PrusaSlicer-NonPlainar/src/libslic3r/TriangleSelector.cpp
Lukáš Hejl 7bb38840e1 Replaced the repeated application of Cursors (Sphere or Circle) in painting using 2D and 3D Capsules.
Previously, the Cursor (Sphere or Circle) was repeatedly applied between two mouse positions, creating brushstrokes with ripples on the edges between those mouse positions.
Now, a single capsule (3D or 2D) is applied between those mouse positions, which creates brushstrokes without these ripples.
2021-12-02 12:36:48 +01:00

2047 lines
91 KiB
C++

#include "TriangleSelector.hpp"
#include "Model.hpp"
#include <boost/container/small_vector.hpp>
#ifndef NDEBUG
// #define EXPENSIVE_DEBUG_CHECKS
#endif // NDEBUG
namespace Slic3r {
// Check if the line is whole inside the sphere, or it is partially inside (intersecting) the sphere.
// Inspired by Christer Ericson's Real-Time Collision Detection, pp. 177-179.
static bool test_line_inside_sphere(const Vec3f &line_a, const Vec3f &line_b, const Vec3f &sphere_p, const float sphere_radius)
{
const float sphere_radius_sqr = Slic3r::sqr(sphere_radius);
const Vec3f line_dir = line_b - line_a; // n
const Vec3f origins_diff = line_a - sphere_p; // m
const float m_dot_m = origins_diff.dot(origins_diff);
// Check if any of the end-points of the line is inside the sphere.
if (m_dot_m <= sphere_radius_sqr || (line_b - sphere_p).squaredNorm() <= sphere_radius_sqr)
return true;
// Check if the infinite line is going through the sphere.
const float n_dot_n = line_dir.dot(line_dir);
const float m_dot_n = origins_diff.dot(line_dir);
const float eq_a = n_dot_n;
const float eq_b = m_dot_n;
const float eq_c = m_dot_m - sphere_radius_sqr;
const float discr = eq_b * eq_b - eq_a * eq_c;
// A negative discriminant corresponds to the infinite line infinite not going through the sphere.
if (discr < 0.f)
return false;
// Check if the finite line is going through the sphere.
const float discr_sqrt = std::sqrt(discr);
const float t1 = (-eq_b - discr_sqrt) / eq_a;
if (0.f <= t1 && t1 <= 1.f)
return true;
const float t2 = (-eq_b + discr_sqrt) / eq_a;
if (0.f <= t2 && t2 <= 1.f && discr_sqrt > 0.f)
return true;
return false;
}
// Check if the line is whole inside the finite cylinder, or it is partially inside (intersecting) the finite cylinder.
// Inspired by Christer Ericson's Real-Time Collision Detection, pp. 194-198.
static bool test_line_inside_cylinder(const Vec3f &line_a, const Vec3f &line_b, const Vec3f &cylinder_P, const Vec3f &cylinder_Q, const float cylinder_radius)
{
assert(cylinder_P != cylinder_Q);
const Vec3f cylinder_dir = cylinder_Q - cylinder_P; // d
auto is_point_inside_finite_cylinder = [&cylinder_P, &cylinder_Q, &cylinder_radius, &cylinder_dir](const Vec3f &pt) {
const Vec3f first_center_diff = cylinder_P - pt;
const Vec3f second_center_diff = cylinder_Q - pt;
// First, check if the point pt is laying between planes defined by cylinder_p and cylinder_q.
// Then check if it is inside the cylinder between cylinder_p and cylinder_q.
return first_center_diff.dot(cylinder_dir) <= 0 && second_center_diff.dot(cylinder_dir) >= 0 &&
(first_center_diff.cross(cylinder_dir).norm() / cylinder_dir.norm()) <= cylinder_radius;
};
// Check if any of the end-points of the line is inside the cylinder.
if (is_point_inside_finite_cylinder(line_a) || is_point_inside_finite_cylinder(line_b))
return true;
// Check if the line is going through the cylinder.
const Vec3f origins_diff = line_a - cylinder_P; // m
const Vec3f line_dir = line_b - line_a; // n
const float m_dot_d = origins_diff.dot(cylinder_dir);
const float n_dot_d = line_dir.dot(cylinder_dir);
const float d_dot_d = cylinder_dir.dot(cylinder_dir);
const float n_dot_n = line_dir.dot(line_dir);
const float m_dot_n = origins_diff.dot(line_dir);
const float m_dot_m = origins_diff.dot(origins_diff);
const float eq_a = d_dot_d * n_dot_n - n_dot_d * n_dot_d;
const float eq_b = d_dot_d * m_dot_n - n_dot_d * m_dot_d;
const float eq_c = d_dot_d * (m_dot_m - Slic3r::sqr(cylinder_radius)) - m_dot_d * m_dot_d;
const float discr = eq_b * eq_b - eq_a * eq_c;
// A negative discriminant corresponds to the infinite line not going through the infinite cylinder.
if (discr < 0.0f)
return false;
// Check if the finite line is going through the finite cylinder.
const float discr_sqrt = std::sqrt(discr);
const float t1 = (-eq_b - discr_sqrt) / eq_a;
if (0.f <= t1 && t1 <= 1.f)
if (const float cylinder_endcap_t1 = m_dot_d + t1 * n_dot_d; 0.f <= cylinder_endcap_t1 && cylinder_endcap_t1 <= d_dot_d)
return true;
const float t2 = (-eq_b + discr_sqrt) / eq_a;
if (0.f <= t2 && t2 <= 1.f)
if (const float cylinder_endcap_t2 = (m_dot_d + t2 * n_dot_d); 0.f <= cylinder_endcap_t2 && cylinder_endcap_t2 <= d_dot_d)
return true;
return false;
}
// Check if the line is whole inside the capsule, or it is partially inside (intersecting) the capsule.
static bool test_line_inside_capsule(const Vec3f &line_a, const Vec3f &line_b, const Vec3f &capsule_p, const Vec3f &capsule_q, const float capsule_radius) {
assert(capsule_p != capsule_q);
// Check if the line intersect any of the spheres forming the capsule.
if (test_line_inside_sphere(line_a, line_b, capsule_p, capsule_radius) || test_line_inside_sphere(line_a, line_b, capsule_q, capsule_radius))
return true;
// Check if the line intersects the cylinder between the centers of the spheres.
return test_line_inside_cylinder(line_a, line_b, capsule_p, capsule_q, capsule_radius);
}
#ifndef NDEBUG
bool TriangleSelector::verify_triangle_midpoints(const Triangle &tr) const
{
for (int i = 0; i < 3; ++ i) {
int v1 = tr.verts_idxs[i];
int v2 = tr.verts_idxs[next_idx_modulo(i, 3)];
int vmid = this->triangle_midpoint(tr, v1, v2);
assert(vmid >= -1);
if (vmid != -1) {
Vec3f c1 = 0.5f * (m_vertices[v1].v + m_vertices[v2].v);
Vec3f c2 = m_vertices[vmid].v;
float d = (c2 - c1).norm();
assert(std::abs(d) < EPSILON);
}
}
return true;
}
bool TriangleSelector::verify_triangle_neighbors(const Triangle &tr, const Vec3i &neighbors) const
{
assert(neighbors(0) >= -1);
assert(neighbors(1) >= -1);
assert(neighbors(2) >= -1);
assert(verify_triangle_midpoints(tr));
for (int i = 0; i < 3; ++i)
if (neighbors(i) != -1) {
const Triangle &tr2 = m_triangles[neighbors(i)];
assert(verify_triangle_midpoints(tr2));
int v1 = tr.verts_idxs[i];
int v2 = tr.verts_idxs[next_idx_modulo(i, 3)];
assert(tr2.verts_idxs[0] == v1 || tr2.verts_idxs[1] == v1 || tr2.verts_idxs[2] == v1);
int j = tr2.verts_idxs[0] == v1 ? 0 : tr2.verts_idxs[1] == v1 ? 1 : 2;
assert(tr2.verts_idxs[j] == v1);
assert(tr2.verts_idxs[prev_idx_modulo(j, 3)] == v2);
}
return true;
}
#endif // NDEBUG
// sides_to_split==-1 : just restore previous split
void TriangleSelector::Triangle::set_division(int sides_to_split, int special_side_idx)
{
assert(sides_to_split >= 0 && sides_to_split <= 3);
assert(special_side_idx >= 0 && special_side_idx < 3);
assert(sides_to_split == 1 || sides_to_split == 2 || special_side_idx == 0);
this->number_of_splits = char(sides_to_split);
this->special_side_idx = char(special_side_idx);
}
inline bool is_point_inside_triangle(const Vec3f &pt, const Vec3f &p1, const Vec3f &p2, const Vec3f &p3)
{
// Real-time collision detection, Ericson, Chapter 3.4
auto barycentric = [&pt, &p1, &p2, &p3]() -> Vec3f {
std::array<Vec3f, 3> v = {p2 - p1, p3 - p1, pt - p1};
float d00 = v[0].dot(v[0]);
float d01 = v[0].dot(v[1]);
float d11 = v[1].dot(v[1]);
float d20 = v[2].dot(v[0]);
float d21 = v[2].dot(v[1]);
float denom = d00 * d11 - d01 * d01;
Vec3f barycentric_cords(1.f, (d11 * d20 - d01 * d21) / denom, (d00 * d21 - d01 * d20) / denom);
barycentric_cords.x() = barycentric_cords.x() - barycentric_cords.y() - barycentric_cords.z();
return barycentric_cords;
};
Vec3f barycentric_cords = barycentric();
return std::all_of(begin(barycentric_cords), end(barycentric_cords), [](float cord) { return 0.f <= cord && cord <= 1.0; });
}
int TriangleSelector::select_unsplit_triangle(const Vec3f &hit, int facet_idx, const Vec3i &neighbors) const
{
assert(facet_idx < int(m_triangles.size()));
const Triangle *tr = &m_triangles[facet_idx];
if (!tr->valid())
return -1;
if (!tr->is_split()) {
if (const std::array<int, 3> &t_vert = m_triangles[facet_idx].verts_idxs; is_point_inside_triangle(hit, m_vertices[t_vert[0]].v, m_vertices[t_vert[1]].v, m_vertices[t_vert[2]].v))
return facet_idx;
return -1;
}
assert(this->verify_triangle_neighbors(*tr, neighbors));
int num_of_children = tr->number_of_split_sides() + 1;
if (num_of_children != 1) {
for (int i = 0; i < num_of_children; ++i) {
assert(i < int(tr->children.size()));
assert(tr->children[i] < int(m_triangles.size()));
// Recursion, deep first search over the children of this triangle.
// All children of this triangle were created by splitting a single source triangle of the original mesh.
const std::array<int, 3> &t_vert = m_triangles[tr->children[i]].verts_idxs;
if (is_point_inside_triangle(hit, m_vertices[t_vert[0]].v, m_vertices[t_vert[1]].v, m_vertices[t_vert[2]].v))
return this->select_unsplit_triangle(hit, tr->children[i], this->child_neighbors(*tr, neighbors, i));
}
}
return -1;
}
int TriangleSelector::select_unsplit_triangle(const Vec3f &hit, int facet_idx) const
{
assert(facet_idx < int(m_triangles.size()));
if (!m_triangles[facet_idx].valid())
return -1;
Vec3i neighbors = m_neighbors[facet_idx];
assert(this->verify_triangle_neighbors(m_triangles[facet_idx], neighbors));
return this->select_unsplit_triangle(hit, facet_idx, neighbors);
}
void TriangleSelector::select_patch(int facet_start, std::unique_ptr<Cursor> &&cursor, EnforcerBlockerType new_state, const Transform3d& trafo_no_translate, bool triangle_splitting, float highlight_by_angle_deg)
{
assert(facet_start < m_orig_size_indices);
// Save current cursor center, squared radius and camera direction, so we don't
// have to pass it around.
m_cursor = std::move(cursor);
// In case user changed cursor size since last time, update triangle edge limit.
// It is necessary to compare the internal radius in m_cursor! radius is in
// world coords and does not change after scaling.
if (m_old_cursor_radius_sqr != m_cursor->radius_sqr) {
set_edge_limit(std::sqrt(m_cursor->radius_sqr) / 5.f);
m_old_cursor_radius_sqr = m_cursor->radius_sqr;
}
const float highlight_angle_limit = cos(Geometry::deg2rad(highlight_by_angle_deg));
Vec3f vec_down = (trafo_no_translate.inverse() * -Vec3d::UnitZ()).normalized().cast<float>();
// Now start with the facet the pointer points to and check all adjacent facets.
std::vector<int> facets_to_check;
facets_to_check.reserve(16);
facets_to_check.emplace_back(facet_start);
// Keep track of facets of the original mesh we already processed.
std::vector<bool> visited(m_orig_size_indices, false);
// Breadth-first search around the hit point. facets_to_check may grow significantly large.
// Head of the bread-first facets_to_check FIFO.
int facet_idx = 0;
while (facet_idx < int(facets_to_check.size())) {
int facet = facets_to_check[facet_idx];
const Vec3f &facet_normal = m_face_normals[m_triangles[facet].source_triangle];
if (!visited[facet] && (highlight_by_angle_deg == 0.f || vec_down.dot(facet_normal) >= highlight_angle_limit)) {
if (select_triangle(facet, new_state, triangle_splitting)) {
// add neighboring facets to list to be processed later
for (int neighbor_idx : m_neighbors[facet])
if (neighbor_idx >= 0 && m_cursor->is_facet_visible(neighbor_idx, m_face_normals))
facets_to_check.push_back(neighbor_idx);
}
}
visited[facet] = true;
++facet_idx;
}
}
bool TriangleSelector::is_facet_clipped(int facet_idx, const ClippingPlane &clp) const
{
for (int vert_idx : m_triangles[facet_idx].verts_idxs)
if (clp.is_active() && clp.is_mesh_point_clipped(m_vertices[vert_idx].v))
return true;
return false;
}
void TriangleSelector::seed_fill_select_triangles(const Vec3f &hit, int facet_start, const Transform3d& trafo_no_translate,
const ClippingPlane &clp, float seed_fill_angle, float highlight_by_angle_deg,
bool force_reselection)
{
assert(facet_start < m_orig_size_indices);
// Recompute seed fill only if the cursor is pointing on facet unselected by seed fill or a clipping plane is active.
if (int start_facet_idx = select_unsplit_triangle(hit, facet_start); start_facet_idx >= 0 && m_triangles[start_facet_idx].is_selected_by_seed_fill() && !force_reselection && !clp.is_active())
return;
this->seed_fill_unselect_all_triangles();
std::vector<bool> visited(m_triangles.size(), false);
std::queue<int> facet_queue;
facet_queue.push(facet_start);
const double facet_angle_limit = cos(Geometry::deg2rad(seed_fill_angle)) - EPSILON;
const float highlight_angle_limit = cos(Geometry::deg2rad(highlight_by_angle_deg));
Vec3f vec_down = (trafo_no_translate.inverse() * -Vec3d::UnitZ()).normalized().cast<float>();
// Depth-first traversal of neighbors of the face hit by the ray thrown from the mouse cursor.
while (!facet_queue.empty()) {
int current_facet = facet_queue.front();
facet_queue.pop();
const Vec3f &facet_normal = m_face_normals[m_triangles[current_facet].source_triangle];
if (!visited[current_facet] && (highlight_by_angle_deg == 0.f || vec_down.dot(facet_normal) >= highlight_angle_limit)) {
if (m_triangles[current_facet].is_split()) {
for (int split_triangle_idx = 0; split_triangle_idx <= m_triangles[current_facet].number_of_split_sides(); ++split_triangle_idx) {
assert(split_triangle_idx < int(m_triangles[current_facet].children.size()));
assert(m_triangles[current_facet].children[split_triangle_idx] < int(m_triangles.size()));
if (int child = m_triangles[current_facet].children[split_triangle_idx]; !visited[child])
// Child triangle shares normal with its parent. Select it.
facet_queue.push(child);
}
} else
m_triangles[current_facet].select_by_seed_fill();
if (current_facet < m_orig_size_indices)
// Propagate over the original triangles.
for (int neighbor_idx : m_neighbors[current_facet]) {
assert(neighbor_idx >= -1);
if (neighbor_idx >= 0 && !visited[neighbor_idx] && !is_facet_clipped(neighbor_idx, clp)) {
// Check if neighbour_facet_idx is satisfies angle in seed_fill_angle and append it to facet_queue if it do.
const Vec3f &n1 = m_face_normals[m_triangles[neighbor_idx].source_triangle];
const Vec3f &n2 = m_face_normals[m_triangles[current_facet].source_triangle];
if (std::clamp(n1.dot(n2), 0.f, 1.f) >= facet_angle_limit)
facet_queue.push(neighbor_idx);
}
}
}
visited[current_facet] = true;
}
}
void TriangleSelector::precompute_all_neighbors_recursive(const int facet_idx, const Vec3i &neighbors, const Vec3i &neighbors_propagated, std::vector<Vec3i> &neighbors_out, std::vector<Vec3i> &neighbors_propagated_out) const
{
assert(facet_idx < int(m_triangles.size()));
const Triangle *tr = &m_triangles[facet_idx];
if (!tr->valid())
return;
neighbors_out[facet_idx] = neighbors;
neighbors_propagated_out[facet_idx] = neighbors_propagated;
if (tr->is_split()) {
assert(this->verify_triangle_neighbors(*tr, neighbors));
int num_of_children = tr->number_of_split_sides() + 1;
if (num_of_children != 1) {
for (int i = 0; i < num_of_children; ++i) {
assert(i < int(tr->children.size()));
assert(tr->children[i] < int(m_triangles.size()));
// Recursion, deep first search over the children of this triangle.
// All children of this triangle were created by splitting a single source triangle of the original mesh.
this->precompute_all_neighbors_recursive(tr->children[i], this->child_neighbors(*tr, neighbors, i),
this->child_neighbors_propagated(*tr, neighbors_propagated, i), neighbors_out,
neighbors_propagated_out);
}
}
}
}
std::pair<std::vector<Vec3i>, std::vector<Vec3i>> TriangleSelector::precompute_all_neighbors() const
{
std::vector<Vec3i> neighbors(m_triangles.size(), Vec3i(-1, -1, -1));
std::vector<Vec3i> neighbors_propagated(m_triangles.size(), Vec3i(-1, -1, -1));
for (int facet_idx = 0; facet_idx < this->m_orig_size_indices; ++facet_idx) {
neighbors[facet_idx] = m_neighbors[facet_idx];
neighbors_propagated[facet_idx] = neighbors[facet_idx];
assert(this->verify_triangle_neighbors(m_triangles[facet_idx], neighbors[facet_idx]));
if (m_triangles[facet_idx].is_split())
this->precompute_all_neighbors_recursive(facet_idx, neighbors[facet_idx], neighbors_propagated[facet_idx], neighbors, neighbors_propagated);
}
return std::make_pair(std::move(neighbors), std::move(neighbors_propagated));
}
// It appends all triangles that are touching the edge (vertexi, vertexj) of the triangle.
// It doesn't append the triangles that are touching the triangle only by part of the edge that means the triangles are from lower depth.
void TriangleSelector::append_touching_subtriangles(int itriangle, int vertexi, int vertexj, std::vector<int> &touching_subtriangles_out) const
{
if (itriangle == -1)
return;
auto process_subtriangle = [this, &itriangle, &vertexi, &vertexj, &touching_subtriangles_out](const int subtriangle_idx, Partition partition) -> void {
assert(subtriangle_idx != -1);
if (!m_triangles[subtriangle_idx].is_split())
touching_subtriangles_out.emplace_back(subtriangle_idx);
else if (int midpoint = this->triangle_midpoint(itriangle, vertexi, vertexj); midpoint != -1)
append_touching_subtriangles(subtriangle_idx, partition == Partition::First ? vertexi : midpoint, partition == Partition::First ? midpoint : vertexj, touching_subtriangles_out);
else
append_touching_subtriangles(subtriangle_idx, vertexi, vertexj, touching_subtriangles_out);
};
std::pair<int, int> touching = this->triangle_subtriangles(itriangle, vertexi, vertexj);
if (touching.first != -1)
process_subtriangle(touching.first, Partition::First);
if (touching.second != -1)
process_subtriangle(touching.second, Partition::Second);
}
// It appends all edges that are touching the edge (vertexi, vertexj) of the triangle and are not selected by seed fill
// It doesn't append the edges that are touching the triangle only by part of the edge that means the triangles are from lower depth.
void TriangleSelector::append_touching_edges(int itriangle, int vertexi, int vertexj, std::vector<Vec2i> &touching_edges_out) const
{
if (itriangle == -1)
return;
auto process_subtriangle = [this, &itriangle, &vertexi, &vertexj, &touching_edges_out](const int subtriangle_idx, Partition partition) -> void {
assert(subtriangle_idx != -1);
if (!m_triangles[subtriangle_idx].is_split()) {
if (!m_triangles[subtriangle_idx].is_selected_by_seed_fill()) {
int midpoint = this->triangle_midpoint(itriangle, vertexi, vertexj);
if (partition == Partition::First && midpoint != -1) {
touching_edges_out.emplace_back(vertexi, midpoint);
} else if (partition == Partition::First && midpoint == -1) {
touching_edges_out.emplace_back(vertexi, vertexj);
} else {
assert(midpoint != -1 && partition == Partition::Second);
touching_edges_out.emplace_back(midpoint, vertexj);
}
}
} else if (int midpoint = this->triangle_midpoint(itriangle, vertexi, vertexj); midpoint != -1)
append_touching_edges(subtriangle_idx, partition == Partition::First ? vertexi : midpoint, partition == Partition::First ? midpoint : vertexj,
touching_edges_out);
else
append_touching_edges(subtriangle_idx, vertexi, vertexj, touching_edges_out);
};
std::pair<int, int> touching = this->triangle_subtriangles(itriangle, vertexi, vertexj);
if (touching.first != -1)
process_subtriangle(touching.first, Partition::First);
if (touching.second != -1)
process_subtriangle(touching.second, Partition::Second);
}
void TriangleSelector::bucket_fill_select_triangles(const Vec3f& hit, int facet_start, const ClippingPlane &clp, bool propagate, bool force_reselection)
{
int start_facet_idx = select_unsplit_triangle(hit, facet_start);
assert(start_facet_idx != -1);
// Recompute bucket fill only if the cursor is pointing on facet unselected by bucket fill or a clipping plane is active.
if (start_facet_idx == -1 || (m_triangles[start_facet_idx].is_selected_by_seed_fill() && !force_reselection && !clp.is_active()))
return;
assert(!m_triangles[start_facet_idx].is_split());
EnforcerBlockerType start_facet_state = m_triangles[start_facet_idx].get_state();
this->seed_fill_unselect_all_triangles();
if (!propagate) {
m_triangles[start_facet_idx].select_by_seed_fill();
return;
}
auto get_all_touching_triangles = [this](int facet_idx, const Vec3i &neighbors, const Vec3i &neighbors_propagated) -> std::vector<int> {
assert(facet_idx != -1 && facet_idx < int(m_triangles.size()));
assert(this->verify_triangle_neighbors(m_triangles[facet_idx], neighbors));
std::vector<int> touching_triangles;
Vec3i vertices = {m_triangles[facet_idx].verts_idxs[0], m_triangles[facet_idx].verts_idxs[1], m_triangles[facet_idx].verts_idxs[2]};
append_touching_subtriangles(neighbors(0), vertices(1), vertices(0), touching_triangles);
append_touching_subtriangles(neighbors(1), vertices(2), vertices(1), touching_triangles);
append_touching_subtriangles(neighbors(2), vertices(0), vertices(2), touching_triangles);
for (int neighbor_idx : neighbors_propagated)
if (neighbor_idx != -1 && !m_triangles[neighbor_idx].is_split())
touching_triangles.emplace_back(neighbor_idx);
return touching_triangles;
};
auto [neighbors, neighbors_propagated] = this->precompute_all_neighbors();
std::vector<bool> visited(m_triangles.size(), false);
std::queue<int> facet_queue;
facet_queue.push(start_facet_idx);
while (!facet_queue.empty()) {
int current_facet = facet_queue.front();
facet_queue.pop();
assert(!m_triangles[current_facet].is_split());
if (!visited[current_facet]) {
m_triangles[current_facet].select_by_seed_fill();
std::vector<int> touching_triangles = get_all_touching_triangles(current_facet, neighbors[current_facet], neighbors_propagated[current_facet]);
for(const int tr_idx : touching_triangles) {
if (tr_idx < 0 || visited[tr_idx] || m_triangles[tr_idx].get_state() != start_facet_state || is_facet_clipped(tr_idx, clp))
continue;
assert(!m_triangles[tr_idx].is_split());
facet_queue.push(tr_idx);
}
}
visited[current_facet] = true;
}
}
// Selects either the whole triangle (discarding any children it had), or divides
// the triangle recursively, selecting just subtriangles truly inside the circle.
// This is done by an actual recursive call. Returns false if the triangle is
// outside the cursor.
// Called by select_patch() and by itself.
bool TriangleSelector::select_triangle(int facet_idx, EnforcerBlockerType type, bool triangle_splitting)
{
assert(facet_idx < int(m_triangles.size()));
if (! m_triangles[facet_idx].valid())
return false;
Vec3i neighbors = m_neighbors[facet_idx];
assert(this->verify_triangle_neighbors(m_triangles[facet_idx], neighbors));
if (! select_triangle_recursive(facet_idx, neighbors, type, triangle_splitting))
return false;
// In case that all children are leafs and have the same state now,
// they may be removed and substituted by the parent triangle.
remove_useless_children(facet_idx);
#ifdef EXPENSIVE_DEBUG_CHECKS
// Make sure that we did not lose track of invalid triangles.
assert(m_invalid_triangles == std::count_if(m_triangles.begin(), m_triangles.end(),
[](const Triangle& tr) { return ! tr.valid(); }));
#endif // EXPENSIVE_DEBUG_CHECKS
// Do garbage collection maybe?
if (2*m_invalid_triangles > int(m_triangles.size()))
garbage_collect();
return true;
}
// Return child of itriangle at a CCW oriented side (vertexi, vertexj), either first or 2nd part.
// If the side sharing (vertexi, vertexj) is not split, return -1.
int TriangleSelector::neighbor_child(const Triangle &tr, int vertexi, int vertexj, Partition partition) const
{
if (tr.number_of_split_sides() == 0)
// If this triangle is not split, then there is no upper / lower subtriangle sharing the edge.
return -1;
// Find the triangle edge.
int edge = tr.verts_idxs[0] == vertexi ? 0 : tr.verts_idxs[1] == vertexi ? 1 : 2;
assert(tr.verts_idxs[edge] == vertexi);
assert(tr.verts_idxs[next_idx_modulo(edge, 3)] == vertexj);
int child_idx;
if (tr.number_of_split_sides() == 1) {
if (edge != next_idx_modulo(tr.special_side(), 3))
// A child may or may not be split at this side.
return this->neighbor_child(m_triangles[tr.children[edge == tr.special_side() ? 0 : 1]], vertexi, vertexj, partition);
child_idx = partition == Partition::First ? 0 : 1;
} else if (tr.number_of_split_sides() == 2) {
if (edge == next_idx_modulo(tr.special_side(), 3))
// A child may or may not be split at this side.
return this->neighbor_child(m_triangles[tr.children[2]], vertexi, vertexj, partition);
child_idx = edge == tr.special_side() ?
(partition == Partition::First ? 0 : 1) :
(partition == Partition::First ? 2 : 0);
} else {
assert(tr.number_of_split_sides() == 3);
assert(tr.special_side() == 0);
switch(edge) {
case 0: child_idx = partition == Partition::First ? 0 : 1; break;
case 1: child_idx = partition == Partition::First ? 1 : 2; break;
default: assert(edge == 2);
child_idx = partition == Partition::First ? 2 : 0; break;
}
}
return tr.children[child_idx];
}
// Return child of itriangle at a CCW oriented side (vertexi, vertexj), either first or 2nd part.
// If itriangle == -1 or if the side sharing (vertexi, vertexj) is not split, return -1.
int TriangleSelector::neighbor_child(int itriangle, int vertexi, int vertexj, Partition partition) const
{
return itriangle == -1 ? -1 : this->neighbor_child(m_triangles[itriangle], vertexi, vertexj, partition);
}
std::pair<int, int> TriangleSelector::triangle_subtriangles(int itriangle, int vertexi, int vertexj) const
{
return itriangle == -1 ? std::make_pair(-1, -1) : Slic3r::TriangleSelector::triangle_subtriangles(m_triangles[itriangle], vertexi, vertexj);
}
std::pair<int, int> TriangleSelector::triangle_subtriangles(const Triangle &tr, int vertexi, int vertexj)
{
if (tr.number_of_split_sides() == 0)
// If this triangle is not split, then there is no subtriangles touching the edge.
return std::make_pair(-1, -1);
// Find the triangle edge.
int edge = tr.verts_idxs[0] == vertexi ? 0 : tr.verts_idxs[1] == vertexi ? 1 : 2;
assert(tr.verts_idxs[edge] == vertexi);
assert(tr.verts_idxs[next_idx_modulo(edge, 3)] == vertexj);
if (tr.number_of_split_sides() == 1) {
return edge == next_idx_modulo(tr.special_side(), 3) ? std::make_pair(tr.children[0], tr.children[1]) :
std::make_pair(tr.children[edge == tr.special_side() ? 0 : 1], -1);
} else if (tr.number_of_split_sides() == 2) {
return edge == next_idx_modulo(tr.special_side(), 3) ? std::make_pair(tr.children[2], -1) :
edge == tr.special_side() ? std::make_pair(tr.children[0], tr.children[1]) :
std::make_pair(tr.children[2], tr.children[0]);
} else {
assert(tr.number_of_split_sides() == 3);
assert(tr.special_side() == 0);
return edge == 0 ? std::make_pair(tr.children[0], tr.children[1]) :
edge == 1 ? std::make_pair(tr.children[1], tr.children[2]) :
std::make_pair(tr.children[2], tr.children[0]);
}
return std::make_pair(-1, -1);
}
// Return existing midpoint of CCW oriented side (vertexi, vertexj).
// If itriangle == -1 or if the side sharing (vertexi, vertexj) is not split, return -1.
int TriangleSelector::triangle_midpoint(const Triangle &tr, int vertexi, int vertexj) const
{
if (tr.number_of_split_sides() == 0)
// If this triangle is not split, then there is no upper / lower subtriangle sharing the edge.
return -1;
// Find the triangle edge.
int edge = tr.verts_idxs[0] == vertexi ? 0 : tr.verts_idxs[1] == vertexi ? 1 : 2;
assert(tr.verts_idxs[edge] == vertexi);
assert(tr.verts_idxs[next_idx_modulo(edge, 3)] == vertexj);
if (tr.number_of_split_sides() == 1) {
return edge == next_idx_modulo(tr.special_side(), 3) ?
m_triangles[tr.children[0]].verts_idxs[2] :
this->triangle_midpoint(m_triangles[tr.children[edge == tr.special_side() ? 0 : 1]], vertexi, vertexj);
} else if (tr.number_of_split_sides() == 2) {
return edge == next_idx_modulo(tr.special_side(), 3) ?
this->triangle_midpoint(m_triangles[tr.children[2]], vertexi, vertexj) :
edge == tr.special_side() ?
m_triangles[tr.children[0]].verts_idxs[1] :
m_triangles[tr.children[1]].verts_idxs[2];
} else {
assert(tr.number_of_split_sides() == 3);
assert(tr.special_side() == 0);
return
(edge == 0) ? m_triangles[tr.children[0]].verts_idxs[1] :
(edge == 1) ? m_triangles[tr.children[1]].verts_idxs[2] :
m_triangles[tr.children[2]].verts_idxs[2];
}
}
// Return existing midpoint of CCW oriented side (vertexi, vertexj).
// If itriangle == -1 or if the side sharing (vertexi, vertexj) is not split, return -1.
int TriangleSelector::triangle_midpoint(int itriangle, int vertexi, int vertexj) const
{
return itriangle == -1 ? -1 : this->triangle_midpoint(m_triangles[itriangle], vertexi, vertexj);
}
int TriangleSelector::triangle_midpoint_or_allocate(int itriangle, int vertexi, int vertexj)
{
int midpoint = this->triangle_midpoint(itriangle, vertexi, vertexj);
if (midpoint == -1) {
Vec3f c = 0.5f * (m_vertices[vertexi].v + m_vertices[vertexj].v);
#ifdef EXPENSIVE_DEBUG_CHECKS
// Verify that the vertex is really a new one.
auto it = std::find_if(m_vertices.begin(), m_vertices.end(), [c](const Vertex &v) {
return v.ref_cnt > 0 && (v.v - c).norm() < EPSILON; });
assert(it == m_vertices.end());
#endif // EXPENSIVE_DEBUG_CHECKS
// Allocate a new vertex, possibly reusing the free list.
if (m_free_vertices_head == -1) {
// Allocate a new vertex.
midpoint = int(m_vertices.size());
m_vertices.emplace_back(c);
} else {
// Reuse a vertex from the free list.
assert(m_free_vertices_head >= -1 && m_free_vertices_head < int(m_vertices.size()));
midpoint = m_free_vertices_head;
memcpy(&m_free_vertices_head, &m_vertices[midpoint].v[0], sizeof(m_free_vertices_head));
assert(m_free_vertices_head >= -1 && m_free_vertices_head < int(m_vertices.size()));
m_vertices[midpoint].v = c;
}
assert(m_vertices[midpoint].ref_cnt == 0);
} else {
#ifndef NDEBUG
Vec3f c1 = 0.5f * (m_vertices[vertexi].v + m_vertices[vertexj].v);
Vec3f c2 = m_vertices[midpoint].v;
float d = (c2 - c1).norm();
assert(std::abs(d) < EPSILON);
#endif // NDEBUG
assert(m_vertices[midpoint].ref_cnt > 0);
}
return midpoint;
}
// Return neighbors of ith child of a triangle given neighbors of the triangle.
// Returns -1 if such a neighbor does not exist at all, or it does not exist
// at the same depth as the ith child.
// Using the same splitting strategy as TriangleSelector::split_triangle()
Vec3i TriangleSelector::child_neighbors(const Triangle &tr, const Vec3i &neighbors, int child_idx) const
{
assert(this->verify_triangle_neighbors(tr, neighbors));
assert(child_idx >= 0 && child_idx <= tr.number_of_split_sides());
int i = tr.special_side();
int j = next_idx_modulo(i, 3);
int k = next_idx_modulo(j, 3);
Vec3i out;
switch (tr.number_of_split_sides()) {
case 1:
switch (child_idx) {
case 0:
out(0) = neighbors(i);
out(1) = this->neighbor_child(neighbors(j), tr.verts_idxs[k], tr.verts_idxs[j], Partition::Second);
out(2) = tr.children[1];
break;
default:
assert(child_idx == 1);
out(0) = this->neighbor_child(neighbors(j), tr.verts_idxs[k], tr.verts_idxs[j], Partition::First);
out(1) = neighbors(k);
out(2) = tr.children[0];
break;
}
break;
case 2:
switch (child_idx) {
case 0:
out(0) = this->neighbor_child(neighbors(i), tr.verts_idxs[j], tr.verts_idxs[i], Partition::Second);
out(1) = tr.children[1];
out(2) = this->neighbor_child(neighbors(k), tr.verts_idxs[i], tr.verts_idxs[k], Partition::First);
break;
case 1:
assert(child_idx == 1);
out(0) = this->neighbor_child(neighbors(i), tr.verts_idxs[j], tr.verts_idxs[i], Partition::First);
out(1) = tr.children[2];
out(2) = tr.children[0];
break;
default:
assert(child_idx == 2);
out(0) = neighbors(j);
out(1) = this->neighbor_child(neighbors(k), tr.verts_idxs[i], tr.verts_idxs[k], Partition::Second);
out(2) = tr.children[1];
break;
}
break;
case 3:
assert(tr.special_side() == 0);
switch (child_idx) {
case 0:
out(0) = this->neighbor_child(neighbors(0), tr.verts_idxs[1], tr.verts_idxs[0], Partition::Second);
out(1) = tr.children[3];
out(2) = this->neighbor_child(neighbors(2), tr.verts_idxs[0], tr.verts_idxs[2], Partition::First);
break;
case 1:
out(0) = this->neighbor_child(neighbors(0), tr.verts_idxs[1], tr.verts_idxs[0], Partition::First);
out(1) = this->neighbor_child(neighbors(1), tr.verts_idxs[2], tr.verts_idxs[1], Partition::Second);
out(2) = tr.children[3];
break;
case 2:
out(0) = this->neighbor_child(neighbors(1), tr.verts_idxs[2], tr.verts_idxs[1], Partition::First);
out(1) = this->neighbor_child(neighbors(2), tr.verts_idxs[0], tr.verts_idxs[2], Partition::Second);
out(2) = tr.children[3];
break;
default:
assert(child_idx == 3);
out(0) = tr.children[1];
out(1) = tr.children[2];
out(2) = tr.children[0];
break;
}
break;
default:
assert(false);
}
assert(this->verify_triangle_neighbors(tr, neighbors));
assert(this->verify_triangle_neighbors(m_triangles[tr.children[child_idx]], out));
return out;
}
// Return neighbors of the ith child of a triangle given neighbors of the triangle.
// If such a neighbor doesn't exist, return the neighbor from the previous depth.
Vec3i TriangleSelector::child_neighbors_propagated(const Triangle &tr, const Vec3i &neighbors, int child_idx) const
{
int i = tr.special_side();
int j = next_idx_modulo(i, 3);
int k = next_idx_modulo(j, 3);
Vec3i out;
auto replace_if_not_exists = [&out](int index_to_replace, int neighbor) {
if (out(index_to_replace) == -1)
out(index_to_replace) = neighbor;
};
switch (tr.number_of_split_sides()) {
case 1:
switch (child_idx) {
case 0:
out(0) = neighbors(i);
out(1) = this->neighbor_child(neighbors(j), tr.verts_idxs[k], tr.verts_idxs[j], Partition::Second);
replace_if_not_exists(1, neighbors(j));
out(2) = tr.children[1];
break;
default:
assert(child_idx == 1);
out(0) = this->neighbor_child(neighbors(j), tr.verts_idxs[k], tr.verts_idxs[j], Partition::First);
replace_if_not_exists(0, neighbors(j));
out(1) = neighbors(k);
out(2) = tr.children[0];
break;
}
break;
case 2:
switch (child_idx) {
case 0:
out(0) = this->neighbor_child(neighbors(i), tr.verts_idxs[j], tr.verts_idxs[i], Partition::Second);
replace_if_not_exists(0, neighbors(i));
out(1) = tr.children[1];
out(2) = this->neighbor_child(neighbors(k), tr.verts_idxs[i], tr.verts_idxs[k], Partition::First);
replace_if_not_exists(2, neighbors(k));
break;
case 1:
assert(child_idx == 1);
out(0) = this->neighbor_child(neighbors(i), tr.verts_idxs[j], tr.verts_idxs[i], Partition::First);
replace_if_not_exists(0, neighbors(i));
out(1) = tr.children[2];
out(2) = tr.children[0];
break;
default:
assert(child_idx == 2);
out(0) = neighbors(j);
out(1) = this->neighbor_child(neighbors(k), tr.verts_idxs[i], tr.verts_idxs[k], Partition::Second);
replace_if_not_exists(1, neighbors(k));
out(2) = tr.children[1];
break;
}
break;
case 3:
assert(tr.special_side() == 0);
switch (child_idx) {
case 0:
out(0) = this->neighbor_child(neighbors(0), tr.verts_idxs[1], tr.verts_idxs[0], Partition::Second);
replace_if_not_exists(0, neighbors(0));
out(1) = tr.children[3];
out(2) = this->neighbor_child(neighbors(2), tr.verts_idxs[0], tr.verts_idxs[2], Partition::First);
replace_if_not_exists(2, neighbors(2));
break;
case 1:
out(0) = this->neighbor_child(neighbors(0), tr.verts_idxs[1], tr.verts_idxs[0], Partition::First);
replace_if_not_exists(0, neighbors(0));
out(1) = this->neighbor_child(neighbors(1), tr.verts_idxs[2], tr.verts_idxs[1], Partition::Second);
replace_if_not_exists(1, neighbors(1));
out(2) = tr.children[3];
break;
case 2:
out(0) = this->neighbor_child(neighbors(1), tr.verts_idxs[2], tr.verts_idxs[1], Partition::First);
replace_if_not_exists(0, neighbors(1));
out(1) = this->neighbor_child(neighbors(2), tr.verts_idxs[0], tr.verts_idxs[2], Partition::Second);
replace_if_not_exists(1, neighbors(2));
out(2) = tr.children[3];
break;
default:
assert(child_idx == 3);
out(0) = tr.children[1];
out(1) = tr.children[2];
out(2) = tr.children[0];
break;
}
break;
default: assert(false);
}
return out;
}
bool TriangleSelector::select_triangle_recursive(int facet_idx, const Vec3i &neighbors, EnforcerBlockerType type, bool triangle_splitting)
{
assert(facet_idx < int(m_triangles.size()));
Triangle* tr = &m_triangles[facet_idx];
if (! tr->valid())
return false;
assert(this->verify_triangle_neighbors(*tr, neighbors));
int num_of_inside_vertices = m_cursor->vertices_inside(*tr, m_vertices);
if (num_of_inside_vertices == 0
&& ! m_cursor->is_pointer_in_triangle(*tr, m_vertices)
&& ! m_cursor->is_edge_inside_cursor(*tr, m_vertices))
return false;
if (num_of_inside_vertices == 3) {
// dump any subdivision and select whole triangle
undivide_triangle(facet_idx);
tr->set_state(type);
} else {
// the triangle is partially inside, let's recursively divide it
// (if not already) and try selecting its children.
if (! tr->is_split() && tr->get_state() == type) {
// This is leaf triangle that is already of correct type as a whole.
// No need to split, all children would end up selected anyway.
return true;
}
if (triangle_splitting)
split_triangle(facet_idx, neighbors);
else if (!m_triangles[facet_idx].is_split())
m_triangles[facet_idx].set_state(type);
tr = &m_triangles[facet_idx]; // might have been invalidated by split_triangle().
int num_of_children = tr->number_of_split_sides() + 1;
if (num_of_children != 1) {
for (int i=0; i<num_of_children; ++i) {
assert(i < int(tr->children.size()));
assert(tr->children[i] < int(m_triangles.size()));
// Recursion, deep first search over the children of this triangle.
// All children of this triangle were created by splitting a single source triangle of the original mesh.
select_triangle_recursive(tr->children[i], this->child_neighbors(*tr, neighbors, i), type, triangle_splitting);
tr = &m_triangles[facet_idx]; // might have been invalidated
}
}
}
return true;
}
void TriangleSelector::set_facet(int facet_idx, EnforcerBlockerType state)
{
assert(facet_idx < m_orig_size_indices);
undivide_triangle(facet_idx);
assert(! m_triangles[facet_idx].is_split());
m_triangles[facet_idx].set_state(state);
}
// called by select_patch()->select_triangle()...select_triangle()
// to decide which sides of the triangle to split and to actually split it calling set_division() and perform_split().
void TriangleSelector::split_triangle(int facet_idx, const Vec3i &neighbors)
{
if (m_triangles[facet_idx].is_split()) {
// The triangle is divided already.
return;
}
Triangle* tr = &m_triangles[facet_idx];
assert(this->verify_triangle_neighbors(*tr, neighbors));
EnforcerBlockerType old_type = tr->get_state();
// If we got here, we are about to actually split the triangle.
const double limit_squared = m_edge_limit_sqr;
std::array<int, 3>& facet = tr->verts_idxs;
std::array<const stl_vertex*, 3> pts = { &m_vertices[facet[0]].v,
&m_vertices[facet[1]].v,
&m_vertices[facet[2]].v};
std::array<stl_vertex, 3> pts_transformed; // must stay in scope of pts !!!
// In case the object is non-uniformly scaled, transform the
// points to world coords.
if (! m_cursor->uniform_scaling) {
for (size_t i=0; i<pts.size(); ++i) {
pts_transformed[i] = m_cursor->trafo * (*pts[i]);
pts[i] = &pts_transformed[i];
}
}
std::array<double, 3> sides = {(*pts[2] - *pts[1]).squaredNorm(),
(*pts[0] - *pts[2]).squaredNorm(),
(*pts[1] - *pts[0]).squaredNorm()};
boost::container::small_vector<int, 3> sides_to_split;
int side_to_keep = -1;
for (int pt_idx = 0; pt_idx<3; ++pt_idx) {
if (sides[pt_idx] > limit_squared)
sides_to_split.push_back(pt_idx);
else
side_to_keep = pt_idx;
}
if (sides_to_split.empty()) {
// This shall be unselected.
tr->set_division(0, 0);
return;
}
// Save how the triangle will be split. Second argument makes sense only for one
// or two split sides, otherwise the value is ignored.
tr->set_division(int(sides_to_split.size()),
sides_to_split.size() == 2 ? side_to_keep : sides_to_split[0]);
perform_split(facet_idx, neighbors, old_type);
}
// Is pointer in a triangle?
bool TriangleSelector::Cursor::is_pointer_in_triangle(const Triangle &tr, const std::vector<Vertex> &vertices) const {
const Vec3f& p1 = vertices[tr.verts_idxs[0]].v;
const Vec3f& p2 = vertices[tr.verts_idxs[1]].v;
const Vec3f& p3 = vertices[tr.verts_idxs[2]].v;
return this->is_pointer_in_triangle(p1, p2, p3);
}
// Determine whether this facet is potentially visible (still can be obscured).
bool TriangleSelector::Cursor::is_facet_visible(const Cursor &cursor, int facet_idx, const std::vector<Vec3f> &face_normals)
{
assert(facet_idx < int(face_normals.size()));
Vec3f n = face_normals[facet_idx];
if (!cursor.uniform_scaling)
n = cursor.trafo_normal * n;
return n.dot(cursor.dir) < 0.f;
}
// How many vertices of a triangle are inside the circle?
int TriangleSelector::Cursor::vertices_inside(const Triangle &tr, const std::vector<Vertex> &vertices) const
{
int inside = 0;
for (size_t i = 0; i < 3; ++i)
if (this->is_mesh_point_inside(vertices[tr.verts_idxs[i]].v))
++inside;
return inside;
}
// Is any edge inside Sphere cursor?
bool TriangleSelector::Sphere::is_edge_inside_cursor(const Triangle &tr, const std::vector<Vertex> &vertices) const
{
std::array<Vec3f, 3> pts;
for (int i = 0; i < 3; ++i) {
pts[i] = vertices[tr.verts_idxs[i]].v;
if (!this->uniform_scaling)
pts[i] = this->trafo * pts[i];
}
for (int side = 0; side < 3; ++side) {
const Vec3f &edge_a = pts[side];
const Vec3f &edge_b = pts[side < 2 ? side + 1 : 0];
if (test_line_inside_sphere(edge_a, edge_b, this->center, this->radius))
return true;
}
return false;
}
// Is edge inside cursor?
bool TriangleSelector::Circle::is_edge_inside_cursor(const Triangle &tr, const std::vector<Vertex> &vertices) const
{
std::array<Vec3f, 3> pts;
for (int i = 0; i < 3; ++i) {
pts[i] = vertices[tr.verts_idxs[i]].v;
if (!this->uniform_scaling)
pts[i] = this->trafo * pts[i];
}
const Vec3f &p = this->center;
for (int side = 0; side < 3; ++side) {
const Vec3f &a = pts[side];
const Vec3f &b = pts[side < 2 ? side + 1 : 0];
Vec3f s = (b - a).normalized();
float t = (p - a).dot(s);
Vec3f vector = a + t * s - p;
// vector is 3D vector from center to the intersection. What we want to
// measure is length of its projection onto plane perpendicular to dir.
float dist_sqr = vector.squaredNorm() - std::pow(vector.dot(this->dir), 2.f);
if (dist_sqr < this->radius_sqr && t >= 0.f && t <= (b - a).norm())
return true;
}
return false;
}
// Recursively remove all subtriangles.
void TriangleSelector::undivide_triangle(int facet_idx)
{
assert(facet_idx < int(m_triangles.size()));
Triangle& tr = m_triangles[facet_idx];
if (tr.is_split()) {
for (int i = 0; i <= tr.number_of_split_sides(); ++i) {
int child = tr.children[i];
Triangle &child_tr = m_triangles[child];
assert(child_tr.valid());
undivide_triangle(child);
for (int j = 0; j < 3; ++j) {
int iv = child_tr.verts_idxs[j];
Vertex &v = m_vertices[iv];
assert(v.ref_cnt > 0);
if (-- v.ref_cnt == 0) {
// Release this vertex.
// Chain released vertices into a linked list through ref_cnt.
assert(m_free_vertices_head >= -1 && m_free_vertices_head < int(m_vertices.size()));
memcpy(&m_vertices[iv].v[0], &m_free_vertices_head, sizeof(m_free_vertices_head));
m_free_vertices_head = iv;
assert(m_free_vertices_head >= -1 && m_free_vertices_head < int(m_vertices.size()));
}
}
// Chain released triangles into a linked list through children[0].
assert(child_tr.valid());
child_tr.m_valid = false;
assert(m_free_triangles_head >= -1 && m_free_triangles_head < int(m_triangles.size()));
assert(m_free_triangles_head == -1 || ! m_triangles[m_free_triangles_head].valid());
child_tr.children[0] = m_free_triangles_head;
m_free_triangles_head = child;
assert(m_free_triangles_head >= -1 && m_free_triangles_head < int(m_triangles.size()));
++m_invalid_triangles;
}
tr.set_division(0, 0); // not split
}
}
void TriangleSelector::remove_useless_children(int facet_idx)
{
// Check that all children are leafs of the same type. If not, try to
// make them (recursive call). Remove them if sucessful.
assert(facet_idx < int(m_triangles.size()) && m_triangles[facet_idx].valid());
Triangle& tr = m_triangles[facet_idx];
if (! tr.is_split()) {
// This is a leaf, there nothing to do. This can happen during the
// first (non-recursive call). Shouldn't otherwise.
return;
}
// Call this for all non-leaf children.
for (int child_idx=0; child_idx<=tr.number_of_split_sides(); ++child_idx) {
assert(child_idx < int(m_triangles.size()) && m_triangles[child_idx].valid());
if (m_triangles[tr.children[child_idx]].is_split())
remove_useless_children(tr.children[child_idx]);
}
// Return if a child is not leaf or two children differ in type.
EnforcerBlockerType first_child_type = EnforcerBlockerType::NONE;
for (int child_idx=0; child_idx<=tr.number_of_split_sides(); ++child_idx) {
if (m_triangles[tr.children[child_idx]].is_split())
return;
if (child_idx == 0)
first_child_type = m_triangles[tr.children[0]].get_state();
else if (m_triangles[tr.children[child_idx]].get_state() != first_child_type)
return;
}
// If we got here, the children can be removed.
undivide_triangle(facet_idx);
tr.set_state(first_child_type);
}
void TriangleSelector::garbage_collect()
{
// First make a map from old to new triangle indices.
int new_idx = m_orig_size_indices;
std::vector<int> new_triangle_indices(m_triangles.size(), -1);
for (int i = m_orig_size_indices; i<int(m_triangles.size()); ++i)
if (m_triangles[i].valid())
new_triangle_indices[i] = new_idx ++;
// Now we know which vertices are not referenced anymore. Make a map
// from old idxs to new ones, like we did for triangles.
new_idx = m_orig_size_vertices;
std::vector<int> new_vertices_indices(m_vertices.size(), -1);
for (int i=m_orig_size_vertices; i<int(m_vertices.size()); ++i) {
assert(m_vertices[i].ref_cnt >= 0);
if (m_vertices[i].ref_cnt != 0)
new_vertices_indices[i] = new_idx ++;
}
// We can remove all invalid triangles and vertices that are no longer referenced.
m_triangles.erase(std::remove_if(m_triangles.begin()+m_orig_size_indices, m_triangles.end(),
[](const Triangle& tr) { return ! tr.valid(); }),
m_triangles.end());
m_vertices.erase(std::remove_if(m_vertices.begin()+m_orig_size_vertices, m_vertices.end(),
[](const Vertex& vert) { return vert.ref_cnt == 0; }),
m_vertices.end());
// Now go through all remaining triangles and update changed indices.
for (Triangle& tr : m_triangles) {
assert(tr.valid());
if (tr.is_split()) {
// There are children. Update their indices.
for (int j=0; j<=tr.number_of_split_sides(); ++j) {
assert(new_triangle_indices[tr.children[j]] != -1);
tr.children[j] = new_triangle_indices[tr.children[j]];
}
}
// Update indices into m_vertices. The original vertices are never
// touched and need not be reindexed.
for (int& idx : tr.verts_idxs) {
if (idx >= m_orig_size_vertices) {
assert(new_vertices_indices[idx] != -1);
idx = new_vertices_indices[idx];
}
}
}
m_invalid_triangles = 0;
m_free_triangles_head = -1;
m_free_vertices_head = -1;
}
TriangleSelector::TriangleSelector(const TriangleMesh& mesh)
: m_mesh{mesh}, m_neighbors(its_face_neighbors(mesh.its)), m_face_normals(its_face_normals(mesh.its))
{
reset();
}
void TriangleSelector::reset()
{
m_vertices.clear();
m_triangles.clear();
m_invalid_triangles = 0;
m_free_triangles_head = -1;
m_free_vertices_head = -1;
m_vertices.reserve(m_mesh.its.vertices.size());
for (const stl_vertex& vert : m_mesh.its.vertices)
m_vertices.emplace_back(vert);
m_triangles.reserve(m_mesh.its.indices.size());
for (size_t i = 0; i < m_mesh.its.indices.size(); ++i) {
const stl_triangle_vertex_indices &ind = m_mesh.its.indices[i];
push_triangle(ind[0], ind[1], ind[2], int(i));
}
m_orig_size_vertices = int(m_vertices.size());
m_orig_size_indices = int(m_triangles.size());
}
void TriangleSelector::set_edge_limit(float edge_limit)
{
m_edge_limit_sqr = std::pow(edge_limit, 2.f);
}
int TriangleSelector::push_triangle(int a, int b, int c, int source_triangle, const EnforcerBlockerType state)
{
for (int i : {a, b, c}) {
assert(i >= 0 && i < int(m_vertices.size()));
++m_vertices[i].ref_cnt;
}
int idx;
if (m_free_triangles_head == -1) {
// Allocate a new triangle.
assert(m_invalid_triangles == 0);
idx = int(m_triangles.size());
m_triangles.emplace_back(a, b, c, source_triangle, state);
} else {
// Reuse triangle from the free list.
assert(m_free_triangles_head >= -1 && m_free_triangles_head < int(m_triangles.size()));
assert(! m_triangles[m_free_triangles_head].valid());
assert(m_invalid_triangles > 0);
idx = m_free_triangles_head;
m_free_triangles_head = m_triangles[idx].children[0];
-- m_invalid_triangles;
assert(m_free_triangles_head >= -1 && m_free_triangles_head < int(m_triangles.size()));
assert(m_free_triangles_head == -1 || ! m_triangles[m_free_triangles_head].valid());
assert(m_invalid_triangles >= 0);
assert((m_invalid_triangles == 0) == (m_free_triangles_head == -1));
m_triangles[idx] = {a, b, c, source_triangle, state};
}
assert(m_triangles[idx].valid());
return idx;
}
// called by deserialize() and select_patch()->select_triangle()->...select_triangle()->split_triangle()
// Split a triangle based on Triangle::number_of_split_sides() and Triangle::special_side()
// by allocating child triangles and midpoint vertices.
// Midpoint vertices are possibly reused by traversing children of neighbor triangles.
void TriangleSelector::perform_split(int facet_idx, const Vec3i &neighbors, EnforcerBlockerType old_state)
{
// Reserve space for the new triangles upfront, so that the reference to this triangle will not change.
{
size_t num_triangles_new = m_triangles.size() + m_triangles[facet_idx].number_of_split_sides() + 1;
if (m_triangles.capacity() < num_triangles_new)
m_triangles.reserve(next_highest_power_of_2(num_triangles_new));
}
Triangle &tr = m_triangles[facet_idx];
assert(tr.is_split());
// indices of triangle vertices
#ifdef NDEBUG
boost::container::small_vector<int, 6> verts_idxs;
#else // NDEBUG
// For easier debugging.
std::vector<int> verts_idxs;
verts_idxs.reserve(6);
#endif // NDEBUG
for (int j=0, idx = tr.special_side(); j<3; ++j, idx = next_idx_modulo(idx, 3))
verts_idxs.push_back(tr.verts_idxs[idx]);
auto get_alloc_vertex = [this, &neighbors, &verts_idxs](int edge, int i1, int i2) -> int {
return this->triangle_midpoint_or_allocate(neighbors(edge), verts_idxs[i1], verts_idxs[i2]);
};
int ichild = 0;
switch (tr.number_of_split_sides()) {
case 1:
verts_idxs.insert(verts_idxs.begin()+2, get_alloc_vertex(next_idx_modulo(tr.special_side(), 3), 2, 1));
tr.children[ichild ++] = push_triangle(verts_idxs[0], verts_idxs[1], verts_idxs[2], tr.source_triangle, old_state);
tr.children[ichild ] = push_triangle(verts_idxs[2], verts_idxs[3], verts_idxs[0], tr.source_triangle, old_state);
break;
case 2:
verts_idxs.insert(verts_idxs.begin()+1, get_alloc_vertex(tr.special_side(), 1, 0));
verts_idxs.insert(verts_idxs.begin()+4, get_alloc_vertex(prev_idx_modulo(tr.special_side(), 3), 0, 3));
tr.children[ichild ++] = push_triangle(verts_idxs[0], verts_idxs[1], verts_idxs[4], tr.source_triangle, old_state);
tr.children[ichild ++] = push_triangle(verts_idxs[1], verts_idxs[2], verts_idxs[4], tr.source_triangle, old_state);
tr.children[ichild ] = push_triangle(verts_idxs[2], verts_idxs[3], verts_idxs[4], tr.source_triangle, old_state);
break;
case 3:
assert(tr.special_side() == 0);
verts_idxs.insert(verts_idxs.begin()+1, get_alloc_vertex(0, 1, 0));
verts_idxs.insert(verts_idxs.begin()+3, get_alloc_vertex(1, 3, 2));
verts_idxs.insert(verts_idxs.begin()+5, get_alloc_vertex(2, 0, 4));
tr.children[ichild ++] = push_triangle(verts_idxs[0], verts_idxs[1], verts_idxs[5], tr.source_triangle, old_state);
tr.children[ichild ++] = push_triangle(verts_idxs[1], verts_idxs[2], verts_idxs[3], tr.source_triangle, old_state);
tr.children[ichild ++] = push_triangle(verts_idxs[3], verts_idxs[4], verts_idxs[5], tr.source_triangle, old_state);
tr.children[ichild ] = push_triangle(verts_idxs[1], verts_idxs[3], verts_idxs[5], tr.source_triangle, old_state);
break;
default:
break;
}
#ifndef NDEBUG
assert(this->verify_triangle_neighbors(tr, neighbors));
for (int i = 0; i <= tr.number_of_split_sides(); ++i) {
Vec3i n = this->child_neighbors(tr, neighbors, i);
assert(this->verify_triangle_neighbors(m_triangles[tr.children[i]], n));
}
#endif // NDEBUG
}
bool TriangleSelector::has_facets(EnforcerBlockerType state) const
{
for (const Triangle& tr : m_triangles)
if (tr.valid() && ! tr.is_split() && tr.get_state() == state)
return true;
return false;
}
int TriangleSelector::num_facets(EnforcerBlockerType state) const
{
int cnt = 0;
for (const Triangle& tr : m_triangles)
if (tr.valid() && ! tr.is_split() && tr.get_state() == state)
++ cnt;
return cnt;
}
indexed_triangle_set TriangleSelector::get_facets(EnforcerBlockerType state) const
{
indexed_triangle_set out;
std::vector<int> vertex_map(m_vertices.size(), -1);
for (const Triangle& tr : m_triangles) {
if (tr.valid() && ! tr.is_split() && tr.get_state() == state) {
stl_triangle_vertex_indices indices;
for (int i=0; i<3; ++i) {
int j = tr.verts_idxs[i];
if (vertex_map[j] == -1) {
vertex_map[j] = int(out.vertices.size());
out.vertices.emplace_back(m_vertices[j].v);
}
indices[i] = vertex_map[j];
}
out.indices.emplace_back(indices);
}
}
return out;
}
indexed_triangle_set TriangleSelector::get_facets_strict(EnforcerBlockerType state) const
{
indexed_triangle_set out;
size_t num_vertices = 0;
for (const Vertex &v : m_vertices)
if (v.ref_cnt > 0)
++ num_vertices;
out.vertices.reserve(num_vertices);
std::vector<int> vertex_map(m_vertices.size(), -1);
for (size_t i = 0; i < m_vertices.size(); ++ i)
if (const Vertex &v = m_vertices[i]; v.ref_cnt > 0) {
vertex_map[i] = int(out.vertices.size());
out.vertices.emplace_back(v.v);
}
for (int itriangle = 0; itriangle < m_orig_size_indices; ++ itriangle)
this->get_facets_strict_recursive(m_triangles[itriangle], m_neighbors[itriangle], state, out.indices);
for (auto &triangle : out.indices)
for (int i = 0; i < 3; ++ i)
triangle(i) = vertex_map[triangle(i)];
return out;
}
void TriangleSelector::get_facets_strict_recursive(
const Triangle &tr,
const Vec3i &neighbors,
EnforcerBlockerType state,
std::vector<stl_triangle_vertex_indices> &out_triangles) const
{
if (tr.is_split()) {
for (int i = 0; i <= tr.number_of_split_sides(); ++ i)
this->get_facets_strict_recursive(
m_triangles[tr.children[i]],
this->child_neighbors(tr, neighbors, i),
state, out_triangles);
} else if (tr.get_state() == state)
this->get_facets_split_by_tjoints({tr.verts_idxs[0], tr.verts_idxs[1], tr.verts_idxs[2]}, neighbors, out_triangles);
}
void TriangleSelector::get_facets_split_by_tjoints(const Vec3i &vertices, const Vec3i &neighbors, std::vector<stl_triangle_vertex_indices> &out_triangles) const
{
// Export this triangle, but first collect the T-joint vertices along its edges.
Vec3i midpoints(
this->triangle_midpoint(neighbors(0), vertices(1), vertices(0)),
this->triangle_midpoint(neighbors(1), vertices(2), vertices(1)),
this->triangle_midpoint(neighbors(2), vertices(0), vertices(2)));
int splits = (midpoints(0) != -1) + (midpoints(1) != -1) + (midpoints(2) != -1);
switch (splits) {
case 0:
// Just emit this triangle.
out_triangles.emplace_back(vertices(0), vertices(1), vertices(2));
break;
case 1:
{
// Split to two triangles
int i = midpoints(0) != -1 ? 2 : midpoints(1) != -1 ? 0 : 1;
int j = next_idx_modulo(i, 3);
int k = next_idx_modulo(j, 3);
this->get_facets_split_by_tjoints(
{ vertices(i), vertices(j), midpoints(j) },
{ neighbors(i),
this->neighbor_child(neighbors(j), vertices(k), vertices(j), Partition::Second),
-1 },
out_triangles);
this->get_facets_split_by_tjoints(
{ midpoints(j), vertices(k), vertices(i) },
{ this->neighbor_child(neighbors(j), vertices(k), vertices(j), Partition::First),
neighbors(k),
-1 },
out_triangles);
break;
}
case 2:
{
// Split to three triangles.
int i = midpoints(0) == -1 ? 2 : midpoints(1) == -1 ? 0 : 1;
int j = next_idx_modulo(i, 3);
int k = next_idx_modulo(j, 3);
this->get_facets_split_by_tjoints(
{ vertices(i), midpoints(i), midpoints(k) },
{ this->neighbor_child(neighbors(i), vertices(j), vertices(i), Partition::Second),
-1,
this->neighbor_child(neighbors(k), vertices(i), vertices(k), Partition::First) },
out_triangles);
this->get_facets_split_by_tjoints(
{ midpoints(i), vertices(j), midpoints(k) },
{ this->neighbor_child(neighbors(i), vertices(j), vertices(i), Partition::First),
-1, -1 },
out_triangles);
this->get_facets_split_by_tjoints(
{ vertices(j), vertices(k), midpoints(k) },
{ neighbors(j),
this->neighbor_child(neighbors(k), vertices(i), vertices(k), Partition::Second),
-1 },
out_triangles);
break;
}
default:
assert(splits == 3);
// Split to 4 triangles.
this->get_facets_split_by_tjoints(
{ vertices(0), midpoints(0), midpoints(2) },
{ this->neighbor_child(neighbors(0), vertices(1), vertices(0), Partition::Second),
-1,
this->neighbor_child(neighbors(2), vertices(0), vertices(2), Partition::First) },
out_triangles);
this->get_facets_split_by_tjoints(
{ midpoints(0), vertices(1), midpoints(1) },
{ this->neighbor_child(neighbors(0), vertices(1), vertices(0), Partition::First),
this->neighbor_child(neighbors(1), vertices(2), vertices(1), Partition::Second),
-1 },
out_triangles);
this->get_facets_split_by_tjoints(
{ midpoints(1), vertices(2), midpoints(2) },
{ this->neighbor_child(neighbors(1), vertices(2), vertices(1), Partition::First),
this->neighbor_child(neighbors(2), vertices(0), vertices(2), Partition::Second),
-1 },
out_triangles);
out_triangles.emplace_back(midpoints);
break;
}
}
std::vector<Vec2i> TriangleSelector::get_seed_fill_contour() const {
std::vector<Vec2i> edges_out;
for (int facet_idx = 0; facet_idx < this->m_orig_size_indices; ++facet_idx) {
const Vec3i neighbors = m_neighbors[facet_idx];
assert(this->verify_triangle_neighbors(m_triangles[facet_idx], neighbors));
this->get_seed_fill_contour_recursive(facet_idx, neighbors, neighbors, edges_out);
}
return edges_out;
}
void TriangleSelector::get_seed_fill_contour_recursive(const int facet_idx, const Vec3i &neighbors, const Vec3i &neighbors_propagated, std::vector<Vec2i> &edges_out) const {
assert(facet_idx != -1 && facet_idx < int(m_triangles.size()));
assert(this->verify_triangle_neighbors(m_triangles[facet_idx], neighbors));
const Triangle *tr = &m_triangles[facet_idx];
if (!tr->valid())
return;
if (tr->is_split()) {
int num_of_children = tr->number_of_split_sides() + 1;
if (num_of_children != 1) {
for (int i = 0; i < num_of_children; ++i) {
assert(i < int(tr->children.size()));
assert(tr->children[i] < int(m_triangles.size()));
// Recursion, deep first search over the children of this triangle.
// All children of this triangle were created by splitting a single source triangle of the original mesh.
this->get_seed_fill_contour_recursive(tr->children[i], this->child_neighbors(*tr, neighbors, i), this->child_neighbors_propagated(*tr, neighbors_propagated, i), edges_out);
}
}
} else if (tr->is_selected_by_seed_fill()) {
Vec3i vertices = {m_triangles[facet_idx].verts_idxs[0], m_triangles[facet_idx].verts_idxs[1], m_triangles[facet_idx].verts_idxs[2]};
append_touching_edges(neighbors(0), vertices(1), vertices(0), edges_out);
append_touching_edges(neighbors(1), vertices(2), vertices(1), edges_out);
append_touching_edges(neighbors(2), vertices(0), vertices(2), edges_out);
// It appends the edges that are touching the triangle only by part of the edge that means the triangles are from lower depth.
for (int idx = 0; idx < 3; ++idx)
if (int neighbor_tr_idx = neighbors_propagated(idx); neighbor_tr_idx != -1 && !m_triangles[neighbor_tr_idx].is_split() && !m_triangles[neighbor_tr_idx].is_selected_by_seed_fill())
edges_out.emplace_back(vertices(idx), vertices(next_idx_modulo(idx, 3)));
}
}
std::pair<std::vector<std::pair<int, int>>, std::vector<bool>> TriangleSelector::serialize() const
{
// Each original triangle of the mesh is assigned a number encoding its state
// or how it is split. Each triangle is encoded by 4 bits (xxyy) or 8 bits (zzzzxxyy):
// leaf triangle: xx = EnforcerBlockerType (Only values 0, 1, and 2. Value 3 is used as an indicator for additional 4 bits.), yy = 0
// leaf triangle: xx = 0b11, yy = 0b00, zzzz = EnforcerBlockerType (subtracted by 3)
// non-leaf: xx = special side, yy = number of split sides
// These are bitwise appended and formed into one 64-bit integer.
// The function returns a map from original triangle indices to
// stream of bits encoding state and offsprings.
// Using an explicit function object to support recursive call of Serializer::serialize().
// This is cheaper than the previous implementation using a recursive call of type erased std::function.
// (std::function calls using a pointer, while this implementation calls directly).
struct Serializer {
const TriangleSelector* triangle_selector;
std::pair<std::vector<std::pair<int, int>>, std::vector<bool>> data;
void serialize(int facet_idx) {
const Triangle& tr = triangle_selector->m_triangles[facet_idx];
// Always save number of split sides. It is zero for unsplit triangles.
int split_sides = tr.number_of_split_sides();
assert(split_sides >= 0 && split_sides <= 3);
data.second.push_back(split_sides & 0b01);
data.second.push_back(split_sides & 0b10);
if (split_sides) {
// If this triangle is split, save which side is split (in case
// of one split) or kept (in case of two splits). The value will
// be ignored for 3-side split.
assert(tr.is_split() && split_sides > 0);
assert(tr.special_side() >= 0 && tr.special_side() <= 3);
data.second.push_back(tr.special_side() & 0b01);
data.second.push_back(tr.special_side() & 0b10);
// Now save all children.
// Serialized in reverse order for compatibility with PrusaSlicer 2.3.1.
for (int child_idx = split_sides; child_idx >= 0; -- child_idx)
this->serialize(tr.children[child_idx]);
} else {
// In case this is leaf, we better save information about its state.
int n = int(tr.get_state());
if (n >= 3) {
assert(n <= 16);
if (n <= 16) {
// Store "11" plus 4 bits of (n-3).
data.second.insert(data.second.end(), { true, true });
n -= 3;
for (size_t bit_idx = 0; bit_idx < 4; ++bit_idx)
data.second.push_back(n & (uint64_t(0b0001) << bit_idx));
}
} else {
// Simple case, compatible with PrusaSlicer 2.3.1 and older for storing paint on supports and seams.
// Store 2 bits of n.
data.second.push_back(n & 0b01);
data.second.push_back(n & 0b10);
}
}
}
} out { this };
out.data.first.reserve(m_orig_size_indices);
for (int i=0; i<m_orig_size_indices; ++i)
if (const Triangle& tr = m_triangles[i]; tr.is_split() || tr.get_state() != EnforcerBlockerType::NONE) {
// Store index of the first bit assigned to ith triangle.
out.data.first.emplace_back(i, int(out.data.second.size()));
// out the triangle bits.
out.serialize(i);
}
// May be stored onto Undo / Redo stack, thus conserve memory.
out.data.first.shrink_to_fit();
out.data.second.shrink_to_fit();
return out.data;
}
void TriangleSelector::deserialize(const std::pair<std::vector<std::pair<int, int>>, std::vector<bool>> &data, bool needs_reset)
{
if (needs_reset)
reset(); // dump any current state
// Reserve number of triangles as if each triangle was saved with 4 bits.
// With MMU painting this estimate may be somehow low, but better than nothing.
m_triangles.reserve(std::max(m_mesh.its.indices.size(), data.second.size() / 4));
// Number of triangles is twice the number of vertices on a large manifold mesh of genus zero.
// Here the triangles count account for both the nodes and leaves, thus the following line may overestimate.
m_vertices.reserve(std::max(m_mesh.its.vertices.size(), m_triangles.size() / 2));
// Vector to store all parents that have offsprings.
struct ProcessingInfo {
int facet_id = 0;
Vec3i neighbors { -1, -1, -1 };
int processed_children = 0;
int total_children = 0;
};
// Depth-first queue of a source mesh triangle and its childern.
// kept outside of the loop to avoid re-allocating inside the loop.
std::vector<ProcessingInfo> parents;
for (auto [triangle_id, ibit] : data.first) {
assert(triangle_id < int(m_triangles.size()));
assert(ibit < int(data.second.size()));
auto next_nibble = [&data, &ibit = ibit]() {
int n = 0;
for (int i = 0; i < 4; ++ i)
n |= data.second[ibit ++] << i;
return n;
};
parents.clear();
while (true) {
// Read next triangle info.
int code = next_nibble();
int num_of_split_sides = code & 0b11;
int num_of_children = num_of_split_sides == 0 ? 0 : num_of_split_sides + 1;
bool is_split = num_of_children != 0;
// Only valid if not is_split. Value of the second nibble was subtracted by 3, so it is added back.
auto state = is_split ? EnforcerBlockerType::NONE : EnforcerBlockerType((code & 0b1100) == 0b1100 ? next_nibble() + 3 : code >> 2);
// Only valid if is_split.
int special_side = code >> 2;
// Take care of the first iteration separately, so handling of the others is simpler.
if (parents.empty()) {
if (is_split) {
// root is split, add it into list of parents and split it.
// then go to the next.
Vec3i neighbors = m_neighbors[triangle_id];
parents.push_back({triangle_id, neighbors, 0, num_of_children});
m_triangles[triangle_id].set_division(num_of_split_sides, special_side);
perform_split(triangle_id, neighbors, EnforcerBlockerType::NONE);
continue;
} else {
// root is not split. just set the state and that's it.
m_triangles[triangle_id].set_state(state);
break;
}
}
// This is not the first iteration. This triangle is a child of last seen parent.
assert(! parents.empty());
assert(parents.back().processed_children < parents.back().total_children);
if (ProcessingInfo& last = parents.back(); is_split) {
// split the triangle and save it as parent of the next ones.
const Triangle &tr = m_triangles[last.facet_id];
int child_idx = last.total_children - last.processed_children - 1;
Vec3i neighbors = this->child_neighbors(tr, last.neighbors, child_idx);
int this_idx = tr.children[child_idx];
m_triangles[this_idx].set_division(num_of_split_sides, special_side);
perform_split(this_idx, neighbors, EnforcerBlockerType::NONE);
parents.push_back({this_idx, neighbors, 0, num_of_children});
} else {
// this triangle belongs to last split one
int child_idx = last.total_children - last.processed_children - 1;
m_triangles[m_triangles[last.facet_id].children[child_idx]].set_state(state);
++last.processed_children;
}
// If all children of the past parent triangle are claimed, move to grandparent.
while (parents.back().processed_children == parents.back().total_children) {
parents.pop_back();
if (parents.empty())
break;
// And increment the grandparent children counter, because
// we have just finished that branch and got back here.
++parents.back().processed_children;
}
// In case we popped back the root, we should be done.
if (parents.empty())
break;
}
}
}
// Lightweight variant of deserialization, which only tests whether a face of test_state exists.
bool TriangleSelector::has_facets(const std::pair<std::vector<std::pair<int, int>>, std::vector<bool>> &data, const EnforcerBlockerType test_state)
{
// Depth-first queue of a number of unvisited children.
// Kept outside of the loop to avoid re-allocating inside the loop.
std::vector<int> parents_children;
parents_children.reserve(64);
for (const std::pair<int, int> &triangle_id_and_ibit : data.first) {
int ibit = triangle_id_and_ibit.second;
assert(ibit < int(data.second.size()));
auto next_nibble = [&data, &ibit = ibit]() {
int n = 0;
for (int i = 0; i < 4; ++ i)
n |= data.second[ibit ++] << i;
return n;
};
// < 0 -> negative of a number of children
// >= 0 -> state
auto num_children_or_state = [&next_nibble]() -> int {
int code = next_nibble();
int num_of_split_sides = code & 0b11;
return num_of_split_sides == 0 ?
((code & 0b1100) == 0b1100 ? next_nibble() + 3 : code >> 2) :
- num_of_split_sides - 1;
};
int state = num_children_or_state();
if (state < 0) {
// Root is split.
parents_children.clear();
parents_children.emplace_back(- state);
do {
if (-- parents_children.back() >= 0) {
int state = num_children_or_state();
if (state < 0)
// Child is split.
parents_children.emplace_back(- state);
else if (state == int(test_state))
// Child is not split and a face of test_state was found.
return true;
} else
parents_children.pop_back();
} while (! parents_children.empty());
} else if (state == int(test_state))
// Root is not split and a face of test_state was found.
return true;
}
return false;
}
void TriangleSelector::seed_fill_unselect_all_triangles()
{
for (Triangle &triangle : m_triangles)
if (!triangle.is_split())
triangle.unselect_by_seed_fill();
}
void TriangleSelector::seed_fill_apply_on_triangles(EnforcerBlockerType new_state)
{
for (Triangle &triangle : m_triangles)
if (!triangle.is_split() && triangle.is_selected_by_seed_fill())
triangle.set_state(new_state);
for (Triangle &triangle : m_triangles)
if (triangle.is_split() && triangle.valid()) {
size_t facet_idx = &triangle - &m_triangles.front();
remove_useless_children(int(facet_idx));
}
}
TriangleSelector::Cursor::Cursor(const Vec3f &source_, float radius_world, const Transform3d &trafo_, const ClippingPlane &clipping_plane_)
: source{source_}, trafo{trafo_.cast<float>()}, clipping_plane{clipping_plane_}
{
Vec3d sf = Geometry::Transformation(trafo_).get_scaling_factor();
if (is_approx(sf(0), sf(1)) && is_approx(sf(1), sf(2))) {
radius = float(radius_world / sf(0));
radius_sqr = float(Slic3r::sqr(radius_world / sf(0)));
uniform_scaling = true;
} else {
// In case that the transformation is non-uniform, all checks whether
// something is inside the cursor should be done in world coords.
// First transform source in world coords and remember that we did this.
source = trafo * source;
uniform_scaling = false;
radius = radius_world;
radius_sqr = Slic3r::sqr(radius_world);
trafo_normal = trafo.linear().inverse().transpose();
}
}
TriangleSelector::SinglePointCursor::SinglePointCursor(const Vec3f& center_, const Vec3f& source_, float radius_world, const Transform3d& trafo_, const ClippingPlane &clipping_plane_)
: center{center_}, Cursor(source_, radius_world, trafo_, clipping_plane_)
{
// In case that the transformation is non-uniform, all checks whether
// something is inside the cursor should be done in world coords.
// Because of the center is transformed.
if (!uniform_scaling)
center = trafo * center;
// Calculate dir, in whatever coords is appropriate.
dir = (center - source).normalized();
}
TriangleSelector::DoublePointCursor::DoublePointCursor(const Vec3f &first_center_, const Vec3f &second_center_, const Vec3f &source_, float radius_world, const Transform3d &trafo_, const ClippingPlane &clipping_plane_)
: first_center{first_center_}, second_center{second_center_}, Cursor(source_, radius_world, trafo_, clipping_plane_)
{
if (!uniform_scaling) {
first_center = trafo * first_center_;
second_center = trafo * second_center_;
}
// Calculate dir, in whatever coords is appropriate.
dir = (first_center - source).normalized();
}
// Returns true if clipping plane is not active or if the point not clipped by clipping plane.
inline static bool is_mesh_point_not_clipped(const Vec3f &point, const TriangleSelector::ClippingPlane &clipping_plane)
{
return !clipping_plane.is_active() || !clipping_plane.is_mesh_point_clipped(point);
}
// Is a point (in mesh coords) inside a Sphere cursor?
bool TriangleSelector::Sphere::is_mesh_point_inside(const Vec3f &point) const
{
const Vec3f transformed_point = uniform_scaling ? point : Vec3f(trafo * point);
if ((center - transformed_point).squaredNorm() < radius_sqr)
return is_mesh_point_not_clipped(point, clipping_plane);
return false;
}
// Is a point (in mesh coords) inside a Circle cursor?
bool TriangleSelector::Circle::is_mesh_point_inside(const Vec3f &point) const
{
const Vec3f transformed_point = uniform_scaling ? point : Vec3f(trafo * point);
const Vec3f diff = center - transformed_point;
if ((diff - diff.dot(dir) * dir).squaredNorm() < radius_sqr)
return is_mesh_point_not_clipped(point, clipping_plane);
return false;
}
// Is a point (in mesh coords) inside a Capsule3D cursor?
bool TriangleSelector::Capsule3D::is_mesh_point_inside(const Vec3f &point) const
{
const Vec3f transformed_point = uniform_scaling ? point : Vec3f(trafo * point);
const Vec3f first_center_diff = this->first_center - transformed_point;
const Vec3f second_center_diff = this->second_center - transformed_point;
if (first_center_diff.squaredNorm() < this->radius_sqr || second_center_diff.squaredNorm() < this->radius_sqr)
return is_mesh_point_not_clipped(point, clipping_plane);
// First, check if the point pt is laying between planes defined by first_center and second_center.
// Then check if it is inside the cylinder between first_center and second_center.
const Vec3f centers_diff = this->second_center - this->first_center;
if (first_center_diff.dot(centers_diff) <= 0.f && second_center_diff.dot(centers_diff) >= 0.f && (first_center_diff.cross(centers_diff).norm() / centers_diff.norm()) <= this->radius)
return is_mesh_point_not_clipped(point, clipping_plane);
return false;
}
// Is a point (in mesh coords) inside a Capsule2D cursor?
bool TriangleSelector::Capsule2D::is_mesh_point_inside(const Vec3f &point) const
{
const Vec3f transformed_point = uniform_scaling ? point : Vec3f(trafo * point);
const Vec3f first_center_diff = this->first_center - transformed_point;
const Vec3f first_center_diff_projected = first_center_diff - first_center_diff.dot(this->dir) * this->dir;
if (first_center_diff_projected.squaredNorm() < this->radius_sqr)
return is_mesh_point_not_clipped(point, clipping_plane);
const Vec3f second_center_diff = this->second_center - transformed_point;
const Vec3f second_center_diff_projected = second_center_diff - second_center_diff.dot(this->dir) * this->dir;
if (second_center_diff_projected.squaredNorm() < this->radius_sqr)
return is_mesh_point_not_clipped(point, clipping_plane);
const Vec3f centers_diff = this->second_center - this->first_center;
const Vec3f centers_diff_projected = centers_diff - centers_diff.dot(this->dir) * this->dir;
// First, check if the point is laying between first_center and second_center.
if (first_center_diff_projected.dot(centers_diff_projected) <= 0.f && second_center_diff_projected.dot(centers_diff_projected) >= 0.f) {
// Vector in the direction of line |AD| of the rectangle that intersects the circle with the center in first_center.
const Vec3f rectangle_da_dir = centers_diff.cross(this->dir);
// Vector pointing from first_center to the point 'A' of the rectangle.
const Vec3f first_center_rectangle_a_diff = rectangle_da_dir.normalized() * this->radius;
const Vec3f rectangle_a = this->first_center - first_center_rectangle_a_diff;
const Vec3f rectangle_d = this->first_center + first_center_rectangle_a_diff;
// Now check if the point is laying inside the rectangle between circles with centers in first_center and second_center.
if ((rectangle_a - transformed_point).dot(rectangle_da_dir) <= 0.f && (rectangle_d - transformed_point).dot(rectangle_da_dir) >= 0.f)
return is_mesh_point_not_clipped(point, clipping_plane);
}
return false;
}
// p1, p2, p3 are in mesh coords!
static bool is_circle_pointer_inside_triangle(const Vec3f &p1_, const Vec3f &p2_, const Vec3f &p3_, const Vec3f &center, const Vec3f &dir, const bool uniform_scaling, const Transform3f &trafo) {
const Vec3f& q1 = center + dir;
const Vec3f& q2 = center - dir;
auto signed_volume_sign = [](const Vec3f& a, const Vec3f& b,
const Vec3f& c, const Vec3f& d) -> bool {
return ((b-a).cross(c-a)).dot(d-a) > 0.;
};
// In case the object is non-uniformly scaled, do the check in world coords.
const Vec3f& p1 = uniform_scaling ? p1_ : Vec3f(trafo * p1_);
const Vec3f& p2 = uniform_scaling ? p2_ : Vec3f(trafo * p2_);
const Vec3f& p3 = uniform_scaling ? p3_ : Vec3f(trafo * p3_);
if (signed_volume_sign(q1,p1,p2,p3) == signed_volume_sign(q2,p1,p2,p3))
return false;
bool pos = signed_volume_sign(q1,q2,p1,p2);
return signed_volume_sign(q1,q2,p2,p3) == pos && signed_volume_sign(q1,q2,p3,p1) == pos;
}
// p1, p2, p3 are in mesh coords!
bool TriangleSelector::SinglePointCursor::is_pointer_in_triangle(const Vec3f &p1_, const Vec3f &p2_, const Vec3f &p3_) const
{
return is_circle_pointer_inside_triangle(p1_, p2_, p3_, center, dir, uniform_scaling, trafo);
}
// p1, p2, p3 are in mesh coords!
bool TriangleSelector::DoublePointCursor::is_pointer_in_triangle(const Vec3f &p1_, const Vec3f &p2_, const Vec3f &p3_) const
{
return is_circle_pointer_inside_triangle(p1_, p2_, p3_, first_center, dir, uniform_scaling, trafo) ||
is_circle_pointer_inside_triangle(p1_, p2_, p3_, second_center, dir, uniform_scaling, trafo);
}
bool line_plane_intersection(const Vec3f &line_a, const Vec3f &line_b, const Vec3f &plane_origin, const Vec3f &plane_normal, Vec3f &out_intersection)
{
Vec3f line_dir = line_b - line_a;
float t_denominator = plane_normal.dot(line_dir);
if (t_denominator == 0.f)
return false;
// Compute 'd' in plane equation by using some point (origin) on the plane
float plane_d = plane_normal.dot(plane_origin);
if (float t = (plane_d - plane_normal.dot(line_a)) / t_denominator; t >= 0.f && t <= 1.f) {
out_intersection = line_a + t * line_dir;
return true;
}
return false;
}
bool TriangleSelector::Capsule3D::is_edge_inside_cursor(const Triangle &tr, const std::vector<Vertex> &vertices) const
{
std::array<Vec3f, 3> pts;
for (int i = 0; i < 3; ++i) {
pts[i] = vertices[tr.verts_idxs[i]].v;
if (!this->uniform_scaling)
pts[i] = this->trafo * pts[i];
}
for (int side = 0; side < 3; ++side) {
const Vec3f &edge_a = pts[side];
const Vec3f &edge_b = pts[side < 2 ? side + 1 : 0];
if (test_line_inside_capsule(edge_a, edge_b, this->first_center, this->second_center, this->radius))
return true;
}
return false;
}
// Is edge inside cursor?
bool TriangleSelector::Capsule2D::is_edge_inside_cursor(const Triangle &tr, const std::vector<Vertex> &vertices) const
{
std::array<Vec3f, 3> pts;
for (int i = 0; i < 3; ++i) {
pts[i] = vertices[tr.verts_idxs[i]].v;
if (!this->uniform_scaling)
pts[i] = this->trafo * pts[i];
}
const Vec3f centers_diff = this->second_center - this->first_center;
// Vector in the direction of line |AD| of the rectangle that intersects the circle with the center in first_center.
const Vec3f rectangle_da_dir = centers_diff.cross(this->dir);
// Vector pointing from first_center to the point 'A' of the rectangle.
const Vec3f first_center_rectangle_a_diff = rectangle_da_dir.normalized() * this->radius;
const Vec3f rectangle_a = this->first_center - first_center_rectangle_a_diff;
const Vec3f rectangle_d = this->first_center + first_center_rectangle_a_diff;
auto edge_inside_rectangle = [&self = std::as_const(*this), &centers_diff](const Vec3f &edge_a, const Vec3f &edge_b, const Vec3f &plane_origin, const Vec3f &plane_normal) -> bool {
Vec3f intersection(-1.f, -1.f, -1.f);
if (line_plane_intersection(edge_a, edge_b, plane_origin, plane_normal, intersection)) {
// Now check if the intersection point is inside the rectangle. That means it is between 'first_center' and 'second_center', resp. between 'A' and 'B'.
if (self.first_center.dot(centers_diff) <= intersection.dot(centers_diff) && intersection.dot(centers_diff) <= self.second_center.dot(centers_diff))
return true;
}
return false;
};
for (int side = 0; side < 3; ++side) {
const Vec3f &edge_a = pts[side];
const Vec3f &edge_b = pts[side < 2 ? side + 1 : 0];
const Vec3f edge_dir = edge_b - edge_a;
const Vec3f edge_dir_n = edge_dir.normalized();
float t1 = (this->first_center - edge_a).dot(edge_dir_n);
float t2 = (this->second_center - edge_a).dot(edge_dir_n);
Vec3f vector1 = edge_a + t1 * edge_dir_n - this->first_center;
Vec3f vector2 = edge_a + t2 * edge_dir_n - this->second_center;
// Vectors vector1 and vector2 are 3D vector from centers to the intersections. What we want to
// measure is length of its projection onto plane perpendicular to dir.
if (float dist = vector1.squaredNorm() - std::pow(vector1.dot(this->dir), 2.f); dist < this->radius_sqr && t1 >= 0.f && t1 <= edge_dir.norm())
return true;
if (float dist = vector2.squaredNorm() - std::pow(vector2.dot(this->dir), 2.f); dist < this->radius_sqr && t2 >= 0.f && t2 <= edge_dir.norm())
return true;
// Check if the edge is passing through the rectangle between first_center and second_center.
if (edge_inside_rectangle(edge_a, edge_b, rectangle_a, (rectangle_d - rectangle_a)) || edge_inside_rectangle(edge_a, edge_b, rectangle_d, (rectangle_a - rectangle_d)))
return true;
}
return false;
}
} // namespace Slic3r