PrusaSlicer-NonPlainar/tests/fff_print/test_skirt_brim.cpp
Vojtech Bubnik 0f3cabb5d9 Support for forward compatibility of configurations, user and system
config bundles, project files (3MFs, AMFs). When loading these files,
the caller may decide whether to substitute some of the configuration
values the current PrusaSlicer version does not understand with
some reasonable default value, and whether to report it. If substitution
is disabled, an exception is being thrown as before this commit.
If substitution is enabled, list of substitutions is returned by the
API to be presented to the user. This allows us to introduce for example
new firmware flavor key in PrusaSlicer 2.4 while letting PrusaSlicer
2.3.2 to fall back to some default and to report it to the user.

When slicing from command line, substutions are performed by default
and reported into the console, however substitutions may be either
disabled or made silent with the new "config-compatibility" command
line option.

Substitute enums and bools only.  Allow booleans to be parsed as
    true: "1", "enabled", "on" case insensitive
    false: "0", "disabled", "off" case insensitive
This will allow us in the future for example to switch the draft_shield
boolean to an enum with the following values: "disabled" / "enabled" / "limited".

Added "enum_bitmask.hpp" - support for type safe sets of options.
See for example PresetBundle::load_configbundle(...
LoadConfigBundleAttributes flags) for an example of intended usage.

WIP: GUI for reporting the list of config substitutions needs to be
implemented by @YuSanka.
2021-06-27 16:57:05 +02:00

267 lines
11 KiB
C++

#include <catch2/catch.hpp>
#include "libslic3r/GCodeReader.hpp"
#include "libslic3r/Config.hpp"
#include "libslic3r/Geometry.hpp"
#include <boost/algorithm/string.hpp>
#include "test_data.hpp" // get access to init_print, etc
using namespace Slic3r::Test;
using namespace Slic3r;
/// Helper method to find the tool used for the brim (always the first extrusion)
static int get_brim_tool(const std::string &gcode)
{
int brim_tool = -1;
int tool = -1;
GCodeReader parser;
parser.parse_buffer(gcode, [&tool, &brim_tool] (Slic3r::GCodeReader &self, const Slic3r::GCodeReader::GCodeLine &line)
{
// if the command is a T command, set the the current tool
if (boost::starts_with(line.cmd(), "T")) {
tool = atoi(line.cmd().data() + 1);
} else if (line.cmd() == "G1" && line.extruding(self) && line.dist_XY(self) > 0 && brim_tool < 0) {
brim_tool = tool;
}
});
return brim_tool;
}
TEST_CASE("Skirt height is honored", "[Skirt]") {
DynamicPrintConfig config = Slic3r::DynamicPrintConfig::full_print_config();
config.set_deserialize_strict({
{ "skirts", 1 },
{ "skirt_height", 5 },
{ "perimeters", 0 },
{ "support_material_speed", 99 },
// avoid altering speeds unexpectedly
{ "cooling", false },
{ "first_layer_speed", "100%" }
});
std::string gcode;
SECTION("printing a single object") {
gcode = Slic3r::Test::slice({TestMesh::cube_20x20x20}, config);
}
SECTION("printing multiple objects") {
gcode = Slic3r::Test::slice({TestMesh::cube_20x20x20, TestMesh::cube_20x20x20}, config);
}
std::map<double, bool> layers_with_skirt;
double support_speed = config.opt<Slic3r::ConfigOptionFloat>("support_material_speed")->value * MM_PER_MIN;
GCodeReader parser;
parser.parse_buffer(gcode, [&layers_with_skirt, &support_speed] (Slic3r::GCodeReader &self, const Slic3r::GCodeReader::GCodeLine &line) {
if (line.extruding(self) && self.f() == Approx(support_speed)) {
layers_with_skirt[self.z()] = 1;
}
});
REQUIRE(layers_with_skirt.size() == (size_t)config.opt_int("skirt_height"));
}
SCENARIO("Original Slic3r Skirt/Brim tests", "[SkirtBrim]") {
GIVEN("A default configuration") {
DynamicPrintConfig config = Slic3r::DynamicPrintConfig::full_print_config();
config.set_num_extruders(4);
config.set_deserialize_strict({
{ "support_material_speed", 99 },
{ "first_layer_height", 0.3 },
{ "gcode_comments", true },
// avoid altering speeds unexpectedly
{ "cooling", false },
{ "first_layer_speed", "100%" },
// remove noise from top/solid layers
{ "top_solid_layers", 0 },
{ "bottom_solid_layers", 1 },
{ "start_gcode", "T[initial_tool]\n" }
});
WHEN("Brim width is set to 5") {
config.set_deserialize_strict({
{ "perimeters", 0 },
{ "skirts", 0 },
{ "brim_width", 5 }
});
THEN("Brim is generated") {
std::string gcode = Slic3r::Test::slice({TestMesh::cube_20x20x20}, config);
bool brim_generated = false;
double support_speed = config.opt<Slic3r::ConfigOptionFloat>("support_material_speed")->value * MM_PER_MIN;
Slic3r::GCodeReader parser;
parser.parse_buffer(gcode, [&brim_generated, support_speed] (Slic3r::GCodeReader& self, const Slic3r::GCodeReader::GCodeLine& line) {
if (self.z() == Approx(0.3) || line.new_Z(self) == Approx(0.3)) {
if (line.extruding(self) && self.f() == Approx(support_speed)) {
brim_generated = true;
}
}
});
REQUIRE(brim_generated);
}
}
WHEN("Skirt area is smaller than the brim") {
config.set_deserialize_strict({
{ "skirts", 1 },
{ "brim_width", 10}
});
THEN("Gcode generates") {
REQUIRE(! Slic3r::Test::slice({TestMesh::cube_20x20x20}, config).empty());
}
}
WHEN("Skirt height is 0 and skirts > 0") {
config.set_deserialize_strict({
{ "skirts", 2 },
{ "skirt_height", 0 }
});
THEN("Gcode generates") {
REQUIRE(! Slic3r::Test::slice({TestMesh::cube_20x20x20}, config).empty());
}
}
#if 0
// This is a real error! One shall print the brim with the external perimeter extruder!
WHEN("Perimeter extruder = 2 and support extruders = 3") {
THEN("Brim is printed with the extruder used for the perimeters of first object") {
config.set_deserialize_strict({
{ "skirts", 0 },
{ "brim_width", 5 },
{ "perimeter_extruder", 2 },
{ "support_material_extruder", 3 },
{ "infill_extruder", 4 }
});
std::string gcode = Slic3r::Test::slice({TestMesh::cube_20x20x20}, config);
int tool = get_brim_tool(gcode);
REQUIRE(tool == config.opt_int("perimeter_extruder") - 1);
}
}
WHEN("Perimeter extruder = 2, support extruders = 3, raft is enabled") {
THEN("brim is printed with same extruder as skirt") {
config.set_deserialize_strict({
{ "skirts", 0 },
{ "brim_width", 5 },
{ "perimeter_extruder", 2 },
{ "support_material_extruder", 3 },
{ "infill_extruder", 4 },
{ "raft_layers", 1 }
});
std::string gcode = Slic3r::Test::slice({TestMesh::cube_20x20x20}, config);
int tool = get_brim_tool(gcode);
REQUIRE(tool == config.opt_int("support_material_extruder") - 1);
}
}
#endif
WHEN("brim width to 1 with layer_width of 0.5") {
config.set_deserialize_strict({
{ "skirts", 0 },
{ "first_layer_extrusion_width", 0.5 },
{ "brim_width", 1 }
});
THEN("2 brim lines") {
Slic3r::Print print;
Slic3r::Test::init_and_process_print({TestMesh::cube_20x20x20}, print, config);
REQUIRE(print.brim().entities.size() == 2);
}
}
#if 0
WHEN("brim ears on a square") {
config.set_deserialize_strict({
{ "skirts", 0 },
{ "first_layer_extrusion_width", 0.5 },
{ "brim_width", 1 },
{ "brim_ears", 1 },
{ "brim_ears_max_angle", 91 }
});
Slic3r::Print print;
Slic3r::Test::init_and_process_print({TestMesh::cube_20x20x20}, print, config);
THEN("Four brim ears") {
REQUIRE(print.brim().entities.size() == 4);
}
}
WHEN("brim ears on a square but with a too small max angle") {
config.set_deserialize_strict({
{ "skirts", 0 },
{ "first_layer_extrusion_width", 0.5 },
{ "brim_width", 1 },
{ "brim_ears", 1 },
{ "brim_ears_max_angle", 89 }
});
THEN("no brim") {
Slic3r::Print print;
Slic3r::Test::init_and_process_print({ TestMesh::cube_20x20x20 }, print, config);
REQUIRE(print.brim().entities.size() == 0);
}
}
#endif
WHEN("Object is plated with overhang support and a brim") {
config.set_deserialize_strict({
{ "layer_height", 0.4 },
{ "first_layer_height", 0.4 },
{ "skirts", 1 },
{ "skirt_distance", 0 },
{ "support_material_speed", 99 },
{ "perimeter_extruder", 1 },
{ "support_material_extruder", 2 },
{ "infill_extruder", 3 }, // ensure that a tool command gets emitted.
{ "cooling", false }, // to prevent speeds to be altered
{ "first_layer_speed", "100%" }, // to prevent speeds to be altered
{ "start_gcode", "T[initial_tool]\n" }
});
THEN("overhang generates?") {
//FIXME does it make sense?
REQUIRE(! Slic3r::Test::slice({TestMesh::overhang}, config).empty());
}
// config.set("support_material", true); // to prevent speeds to be altered
#if 0
// This test is not finished.
THEN("skirt length is large enough to contain object with support") {
CHECK(config.opt_bool("support_material")); // test is not valid if support material is off
std::string gcode = Slic3r::Test::slice({TestMesh::cube_20x20x20}, config);
double support_speed = config.opt<ConfigOptionFloat>("support_material_speed")->value * MM_PER_MIN;
double skirt_length = 0.0;
Points extrusion_points;
int tool = -1;
GCodeReader parser;
parser.parse_buffer(gcode, [config, &extrusion_points, &tool, &skirt_length, support_speed] (Slic3r::GCodeReader& self, const Slic3r::GCodeReader::GCodeLine& line) {
// std::cerr << line.cmd() << "\n";
if (boost::starts_with(line.cmd(), "T")) {
tool = atoi(line.cmd().data() + 1);
} else if (self.z() == Approx(config.opt<ConfigOptionFloat>("first_layer_height")->value)) {
// on first layer
if (line.extruding(self) && line.dist_XY(self) > 0) {
float speed = ( self.f() > 0 ? self.f() : line.new_F(self));
// std::cerr << "Tool " << tool << "\n";
if (speed == Approx(support_speed) && tool == config.opt_int("perimeter_extruder") - 1) {
// Skirt uses first material extruder, support material speed.
skirt_length += line.dist_XY(self);
} else
extrusion_points.push_back(Slic3r::Point::new_scale(line.new_X(self), line.new_Y(self)));
}
}
if (self.z() == Approx(0.3) || line.new_Z(self) == Approx(0.3)) {
if (line.extruding(self) && self.f() == Approx(support_speed)) {
}
}
});
Slic3r::Polygon convex_hull = Slic3r::Geometry::convex_hull(extrusion_points);
double hull_perimeter = unscale<double>(convex_hull.split_at_first_point().length());
REQUIRE(skirt_length > hull_perimeter);
}
#endif
}
WHEN("Large minimum skirt length is used.") {
config.set("min_skirt_length", 20);
THEN("Gcode generation doesn't crash") {
REQUIRE(! Slic3r::Test::slice({TestMesh::cube_20x20x20}, config).empty());
}
}
}
}