value = (lhs.type == TYPE_DOUBLE || rhs.type == TYPE_DOUBLE) ?
(lhs.as_d() == rhs.as_d()) : (lhs.i() == rhs.i());
} else if (lhs.type == TYPE_BOOL && rhs.type == TYPE_BOOL) {
// Both type are bool.
value = lhs.b() == rhs.b();
} else if (lhs.type == TYPE_STRING || rhs.type == TYPE_STRING) {
// One type is string, the other could be converted to string.
value = lhs.to_string() == rhs.to_string();
} else {
boost::throw_exception(qi::expectation_failure<Iterator>(
lhs.it_range.begin(), rhs.it_range.end(), spirit::info("Cannot compare the types.")));
}
lhs.type = TYPE_BOOL;
lhs.data.b = (op == '=') ? value : !value;
}
static void equal(expr &lhs, expr &rhs) { compare_op(lhs, rhs, '='); }
static void not_equal(expr &lhs, expr &rhs) { compare_op(lhs, rhs, '!'); }
static void set_if(bool &cond, bool &not_yet_consumed, std::string &str_in, std::string &str_out)
{
if (cond && not_yet_consumed) {
str_out = str_in;
not_yet_consumed = false;
}
}
void throw_exception(const char *message) const
{
boost::throw_exception(qi::expectation_failure<Iterator>(
this->it_range.begin(), this->it_range.end(), spirit::info(message)));
}
void throw_if_not_numeric(const char *message) const
{
if (this->type != TYPE_INT && this->type != TYPE_DOUBLE)
this->throw_exception(message);
}
};
template<typename ITERATOR>
std::ostream& operator<<(std::ostream &os, const expr<ITERATOR> &expression)
{
typedef expr<ITERATOR> Expr;
os << std::string(expression.it_range.begin(), expression.it_range.end()) << ' - ';
switch (expression.type) {
case Expr::TYPE_EMPTY: os << "empty"; break;
case Expr::TYPE_BOOL: os << "bool (" << expression.b() << ")"; break;
case Expr::TYPE_INT: os << "int (" << expression.i() << ")"; break;
case Expr::TYPE_DOUBLE: os << "double (" << expression.d() << ")"; break;
case Expr::TYPE_STRING: os << "string (" << expression.s() << ")"; break;
default: os << "unknown";
};
return os;
}
struct MyContext {
const PlaceholderParser *pp = nullptr;
const DynamicConfig *config_override = nullptr;
const size_t current_extruder_id = 0;
const ConfigOption* resolve_symbol(const std::string &opt_key) const
{
const ConfigOption *opt = nullptr;
if (config_override != nullptr)
opt = config_override->option(opt_key);
if (opt == nullptr)
opt = pp->option(opt_key);
return opt;
}
template <typename Iterator>
static void legacy_variable_expansion(
const MyContext *ctx,
boost::iterator_range<Iterator> &opt_key,
std::string &output)
{
std::string opt_key_str(opt_key.begin(), opt_key.end());
const ConfigOption *opt = ctx->resolve_symbol(opt_key_str);
size_t idx = ctx->current_extruder_id;
if (opt == nullptr) {
// Check whether this is a legacy vector indexing.
idx = opt_key_str.rfind('_');
if (idx != std::string::npos) {
opt = ctx->resolve_symbol(opt_key_str.substr(0, idx));
if (opt != nullptr) {
if (! opt->is_vector())
boost::throw_exception(qi::expectation_failure<Iterator>(
opt_key.begin(), opt_key.end(), spirit::info("Trying to index a scalar variable")));
char *endptr = nullptr;
idx = strtol(opt_key_str.c_str() + idx + 1, &endptr, 10);
if (endptr == nullptr || *endptr != 0)
boost::throw_exception(qi::expectation_failure<Iterator>(
opt_key.begin() + idx + 1, opt_key.end(), spirit::info("Invalid vector index")));
}
}
}
if (opt == nullptr)
boost::throw_exception(qi::expectation_failure<Iterator>(
opt_key.begin(), opt_key.end(), spirit::info("Variable does not exist")));
if (opt->is_scalar())
output = opt->serialize();
else {
const ConfigOptionVectorBase *vec = static_cast<const ConfigOptionVectorBase*>(opt);
if (vec->empty())
boost::throw_exception(qi::expectation_failure<Iterator>(
opt_key.begin(), opt_key.end(), spirit::info("Indexing an empty vector variable")));
output = vec->vserialize()[(idx >= vec->size()) ? 0 : idx];
}
}
template <typename Iterator>
static void legacy_variable_expansion2(
const MyContext *ctx,
boost::iterator_range<Iterator> &opt_key,
boost::iterator_range<Iterator> &opt_vector_index,
std::string &output)
{
std::string opt_key_str(opt_key.begin(), opt_key.end());
const ConfigOption *opt = ctx->resolve_symbol(opt_key_str);
if (opt == nullptr) {
// Check whether the opt_key ends with '_'.
if (opt_key_str.back() == '_')
opt_key_str.resize(opt_key_str.size() - 1);
opt = ctx->resolve_symbol(opt_key_str);
}
if (! opt->is_vector())
boost::throw_exception(qi::expectation_failure<Iterator>(
opt_key.begin(), opt_key.end(), spirit::info("Trying to index a scalar variable")));
const ConfigOptionVectorBase *vec = static_cast<const ConfigOptionVectorBase*>(opt);
if (vec->empty())
boost::throw_exception(qi::expectation_failure<Iterator>(
opt_key.begin(), opt_key.end(), spirit::info("Indexing an empty vector variable")));
const ConfigOption *opt_index = ctx->resolve_symbol(std::string(opt_vector_index.begin(), opt_vector_index.end()));
if (opt_index == nullptr)
boost::throw_exception(qi::expectation_failure<Iterator>(
opt_key.begin(), opt_key.end(), spirit::info("Variable does not exist")));
if (opt_index->type() != coInt)
boost::throw_exception(qi::expectation_failure<Iterator>(
opt_key.begin(), opt_key.end(), spirit::info("Indexing variable has to be integer")));
int idx = opt_index->getInt();
if (idx < 0)
boost::throw_exception(qi::expectation_failure<Iterator>(
opt_key.begin(), opt_key.end(), spirit::info("Negative vector index")));
output = vec->vserialize()[(idx >= (int)vec->size()) ? 0 : idx];
}
template <typename Iterator>
static void resolve_variable(
const MyContext *ctx,
boost::iterator_range<Iterator> &opt_key,
OptWithPos<Iterator> &output)
{
const ConfigOption *opt = ctx->resolve_symbol(std::string(opt_key.begin(), opt_key.end()));
if (opt == nullptr)
boost::throw_exception(qi::expectation_failure<Iterator>(
opt_key.begin(), opt_key.end(), spirit::info("Not a variable name")));
output.opt = opt;
output.it_range = opt_key;
}
template <typename Iterator>
static void scalar_variable_reference(
const MyContext *ctx,
OptWithPos<Iterator> &opt,
expr<Iterator> &output)
{
if (opt.opt->is_vector())
boost::throw_exception(qi::expectation_failure<Iterator>(
opt.it_range.begin(), opt.it_range.end(), spirit::info("Referencing a scalar variable in a vector context")));
switch (opt.opt->type()) {
case coFloat: output.set_d(opt.opt->getFloat()); break;
case coInt: output.set_i(opt.opt->getInt()); break;
case coString: output.set_s(static_cast<const ConfigOptionString*>(opt.opt)->value); break;
case coPercent: output.set_d(opt.opt->getFloat()); break;
case coPoint: output.set_s(opt.opt->serialize()); break;
case coBool: output.set_b(opt.opt->getBool()); break;
case coFloatOrPercent:
boost::throw_exception(qi::expectation_failure<Iterator>(
opt.it_range.begin(), opt.it_range.end(), spirit::info("FloatOrPercent variables are not supported")));
default:
boost::throw_exception(qi::expectation_failure<Iterator>(
opt.it_range.begin(), opt.it_range.end(), spirit::info("Unknown scalar variable type")));
}
output.it_range = opt.it_range;
}
template <typename Iterator>
static void vector_variable_reference(
const MyContext *ctx,
OptWithPos<Iterator> &opt,
int &index,
Iterator it_end,
expr<Iterator> &output)
{
if (opt.opt->is_scalar())
boost::throw_exception(qi::expectation_failure<Iterator>(
opt.it_range.begin(), opt.it_range.end(), spirit::info("Referencing a vector variable in a scalar context")));
const ConfigOptionVectorBase *vec = static_cast<const ConfigOptionVectorBase*>(opt.opt);
if (vec->empty())
boost::throw_exception(qi::expectation_failure<Iterator>(
opt.it_range.begin(), opt.it_range.end(), spirit::info("Indexing an empty vector variable")));
size_t idx = (index < 0) ? 0 : (index >= int(vec->size())) ? 0 : size_t(index);
switch (opt.opt->type()) {
case coFloats: output.set_d(static_cast<const ConfigOptionFloats *>(opt.opt)->values[idx]); break;
case coInts: output.set_i(static_cast<const ConfigOptionInts *>(opt.opt)->values[idx]); break;
case coStrings: output.set_s(static_cast<const ConfigOptionStrings *>(opt.opt)->values[idx]); break;
case coPercents: output.set_d(static_cast<const ConfigOptionPercents*>(opt.opt)->values[idx]); break;
case coPoints: output.set_s(static_cast<const ConfigOptionPoints *>(opt.opt)->values[idx].dump_perl()); break;
case coBools: output.set_b(static_cast<const ConfigOptionBools *>(opt.opt)->values[idx] != 0); break;
default:
boost::throw_exception(qi::expectation_failure<Iterator>(
opt.it_range.begin(), opt.it_range.end(), spirit::info("Unknown vector variable type")));
}
output.it_range = boost::iterator_range<Iterator>(opt.it_range.begin(), it_end);
}
// Verify that the expression returns an integer, which may be used
// to address a vector.
template <typename Iterator>
static void evaluate_index(expr<Iterator> &expr_index, int &output)
{
if (expr_index.type != expr<Iterator>::TYPE_INT)
expr_index.throw_exception("Non-integer index is not allowed to address a vector variable.");
output = expr_index.i();
}
};
// For debugging the boost::spirit parsers. Print out the string enclosed in it_range.
template<typename Iterator>
std::ostream& operator<<(std::ostream& os, const boost::iterator_range<Iterator> &it_range)
{
os << std::string(it_range.begin(), it_range.end());
return os;
}
///////////////////////////////////////////////////////////////////////////
// Our calculator grammar
///////////////////////////////////////////////////////////////////////////
template <typename Iterator>
struct calculator : qi::grammar<Iterator, std::string(const MyContext*), spirit::ascii::space_type>
{
calculator() : calculator::base_type(start)
{
qi::alpha_type alpha;
qi::alnum_type alnum;
qi::eol_type eol;
qi::eoi_type eoi;
qi::eps_type eps;
qi::omit_type omit;
qi::raw_type raw;
qi::lit_type lit;
qi::lexeme_type lexeme;
qi::skip_type skip;
qi::no_skip_type no_skip;
qi::uint_type uint_;
qi::real_parser<double, qi::strict_real_policies<double>> strict_double;
spirit::ascii::char_type char_;
spirit::bool_type bool_;
spirit::int_type int_;
spirit::double_type double_;
spirit::ascii::string_type string;
spirit::repository::qi::iter_pos_type iter_pos;
using namespace qi::labels;
qi::_val_type _val;
qi::_1_type _1;
qi::_2_type _2;
qi::_a_type _a;
qi::_b_type _b;
qi::_r1_type _r1;
// Starting symbol of the grammer.
// The leading eps is required by the "expectation point" operator ">".
// Without it, some of the errors would not trigger the error handler.
start = eps > text_block(_r1);
start.name("start");
text_block = *(
text [_val+=_1]
// Allow back tracking after '{' in case of a text_block embedded inside a condition.
// In that case the inner-most {else} wins and the {if}/{elsif}/{else} shall be paired.
// {elsif}/{else} without an {if} will be allowed to back track from the embedded text_block.
| lit('{') >> macro(_r1) [_val+=_1] > '}'
| lit('[') > legacy_variable_expansion(_r1) [_val+=_1] > ']'
);
text_block.name("text_block");
// Free-form text up to a first brace, including spaces and newlines.
// The free-form text will be inserted into the processed text without a modification.
text = raw[no_skip[+(char_ - '[' - '{')]];
text.name("text");
// New style of macro expansion.
// The macro expansion may contain numeric or string expressions, ifs and cases.
macro =
string("if") > if_else_output(_r1) [_val = _1]
| string("switch") > switch_output(_r1) [_val = _1]
| expression(_r1) [ px::bind(&expr<Iterator>::to_string2, _1, _val) ];
macro.name("macro");
// An if expression enclosed in {} (the outmost {} are already parsed by the caller).
if_else_output =
eps[_b=true] >
bool_expr_eval(_r1)[_a=_1] > '}' >
text_block(_r1)[px::bind(&expr<Iterator>::set_if, _a, _b, _1, _val)] > '{' >
*("elsif" > bool_expr_eval(_r1)[_a=_1] > '}' >
text_block(_r1)[px::bind(&expr<Iterator>::set_if, _a, _b, _1, _val)] > '{') >
-("else" > lit('}') >
text_block(_r1)[px::bind(&expr<Iterator>::set_if, _b, _b, _1, _val)] > '{') >
"endif";
if_else_output.name("if_else_output");
// A switch expression enclosed in {} (the outmost {} are already parsed by the caller).
/*
switch_output =
eps[_b=true] >
omit[expr(_r1)[_a=_1]] > '}' > text_block(_r1)[px::bind(&expr<Iterator>::set_if_equal, _a, _b, _1, _val)] > '{' >
*("elsif" > omit[bool_expr_eval(_r1)[_a=_1]] > '}' > text_block(_r1)[px::bind(&expr<Iterator>::set_if, _a, _b, _1, _val)]) >>
-("else" > '}' >> text_block(_r1)[px::bind(&expr<Iterator>::set_if, _b, _b, _1, _val)]) >
"endif";
*/
// Legacy variable expansion of the original Slic3r, in the form of [scalar_variable] or [vector_variable_index].
legacy_variable_expansion =
(identifier >> &lit(']'))
[ px::bind(&MyContext::legacy_variable_expansion<Iterator>, _r1, _1, _val) ]
| (identifier > lit('[') > identifier > ']')
[ px::bind(&MyContext::legacy_variable_expansion2<Iterator>, _r1, _1, _2, _val) ]
;
legacy_variable_expansion.name("legacy_variable_expansion");
identifier =
! keywords >>
raw[lexeme[(alpha | '_') >> *(alnum | '_')]];
identifier.name("identifier");
bool_expr =
expression(_r1) [_val = _1]
>> *( ("==" > expression(_r1) ) [px::bind(&expr<Iterator>::equal, _val, _1)]
| ("!=" > expression(_r1) ) [px::bind(&expr<Iterator>::not_equal, _val, _1)]
| ("<>" > expression(_r1) ) [px::bind(&expr<Iterator>::not_equal, _val, _1)]
);
bool_expr.name("bool expression");
// Evaluate a boolean expression stored as expr into a boolean value.
// Throw if the bool_expr does not produce a expr of boolean type.
bool_expr_eval = bool_expr(_r1) [ px::bind(&expr<Iterator>::evaluate_boolean, _1, _val) ];
bool_expr_eval.name("bool_expr_eval");
expression =
term(_r1) [_val = _1]
>> *( (lit('+') > term(_r1) ) [_val += _1]
| (lit('-') > term(_r1) ) [_val -= _1]
);
expression.name("expression");
term =
factor(_r1) [_val = _1]
>> *( (lit('*') > factor(_r1) ) [_val *= _1]
| (lit('/') > factor(_r1) ) [_val /= _1]
);
term.name("term");
struct FactorActions {
static void set_start_pos(Iterator &start_pos, expr<Iterator> &out)
{ out.it_range = boost::iterator_range<Iterator>(start_pos, start_pos); }
static void int_(int &value, Iterator &end_pos, expr<Iterator> &out)
{ out = expr<Iterator>(value, out.it_range.begin(), end_pos); }
static void double_(double &value, Iterator &end_pos, expr<Iterator> &out)
{ out = expr<Iterator>(value, out.it_range.begin(), end_pos); }
static void bool_(bool &value, Iterator &end_pos, expr<Iterator> &out)
{ out = expr<Iterator>(value, out.it_range.begin(), end_pos); }
static void string_(boost::iterator_range<Iterator> &it_range, expr<Iterator> &out)
{ out = expr<Iterator>(std::string(it_range.begin() + 1, it_range.end() - 1), it_range.begin(), it_range.end()); }
static void expr_(expr<Iterator> &value, Iterator &end_pos, expr<Iterator> &out)
{ out = expr<Iterator>(std::move(value), out.it_range.begin(), end_pos); }
static void minus_(expr<Iterator> &value, expr<Iterator> &out)
{ out = value.unary_minus(out.it_range.begin()); }
};
factor = iter_pos[px::bind(&FactorActions::set_start_pos, _1, _val)] >> (
scalar_variable_reference(_r1) [ _val = _1 ]
| (lit('(') > expression(_r1) > ')' > iter_pos) [ px::bind(&FactorActions::expr_, _1, _2, _val) ]
| (lit('-') > factor(_r1) ) [ px::bind(&FactorActions::minus_, _1, _val) ]
| (lit('+') > factor(_r1) > iter_pos) [ px::bind(&FactorActions::expr_, _1, _2, _val) ]
| (strict_double > iter_pos) [ px::bind(&FactorActions::double_, _1, _2, _val) ]
| (int_ > iter_pos) [ px::bind(&FactorActions::int_, _1, _2, _val) ]
| (bool_ > iter_pos) [ px::bind(&FactorActions::bool_, _1, _2, _val) ]
| raw[lexeme['"' > *(char_ - char_('\\') - char_('"') | '\\' > char_) > '"']]
[ px::bind(&FactorActions::string_, _1, _val) ]
);
factor.name("factor");
scalar_variable_reference =
variable_reference(_r1)[_a=_1] >>
(
'[' > expression(_r1)[px::bind(&MyContext::evaluate_index<Iterator>, _1, _b)] > ']' >
iter_pos[px::bind(&MyContext::vector_variable_reference<Iterator>, _r1, _a, _b, _1, _val)]
| eps[px::bind(&MyContext::scalar_variable_reference<Iterator>, _r1, _a, _val)]
);
scalar_variable_reference.name("scalar variable reference");
variable_reference = identifier
[ px::bind(&MyContext::resolve_variable<Iterator>, _r1, _1, _val) ];
variable_reference.name("variable reference");
/*
qi::on_error<qi::fail>(start,
phx::ref(std::cout)
<< "Error! Expecting "
<< qi::_4
<< " here: '"
<< px::construct<std::string>(qi::_3, qi::_2)
<< "'\n"
);
*/
keywords.add
("if")
//("inf")
("else")
("elsif")
("endif");
if (0) {
debug(start);
debug(text);
debug(text_block);
debug(macro);
debug(if_else_output);
debug(switch_output);
debug(legacy_variable_expansion);
debug(identifier);
debug(bool_expr);
debug(bool_expr_eval);
debug(expression);
debug(term);
debug(factor);
debug(scalar_variable_reference);
debug(variable_reference);
}
}
// The start of the grammar.
qi::rule<Iterator, std::string(const MyContext*), spirit::ascii::space_type> start;
// A free-form text.
qi::rule<Iterator, std::string(), spirit::ascii::space_type> text;
// A free-form text, possibly empty, possibly containing macro expansions.
qi::rule<Iterator, std::string(const MyContext*), spirit::ascii::space_type> text_block;
// Statements enclosed in curely braces {}
qi::rule<Iterator, std::string(const MyContext*), spirit::ascii::space_type> macro;
// Legacy variable expansion of the original Slic3r, in the form of [scalar_variable] or [vector_variable_index].
qi::rule<Iterator, std::string(const MyContext*), spirit::ascii::space_type> legacy_variable_expansion;
// Parsed identifier name.
qi::rule<Iterator, boost::iterator_range<Iterator>(), spirit::ascii::space_type> identifier;
// Math expression consisting of +- operators over terms.
qi::rule<Iterator, expr<Iterator>(const MyContext*), spirit::ascii::space_type> expression;
// Boolean expressions over expressions.
qi::rule<Iterator, expr<Iterator>(const MyContext*), spirit::ascii::space_type> bool_expr;
// Evaluate boolean expression into bool.
qi::rule<Iterator, bool(const MyContext*), spirit::ascii::space_type> bool_expr_eval;
// Math expression consisting of */ operators over factors.
qi::rule<Iterator, expr<Iterator>(const MyContext*), spirit::ascii::space_type> term;
// Number literals, functions, braced expressions, variable references, variable indexing references.
qi::rule<Iterator, expr<Iterator>(const MyContext*), spirit::ascii::space_type> factor;
// Reference of a scalar variable, or reference to a field of a vector variable.
qi::rule<Iterator, expr<Iterator>(const MyContext*), qi::locals<OptWithPos<Iterator>, int>, spirit::ascii::space_type> scalar_variable_reference;
// Rule to translate an identifier to a ConfigOption, or to fail.
qi::rule<Iterator, OptWithPos<Iterator>(const MyContext*), spirit::ascii::space_type> variable_reference;
qi::rule<Iterator, std::string(const MyContext*), qi::locals<bool, bool>, spirit::ascii::space_type> if_else_output;
qi::rule<Iterator, std::string(const MyContext*), qi::locals<expr<Iterator>, bool, std::string>, spirit::ascii::space_type> switch_output;
qi::symbols<char> keywords;
};
}
struct printer
{
typedef spirit::utf8_string string;
void element(string const& tag, string const& value, int depth) const
{
for (int i = 0; i < (depth*4); ++i) // indent to depth
std::cout << ' ';
std::cout << "tag: " << tag;
if (value != "")
std::cout << ", value: " << value;
std::cout << std::endl;
}
};
void print_info(spirit::info const& what)
{
using spirit::basic_info_walker;
printer pr;
basic_info_walker<printer> walker(pr, what.tag, 0);
boost::apply_visitor(walker, what.value);
}
std::string PlaceholderParser::process(const std::string &templ, unsigned int current_extruder_id, const DynamicConfig *config_override) const
{
typedef std::string::const_iterator iterator_type;
typedef client::calculator<iterator_type> calculator;
spirit::ascii::space_type space; // Our skipper
calculator calc; // Our grammar
std::string::const_iterator iter = templ.begin();
std::string::const_iterator end = templ.end();
//std::string result;
std::string result;
bool r = false;
try {
client::MyContext context;
context.pp = this;
context.config_override = config_override;
r = phrase_parse(iter, end, calc(&context), space, result);
} catch (qi::expectation_failure<iterator_type> const& x) {
std::cout << "expected: "; print_info(x.what_);
std::cout << "got: \"" << std::string(x.first, x.last) << '"' << std::endl;
}
if (r && iter == end)
{
// std::cout << "-------------------------\n";
// std::cout << "Parsing succeeded\n";
// std::cout << "result = " << result << std::endl;
// std::cout << "-------------------------\n";
}
else
{
std::string rest(iter, end);
std::cout << "-------------------------\n";
std::cout << "Parsing failed\n";
std::cout << "stopped at: \" " << rest << "\"\n";
std::cout << "source: \n" << templ;
std::cout << "-------------------------\n";
}
return result;
}
}