0558b53493
The XS was left only for the unit / integration tests, and it links libslic3r only. No wxWidgets are allowed to be used from Perl starting from now.
120 lines
3.8 KiB
C++
120 lines
3.8 KiB
C++
#include "Geometry.hpp"
|
|
#include "Line.hpp"
|
|
#include "Polyline.hpp"
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
#include <sstream>
|
|
|
|
namespace Slic3r {
|
|
|
|
Linef3 transform(const Linef3& line, const Transform3d& t)
|
|
{
|
|
typedef Eigen::Matrix<double, 3, 2> LineInMatrixForm;
|
|
|
|
LineInMatrixForm world_line;
|
|
::memcpy((void*)world_line.col(0).data(), (const void*)line.a.data(), 3 * sizeof(double));
|
|
::memcpy((void*)world_line.col(1).data(), (const void*)line.b.data(), 3 * sizeof(double));
|
|
|
|
LineInMatrixForm local_line = t * world_line.colwise().homogeneous();
|
|
return Linef3(Vec3d(local_line(0, 0), local_line(1, 0), local_line(2, 0)), Vec3d(local_line(0, 1), local_line(1, 1), local_line(2, 1)));
|
|
}
|
|
|
|
bool Line::intersection_infinite(const Line &other, Point* point) const
|
|
{
|
|
Vec2d a1 = this->a.cast<double>();
|
|
Vec2d a2 = other.a.cast<double>();
|
|
Vec2d v12 = (other.a - this->a).cast<double>();
|
|
Vec2d v1 = (this->b - this->a).cast<double>();
|
|
Vec2d v2 = (other.b - other.a).cast<double>();
|
|
double denom = cross2(v1, v2);
|
|
if (std::fabs(denom) < EPSILON)
|
|
return false;
|
|
double t1 = cross2(v12, v2) / denom;
|
|
*point = (a1 + t1 * v1).cast<coord_t>();
|
|
return true;
|
|
}
|
|
|
|
/* distance to the closest point of line */
|
|
double Line::distance_to(const Point &point) const
|
|
{
|
|
const Line &line = *this;
|
|
const Vec2d v = (line.b - line.a).cast<double>();
|
|
const Vec2d va = (point - line.a).cast<double>();
|
|
const double l2 = v.squaredNorm(); // avoid a sqrt
|
|
if (l2 == 0.0)
|
|
// line.a == line.b case
|
|
return va.norm();
|
|
// Consider the line extending the segment, parameterized as line.a + t (line.b - line.a).
|
|
// We find projection of this point onto the line.
|
|
// It falls where t = [(this-line.a) . (line.b-line.a)] / |line.b-line.a|^2
|
|
const double t = va.dot(v) / l2;
|
|
if (t < 0.0) return va.norm(); // beyond the 'a' end of the segment
|
|
else if (t > 1.0) return (point - line.b).cast<double>().norm(); // beyond the 'b' end of the segment
|
|
return (t * v - va).norm();
|
|
}
|
|
|
|
double Line::perp_distance_to(const Point &point) const
|
|
{
|
|
const Line &line = *this;
|
|
const Vec2d v = (line.b - line.a).cast<double>();
|
|
const Vec2d va = (point - line.a).cast<double>();
|
|
if (line.a == line.b)
|
|
return va.norm();
|
|
return std::abs(cross2(v, va)) / v.norm();
|
|
}
|
|
|
|
double Line::orientation() const
|
|
{
|
|
double angle = this->atan2_();
|
|
if (angle < 0) angle = 2*PI + angle;
|
|
return angle;
|
|
}
|
|
|
|
double Line::direction() const
|
|
{
|
|
double atan2 = this->atan2_();
|
|
return (fabs(atan2 - PI) < EPSILON) ? 0
|
|
: (atan2 < 0) ? (atan2 + PI)
|
|
: atan2;
|
|
}
|
|
|
|
bool Line::parallel_to(double angle) const
|
|
{
|
|
return Slic3r::Geometry::directions_parallel(this->direction(), angle);
|
|
}
|
|
|
|
bool Line::intersection(const Line &l2, Point *intersection) const
|
|
{
|
|
const Line &l1 = *this;
|
|
const Vec2d v1 = (l1.b - l1.a).cast<double>();
|
|
const Vec2d v2 = (l2.b - l2.a).cast<double>();
|
|
const Vec2d v12 = (l1.a - l2.a).cast<double>();
|
|
double denom = cross2(v1, v2);
|
|
double nume_a = cross2(v2, v12);
|
|
double nume_b = cross2(v1, v12);
|
|
if (fabs(denom) < EPSILON)
|
|
#if 0
|
|
// Lines are collinear. Return true if they are coincident (overlappign).
|
|
return ! (fabs(nume_a) < EPSILON && fabs(nume_b) < EPSILON);
|
|
#else
|
|
return false;
|
|
#endif
|
|
double t1 = nume_a / denom;
|
|
double t2 = nume_b / denom;
|
|
if (t1 >= 0 && t1 <= 1.0f && t2 >= 0 && t2 <= 1.0f) {
|
|
// Get the intersection point.
|
|
(*intersection) = (l1.a.cast<double>() + t1 * v1).cast<coord_t>();
|
|
return true;
|
|
}
|
|
return false; // not intersecting
|
|
}
|
|
|
|
Vec3d Linef3::intersect_plane(double z) const
|
|
{
|
|
auto v = (this->b - this->a).cast<double>();
|
|
double t = (z - this->a(2)) / v(2);
|
|
return Vec3d(this->a(0) + v(0) * t, this->a(1) + v(1) * t, z);
|
|
}
|
|
|
|
}
|