225 lines
9.4 KiB
C++
225 lines
9.4 KiB
C++
#ifndef slic3r_TriangleMesh_hpp_
|
|
#define slic3r_TriangleMesh_hpp_
|
|
|
|
#include "libslic3r.h"
|
|
#include <admesh/stl.h>
|
|
#include <functional>
|
|
#include <vector>
|
|
#include <boost/thread.hpp>
|
|
#include "BoundingBox.hpp"
|
|
#include "Line.hpp"
|
|
#include "Point.hpp"
|
|
#include "Polygon.hpp"
|
|
#include "ExPolygon.hpp"
|
|
|
|
namespace Slic3r {
|
|
|
|
class TriangleMesh;
|
|
class TriangleMeshSlicer;
|
|
typedef std::vector<TriangleMesh*> TriangleMeshPtrs;
|
|
|
|
class TriangleMesh
|
|
{
|
|
public:
|
|
TriangleMesh() : repaired(false) {}
|
|
TriangleMesh(const Pointf3s &points, const std::vector<Vec3crd> &facets);
|
|
void clear() { this->stl.clear(); this->its.clear(); this->repaired = false; }
|
|
bool ReadSTLFile(const char* input_file) { return stl_open(&stl, input_file); }
|
|
bool write_ascii(const char* output_file) { return stl_write_ascii(&this->stl, output_file, ""); }
|
|
bool write_binary(const char* output_file) { return stl_write_binary(&this->stl, output_file, ""); }
|
|
void repair(bool update_shared_vertices = true);
|
|
float volume();
|
|
void check_topology();
|
|
bool is_manifold() const { return this->stl.stats.connected_facets_3_edge == (int)this->stl.stats.number_of_facets; }
|
|
void WriteOBJFile(const char* output_file) const;
|
|
void scale(float factor);
|
|
void scale(const Vec3d &versor);
|
|
void translate(float x, float y, float z);
|
|
void translate(const Vec3f &displacement);
|
|
void rotate(float angle, const Axis &axis);
|
|
void rotate(float angle, const Vec3d& axis);
|
|
void rotate_x(float angle) { this->rotate(angle, X); }
|
|
void rotate_y(float angle) { this->rotate(angle, Y); }
|
|
void rotate_z(float angle) { this->rotate(angle, Z); }
|
|
void mirror(const Axis &axis);
|
|
void mirror_x() { this->mirror(X); }
|
|
void mirror_y() { this->mirror(Y); }
|
|
void mirror_z() { this->mirror(Z); }
|
|
void transform(const Transform3d& t, bool fix_left_handed = false);
|
|
void transform(const Matrix3d& t, bool fix_left_handed = false);
|
|
void align_to_origin();
|
|
void rotate(double angle, Point* center);
|
|
TriangleMeshPtrs split() const;
|
|
void merge(const TriangleMesh &mesh);
|
|
ExPolygons horizontal_projection() const;
|
|
const float* first_vertex() const { return this->stl.facet_start.empty() ? nullptr : &this->stl.facet_start.front().vertex[0](0); }
|
|
// 2D convex hull of a 3D mesh projected into the Z=0 plane.
|
|
Polygon convex_hull();
|
|
BoundingBoxf3 bounding_box() const;
|
|
// Returns the bbox of this TriangleMesh transformed by the given transformation
|
|
BoundingBoxf3 transformed_bounding_box(const Transform3d &trafo) const;
|
|
// Returns the convex hull of this TriangleMesh
|
|
TriangleMesh convex_hull_3d() const;
|
|
void reset_repair_stats();
|
|
bool needed_repair() const;
|
|
void require_shared_vertices();
|
|
bool has_shared_vertices() const { return ! this->its.vertices.empty(); }
|
|
size_t facets_count() const { return this->stl.stats.number_of_facets; }
|
|
bool empty() const { return this->facets_count() == 0; }
|
|
bool is_splittable() const;
|
|
// Estimate of the memory occupied by this structure, important for keeping an eye on the Undo / Redo stack allocation.
|
|
size_t memsize() const;
|
|
// Release optional data from the mesh if the object is on the Undo / Redo stack only. Returns the amount of memory released.
|
|
size_t release_optional();
|
|
// Restore optional data possibly released by release_optional().
|
|
void restore_optional();
|
|
|
|
stl_file stl;
|
|
indexed_triangle_set its;
|
|
bool repaired;
|
|
|
|
private:
|
|
std::deque<uint32_t> find_unvisited_neighbors(std::vector<unsigned char> &facet_visited) const;
|
|
};
|
|
|
|
enum FacetEdgeType {
|
|
// A general case, the cutting plane intersect a face at two different edges.
|
|
feGeneral,
|
|
// Two vertices are aligned with the cutting plane, the third vertex is below the cutting plane.
|
|
feTop,
|
|
// Two vertices are aligned with the cutting plane, the third vertex is above the cutting plane.
|
|
feBottom,
|
|
// All three vertices of a face are aligned with the cutting plane.
|
|
feHorizontal
|
|
};
|
|
|
|
class IntersectionReference
|
|
{
|
|
public:
|
|
IntersectionReference() : point_id(-1), edge_id(-1) {};
|
|
IntersectionReference(int point_id, int edge_id) : point_id(point_id), edge_id(edge_id) {}
|
|
// Where is this intersection point located? On mesh vertex or mesh edge?
|
|
// Only one of the following will be set, the other will remain set to -1.
|
|
// Index of the mesh vertex.
|
|
int point_id;
|
|
// Index of the mesh edge.
|
|
int edge_id;
|
|
};
|
|
|
|
class IntersectionPoint : public Point, public IntersectionReference
|
|
{
|
|
public:
|
|
IntersectionPoint() {};
|
|
IntersectionPoint(int point_id, int edge_id, const Point &pt) : IntersectionReference(point_id, edge_id), Point(pt) {}
|
|
IntersectionPoint(const IntersectionReference &ir, const Point &pt) : IntersectionReference(ir), Point(pt) {}
|
|
// Inherits coord_t x, y
|
|
};
|
|
|
|
class IntersectionLine : public Line
|
|
{
|
|
public:
|
|
IntersectionLine() : a_id(-1), b_id(-1), edge_a_id(-1), edge_b_id(-1), edge_type(feGeneral), flags(0) {}
|
|
|
|
bool skip() const { return (this->flags & SKIP) != 0; }
|
|
void set_skip() { this->flags |= SKIP; }
|
|
|
|
bool is_seed_candidate() const { return (this->flags & NO_SEED) == 0 && ! this->skip(); }
|
|
void set_no_seed(bool set) { if (set) this->flags |= NO_SEED; else this->flags &= ~NO_SEED; }
|
|
|
|
// Inherits Point a, b
|
|
// For each line end point, either {a,b}_id or {a,b}edge_a_id is set, the other is left to -1.
|
|
// Vertex indices of the line end points.
|
|
int a_id;
|
|
int b_id;
|
|
// Source mesh edges of the line end points.
|
|
int edge_a_id;
|
|
int edge_b_id;
|
|
// feGeneral, feTop, feBottom, feHorizontal
|
|
FacetEdgeType edge_type;
|
|
// Used by TriangleMeshSlicer::slice() to skip duplicate edges.
|
|
enum {
|
|
// Triangle edge added, because it has no neighbor.
|
|
EDGE0_NO_NEIGHBOR = 0x001,
|
|
EDGE1_NO_NEIGHBOR = 0x002,
|
|
EDGE2_NO_NEIGHBOR = 0x004,
|
|
// Triangle edge added, because it makes a fold with another horizontal edge.
|
|
EDGE0_FOLD = 0x010,
|
|
EDGE1_FOLD = 0x020,
|
|
EDGE2_FOLD = 0x040,
|
|
// The edge cannot be a seed of a greedy loop extraction (folds are not safe to become seeds).
|
|
NO_SEED = 0x100,
|
|
SKIP = 0x200,
|
|
};
|
|
uint32_t flags;
|
|
};
|
|
typedef std::vector<IntersectionLine> IntersectionLines;
|
|
typedef std::vector<IntersectionLine*> IntersectionLinePtrs;
|
|
|
|
class TriangleMeshSlicer
|
|
{
|
|
public:
|
|
typedef std::function<void()> throw_on_cancel_callback_type;
|
|
TriangleMeshSlicer() : mesh(nullptr) {}
|
|
TriangleMeshSlicer(const TriangleMesh* mesh) { this->init(mesh, [](){}); }
|
|
void init(const TriangleMesh *mesh, throw_on_cancel_callback_type throw_on_cancel);
|
|
void slice(const std::vector<float> &z, std::vector<Polygons>* layers, throw_on_cancel_callback_type throw_on_cancel) const;
|
|
void slice(const std::vector<float> &z, const float closing_radius, std::vector<ExPolygons>* layers, throw_on_cancel_callback_type throw_on_cancel) const;
|
|
enum FacetSliceType {
|
|
NoSlice = 0,
|
|
Slicing = 1,
|
|
Cutting = 2
|
|
};
|
|
FacetSliceType slice_facet(float slice_z, const stl_facet &facet, const int facet_idx,
|
|
const float min_z, const float max_z, IntersectionLine *line_out) const;
|
|
void cut(float z, TriangleMesh* upper, TriangleMesh* lower) const;
|
|
void set_up_direction(const Vec3f& up);
|
|
|
|
private:
|
|
const TriangleMesh *mesh;
|
|
// Map from a facet to an edge index.
|
|
std::vector<int> facets_edges;
|
|
// Scaled copy of this->mesh->stl.v_shared
|
|
std::vector<stl_vertex> v_scaled_shared;
|
|
// Quaternion that will be used to rotate every facet before the slicing
|
|
Eigen::Quaternion<float, Eigen::DontAlign> m_quaternion;
|
|
// Whether or not the above quaterion should be used
|
|
bool m_use_quaternion = false;
|
|
|
|
void _slice_do(size_t facet_idx, std::vector<IntersectionLines>* lines, boost::mutex* lines_mutex, const std::vector<float> &z) const;
|
|
void make_loops(std::vector<IntersectionLine> &lines, Polygons* loops) const;
|
|
void make_expolygons(const Polygons &loops, const float closing_radius, ExPolygons* slices) const;
|
|
void make_expolygons_simple(std::vector<IntersectionLine> &lines, ExPolygons* slices) const;
|
|
void make_expolygons(std::vector<IntersectionLine> &lines, const float closing_radius, ExPolygons* slices) const;
|
|
};
|
|
|
|
TriangleMesh make_cube(double x, double y, double z);
|
|
|
|
// Generate a TriangleMesh of a cylinder
|
|
TriangleMesh make_cylinder(double r, double h, double fa=(2*PI/360));
|
|
|
|
TriangleMesh make_sphere(double rho, double fa=(2*PI/360));
|
|
|
|
}
|
|
|
|
// Serialization through the Cereal library
|
|
#include <cereal/access.hpp>
|
|
namespace cereal {
|
|
template <class Archive> struct specialize<Archive, Slic3r::TriangleMesh, cereal::specialization::non_member_load_save> {};
|
|
template<class Archive> void load(Archive &archive, Slic3r::TriangleMesh &mesh) {
|
|
stl_file &stl = mesh.stl;
|
|
stl.stats.type = inmemory;
|
|
archive(stl.stats.number_of_facets, stl.stats.original_num_facets);
|
|
stl_allocate(&stl);
|
|
archive.loadBinary((char*)stl.facet_start.data(), stl.facet_start.size() * 50);
|
|
stl_get_size(&stl);
|
|
mesh.repair();
|
|
}
|
|
template<class Archive> void save(Archive &archive, const Slic3r::TriangleMesh &mesh) {
|
|
const stl_file& stl = mesh.stl;
|
|
archive(stl.stats.number_of_facets, stl.stats.original_num_facets);
|
|
archive.saveBinary((char*)stl.facet_start.data(), stl.facet_start.size() * 50);
|
|
}
|
|
}
|
|
|
|
#endif
|