PrusaSlicer-NonPlainar/src/libslic3r/GCode/WipeTower.cpp
2021-07-22 09:13:12 +02:00

1380 lines
58 KiB
C++

#include "WipeTower.hpp"
#include <cassert>
#include <iostream>
#include <vector>
#include <numeric>
#include <sstream>
#include <iomanip>
#include "GCodeProcessor.hpp"
#include "BoundingBox.hpp"
#include "LocalesUtils.hpp"
namespace Slic3r
{
class WipeTowerWriter
{
public:
WipeTowerWriter(float layer_height, float line_width, GCodeFlavor flavor, const std::vector<WipeTower::FilamentParameters>& filament_parameters) :
m_current_pos(std::numeric_limits<float>::max(), std::numeric_limits<float>::max()),
m_current_z(0.f),
m_current_feedrate(0.f),
m_layer_height(layer_height),
m_extrusion_flow(0.f),
m_preview_suppressed(false),
m_elapsed_time(0.f),
#if ENABLE_GCODE_VIEWER_DATA_CHECKING
m_default_analyzer_line_width(line_width),
#endif // ENABLE_GCODE_VIEWER_DATA_CHECKING
m_gcode_flavor(flavor),
m_filpar(filament_parameters)
{
// adds tag for analyzer:
std::ostringstream str;
str << ";" << GCodeProcessor::reserved_tag(GCodeProcessor::ETags::Height) << m_layer_height << "\n"; // don't rely on GCodeAnalyzer knowing the layer height - it knows nothing at priming
str << ";" << GCodeProcessor::reserved_tag(GCodeProcessor::ETags::Role) << ExtrusionEntity::role_to_string(erWipeTower) << "\n";
m_gcode += str.str();
change_analyzer_line_width(line_width);
}
WipeTowerWriter& change_analyzer_line_width(float line_width) {
// adds tag for analyzer:
std::stringstream str;
str << ";" << GCodeProcessor::reserved_tag(GCodeProcessor::ETags::Width) << line_width << "\n";
m_gcode += str.str();
return *this;
}
#if ENABLE_GCODE_VIEWER_DATA_CHECKING
WipeTowerWriter& change_analyzer_mm3_per_mm(float len, float e) {
static const float area = float(M_PI) * 1.75f * 1.75f / 4.f;
float mm3_per_mm = (len == 0.f ? 0.f : area * e / len);
// adds tag for processor:
std::stringstream str;
str << ";" << GCodeProcessor::Mm3_Per_Mm_Tag << mm3_per_mm << "\n";
m_gcode += str.str();
return *this;
}
#endif // ENABLE_GCODE_VIEWER_DATA_CHECKING
WipeTowerWriter& set_initial_position(const Vec2f &pos, float width = 0.f, float depth = 0.f, float internal_angle = 0.f) {
m_wipe_tower_width = width;
m_wipe_tower_depth = depth;
m_internal_angle = internal_angle;
m_start_pos = this->rotate(pos);
m_current_pos = pos;
return *this;
}
WipeTowerWriter& set_initial_tool(size_t tool) { m_current_tool = tool; return *this; }
WipeTowerWriter& set_z(float z)
{ m_current_z = z; return *this; }
WipeTowerWriter& set_extrusion_flow(float flow)
{ m_extrusion_flow = flow; return *this; }
WipeTowerWriter& set_y_shift(float shift) {
m_current_pos.y() -= shift-m_y_shift;
m_y_shift = shift;
return (*this);
}
WipeTowerWriter& disable_linear_advance() {
m_gcode += (m_gcode_flavor == gcfRepRapSprinter || m_gcode_flavor == gcfRepRapFirmware
? (std::string("M572 D") + std::to_string(m_current_tool) + " S0\n")
: std::string("M900 K0\n"));
return *this;
}
// Suppress / resume G-code preview in Slic3r. Slic3r will have difficulty to differentiate the various
// filament loading and cooling moves from normal extrusion moves. Therefore the writer
// is asked to suppres output of some lines, which look like extrusions.
#if ENABLE_GCODE_VIEWER_DATA_CHECKING
WipeTowerWriter& suppress_preview() { change_analyzer_line_width(0.f); m_preview_suppressed = true; return *this; }
WipeTowerWriter& resume_preview() { change_analyzer_line_width(m_default_analyzer_line_width); m_preview_suppressed = false; return *this; }
#else
WipeTowerWriter& suppress_preview() { m_preview_suppressed = true; return *this; }
WipeTowerWriter& resume_preview() { m_preview_suppressed = false; return *this; }
#endif // ENABLE_GCODE_VIEWER_DATA_CHECKING
WipeTowerWriter& feedrate(float f)
{
if (f != m_current_feedrate) {
m_gcode += "G1" + set_format_F(f) + "\n";
m_current_feedrate = f;
}
return *this;
}
const std::string& gcode() const { return m_gcode; }
const std::vector<WipeTower::Extrusion>& extrusions() const { return m_extrusions; }
float x() const { return m_current_pos.x(); }
float y() const { return m_current_pos.y(); }
const Vec2f& pos() const { return m_current_pos; }
const Vec2f start_pos_rotated() const { return m_start_pos; }
const Vec2f pos_rotated() const { return this->rotate(m_current_pos); }
float elapsed_time() const { return m_elapsed_time; }
float get_and_reset_used_filament_length() { float temp = m_used_filament_length; m_used_filament_length = 0.f; return temp; }
// Extrude with an explicitely provided amount of extrusion.
WipeTowerWriter& extrude_explicit(float x, float y, float e, float f = 0.f, bool record_length = false, bool limit_volumetric_flow = true)
{
if (x == m_current_pos.x() && y == m_current_pos.y() && e == 0.f && (f == 0.f || f == m_current_feedrate))
// Neither extrusion nor a travel move.
return *this;
float dx = x - m_current_pos.x();
float dy = y - m_current_pos.y();
float len = std::sqrt(dx*dx+dy*dy);
if (record_length)
m_used_filament_length += e;
// Now do the "internal rotation" with respect to the wipe tower center
Vec2f rotated_current_pos(this->pos_rotated());
Vec2f rot(this->rotate(Vec2f(x,y))); // this is where we want to go
if (! m_preview_suppressed && e > 0.f && len > 0.f) {
#if ENABLE_GCODE_VIEWER_DATA_CHECKING
change_analyzer_mm3_per_mm(len, e);
#endif // ENABLE_GCODE_VIEWER_DATA_CHECKING
// Width of a squished extrusion, corrected for the roundings of the squished extrusions.
// This is left zero if it is a travel move.
float width = e * m_filpar[0].filament_area / (len * m_layer_height);
// Correct for the roundings of a squished extrusion.
width += m_layer_height * float(1. - M_PI / 4.);
if (m_extrusions.empty() || m_extrusions.back().pos != rotated_current_pos)
m_extrusions.emplace_back(WipeTower::Extrusion(rotated_current_pos, 0, m_current_tool));
m_extrusions.emplace_back(WipeTower::Extrusion(rot, width, m_current_tool));
}
m_gcode += "G1";
if (std::abs(rot.x() - rotated_current_pos.x()) > (float)EPSILON)
m_gcode += set_format_X(rot.x());
if (std::abs(rot.y() - rotated_current_pos.y()) > (float)EPSILON)
m_gcode += set_format_Y(rot.y());
if (e != 0.f)
m_gcode += set_format_E(e);
if (f != 0.f && f != m_current_feedrate) {
if (limit_volumetric_flow) {
float e_speed = e / (((len == 0.f) ? std::abs(e) : len) / f * 60.f);
f /= std::max(1.f, e_speed / m_filpar[m_current_tool].max_e_speed);
}
m_gcode += set_format_F(f);
}
m_current_pos.x() = x;
m_current_pos.y() = y;
// Update the elapsed time with a rough estimate.
m_elapsed_time += ((len == 0.f) ? std::abs(e) : len) / m_current_feedrate * 60.f;
m_gcode += "\n";
return *this;
}
WipeTowerWriter& extrude_explicit(const Vec2f &dest, float e, float f = 0.f, bool record_length = false, bool limit_volumetric_flow = true)
{ return extrude_explicit(dest.x(), dest.y(), e, f, record_length); }
// Travel to a new XY position. f=0 means use the current value.
WipeTowerWriter& travel(float x, float y, float f = 0.f)
{ return extrude_explicit(x, y, 0.f, f); }
WipeTowerWriter& travel(const Vec2f &dest, float f = 0.f)
{ return extrude_explicit(dest.x(), dest.y(), 0.f, f); }
// Extrude a line from current position to x, y with the extrusion amount given by m_extrusion_flow.
WipeTowerWriter& extrude(float x, float y, float f = 0.f)
{
float dx = x - m_current_pos.x();
float dy = y - m_current_pos.y();
return extrude_explicit(x, y, std::sqrt(dx*dx+dy*dy) * m_extrusion_flow, f, true);
}
WipeTowerWriter& extrude(const Vec2f &dest, const float f = 0.f)
{ return extrude(dest.x(), dest.y(), f); }
WipeTowerWriter& rectangle(const Vec2f& ld,float width,float height,const float f = 0.f)
{
Vec2f corners[4];
corners[0] = ld;
corners[1] = ld + Vec2f(width,0.f);
corners[2] = ld + Vec2f(width,height);
corners[3] = ld + Vec2f(0.f,height);
int index_of_closest = 0;
if (x()-ld.x() > ld.x()+width-x()) // closer to the right
index_of_closest = 1;
if (y()-ld.y() > ld.y()+height-y()) // closer to the top
index_of_closest = (index_of_closest==0 ? 3 : 2);
travel(corners[index_of_closest].x(), y()); // travel to the closest corner
travel(x(),corners[index_of_closest].y());
int i = index_of_closest;
do {
++i;
if (i==4) i=0;
extrude(corners[i], f);
} while (i != index_of_closest);
return (*this);
}
WipeTowerWriter& rectangle(const WipeTower::box_coordinates& box, const float f = 0.f)
{
rectangle(Vec2f(box.ld.x(), box.ld.y()),
box.ru.x() - box.lu.x(),
box.ru.y() - box.rd.y(), f);
return (*this);
}
WipeTowerWriter& load(float e, float f = 0.f)
{
if (e == 0.f && (f == 0.f || f == m_current_feedrate))
return *this;
m_gcode += "G1";
if (e != 0.f)
m_gcode += set_format_E(e);
if (f != 0.f && f != m_current_feedrate)
m_gcode += set_format_F(f);
m_gcode += "\n";
return *this;
}
WipeTowerWriter& retract(float e, float f = 0.f)
{ return load(-e, f); }
// Loads filament while also moving towards given points in x-axis (x feedrate is limited by cutting the distance short if necessary)
WipeTowerWriter& load_move_x_advanced(float farthest_x, float loading_dist, float loading_speed, float max_x_speed = 50.f)
{
float time = std::abs(loading_dist / loading_speed); // time that the move must take
float x_distance = std::abs(farthest_x - x()); // max x-distance that we can travel
float x_speed = x_distance / time; // x-speed to do it in that time
if (x_speed > max_x_speed) {
// Necessary x_speed is too high - we must shorten the distance to achieve max_x_speed and still respect the time.
x_distance = max_x_speed * time;
x_speed = max_x_speed;
}
float end_point = x() + (farthest_x > x() ? 1.f : -1.f) * x_distance;
return extrude_explicit(end_point, y(), loading_dist, x_speed * 60.f, false, false);
}
// Elevate the extruder head above the current print_z position.
WipeTowerWriter& z_hop(float hop, float f = 0.f)
{
m_gcode += std::string("G1") + set_format_Z(m_current_z + hop);
if (f != 0 && f != m_current_feedrate)
m_gcode += set_format_F(f);
m_gcode += "\n";
return *this;
}
// Lower the extruder head back to the current print_z position.
WipeTowerWriter& z_hop_reset(float f = 0.f)
{ return z_hop(0, f); }
// Move to x1, +y_increment,
// extrude quickly amount e to x2 with feed f.
WipeTowerWriter& ram(float x1, float x2, float dy, float e0, float e, float f)
{
extrude_explicit(x1, m_current_pos.y() + dy, e0, f, true, false);
extrude_explicit(x2, m_current_pos.y(), e, 0.f, true, false);
return *this;
}
// Let the end of the pulled out filament cool down in the cooling tube
// by moving up and down and moving the print head left / right
// at the current Y position to spread the leaking material.
WipeTowerWriter& cool(float x1, float x2, float e1, float e2, float f)
{
extrude_explicit(x1, m_current_pos.y(), e1, f, false, false);
extrude_explicit(x2, m_current_pos.y(), e2, false, false);
return *this;
}
WipeTowerWriter& set_tool(size_t tool)
{
m_current_tool = tool;
return *this;
}
// Set extruder temperature, don't wait by default.
WipeTowerWriter& set_extruder_temp(int temperature, bool wait = false)
{
m_gcode += "M" + std::to_string(wait ? 109 : 104) + " S" + std::to_string(temperature) + "\n";
return *this;
}
// Wait for a period of time (seconds).
WipeTowerWriter& wait(float time)
{
if (time==0.f)
return *this;
m_gcode += "G4 S" + Slic3r::float_to_string_decimal_point(time, 3) + "\n";
return *this;
}
// Set speed factor override percentage.
WipeTowerWriter& speed_override(int speed)
{
m_gcode += "M220 S" + std::to_string(speed) + "\n";
return *this;
}
// Let the firmware back up the active speed override value.
WipeTowerWriter& speed_override_backup()
{
// This is only supported by Prusa at this point (https://github.com/prusa3d/PrusaSlicer/issues/3114)
if (m_gcode_flavor == gcfMarlinLegacy || m_gcode_flavor == gcfMarlinFirmware)
m_gcode += "M220 B\n";
return *this;
}
// Let the firmware restore the active speed override value.
WipeTowerWriter& speed_override_restore()
{
if (m_gcode_flavor == gcfMarlinLegacy || m_gcode_flavor == gcfMarlinFirmware)
m_gcode += "M220 R\n";
return *this;
}
// Set digital trimpot motor
WipeTowerWriter& set_extruder_trimpot(int current)
{
if (m_gcode_flavor == gcfRepRapSprinter || m_gcode_flavor == gcfRepRapFirmware)
m_gcode += "M906 E";
else
m_gcode += "M907 E";
m_gcode += std::to_string(current) + "\n";
return *this;
}
WipeTowerWriter& flush_planner_queue()
{
m_gcode += "G4 S0\n";
return *this;
}
// Reset internal extruder counter.
WipeTowerWriter& reset_extruder()
{
m_gcode += "G92 E0\n";
return *this;
}
WipeTowerWriter& comment_with_value(const char *comment, int value)
{
m_gcode += std::string(";") + comment + std::to_string(value) + "\n";
return *this;
}
WipeTowerWriter& set_fan(unsigned speed)
{
if (speed == m_last_fan_speed)
return *this;
if (speed == 0)
m_gcode += "M107\n";
else
m_gcode += "M106 S" + std::to_string(unsigned(255.0 * speed / 100.0)) + "\n";
m_last_fan_speed = speed;
return *this;
}
WipeTowerWriter& append(const std::string& text) { m_gcode += text; return *this; }
const std::vector<Vec2f>& wipe_path() const
{
return m_wipe_path;
}
WipeTowerWriter& add_wipe_point(const Vec2f& pt)
{
m_wipe_path.push_back(rotate(pt));
return *this;
}
WipeTowerWriter& add_wipe_point(float x, float y)
{
return add_wipe_point(Vec2f(x, y));
}
private:
Vec2f m_start_pos;
Vec2f m_current_pos;
std::vector<Vec2f> m_wipe_path;
float m_current_z;
float m_current_feedrate;
size_t m_current_tool;
float m_layer_height;
float m_extrusion_flow;
bool m_preview_suppressed;
std::string m_gcode;
std::vector<WipeTower::Extrusion> m_extrusions;
float m_elapsed_time;
float m_internal_angle = 0.f;
float m_y_shift = 0.f;
float m_wipe_tower_width = 0.f;
float m_wipe_tower_depth = 0.f;
unsigned m_last_fan_speed = 0;
int current_temp = -1;
#if ENABLE_GCODE_VIEWER_DATA_CHECKING
const float m_default_analyzer_line_width;
#endif // ENABLE_GCODE_VIEWER_DATA_CHECKING
float m_used_filament_length = 0.f;
GCodeFlavor m_gcode_flavor;
const std::vector<WipeTower::FilamentParameters>& m_filpar;
std::string set_format_X(float x)
{
m_current_pos.x() = x;
return " X" + Slic3r::float_to_string_decimal_point(x, 3);
}
std::string set_format_Y(float y) {
m_current_pos.y() = y;
return " Y" + Slic3r::float_to_string_decimal_point(y, 3);
}
std::string set_format_Z(float z) {
return " Z" + Slic3r::float_to_string_decimal_point(z, 3);
}
std::string set_format_E(float e) {
return " E" + Slic3r::float_to_string_decimal_point(e, 4);
}
std::string set_format_F(float f) {
char buf[64];
sprintf(buf, " F%d", int(floor(f + 0.5f)));
m_current_feedrate = f;
return buf;
}
WipeTowerWriter& operator=(const WipeTowerWriter &rhs);
// Rotate the point around center of the wipe tower about given angle (in degrees)
Vec2f rotate(Vec2f pt) const
{
pt.x() -= m_wipe_tower_width / 2.f;
pt.y() += m_y_shift - m_wipe_tower_depth / 2.f;
double angle = m_internal_angle * float(M_PI/180.);
double c = cos(angle);
double s = sin(angle);
return Vec2f(float(pt.x() * c - pt.y() * s) + m_wipe_tower_width / 2.f, float(pt.x() * s + pt.y() * c) + m_wipe_tower_depth / 2.f);
}
}; // class WipeTowerWriter
WipeTower::ToolChangeResult WipeTower::construct_tcr(WipeTowerWriter& writer,
bool priming,
size_t old_tool) const
{
ToolChangeResult result;
result.priming = priming;
result.initial_tool = int(old_tool);
result.new_tool = int(m_current_tool);
result.print_z = m_z_pos;
result.layer_height = m_layer_height;
result.elapsed_time = writer.elapsed_time();
result.start_pos = writer.start_pos_rotated();
result.end_pos = priming ? writer.pos() : writer.pos_rotated();
result.gcode = std::move(writer.gcode());
result.extrusions = std::move(writer.extrusions());
result.wipe_path = std::move(writer.wipe_path());
return result;
}
WipeTower::WipeTower(const PrintConfig& config, const std::vector<std::vector<float>>& wiping_matrix, size_t initial_tool) :
m_semm(config.single_extruder_multi_material.value),
m_wipe_tower_pos(config.wipe_tower_x, config.wipe_tower_y),
m_wipe_tower_width(float(config.wipe_tower_width)),
m_wipe_tower_rotation_angle(float(config.wipe_tower_rotation_angle)),
m_wipe_tower_brim_width(float(config.wipe_tower_brim_width)),
m_y_shift(0.f),
m_z_pos(0.f),
m_bridging(float(config.wipe_tower_bridging)),
m_no_sparse_layers(config.wipe_tower_no_sparse_layers),
m_gcode_flavor(config.gcode_flavor),
m_travel_speed(config.travel_speed),
m_current_tool(initial_tool),
wipe_volumes(wiping_matrix)
{
// Read absolute value of first layer speed, if given as percentage,
// it is taken over following default. Speeds from config are not
// easily accessible here.
const float default_speed = 60.f;
m_first_layer_speed = config.get_abs_value("first_layer_speed", default_speed);
if (m_first_layer_speed == 0.f) // just to make sure autospeed doesn't break it.
m_first_layer_speed = default_speed / 2.f;
// If this is a single extruder MM printer, we will use all the SE-specific config values.
// Otherwise, the defaults will be used to turn off the SE stuff.
if (m_semm) {
m_cooling_tube_retraction = float(config.cooling_tube_retraction);
m_cooling_tube_length = float(config.cooling_tube_length);
m_parking_pos_retraction = float(config.parking_pos_retraction);
m_extra_loading_move = float(config.extra_loading_move);
m_set_extruder_trimpot = config.high_current_on_filament_swap;
}
// Calculate where the priming lines should be - very naive test not detecting parallelograms etc.
const std::vector<Vec2d>& bed_points = config.bed_shape.values;
BoundingBoxf bb(bed_points);
m_bed_width = float(bb.size().x());
m_bed_shape = (bed_points.size() == 4 ? RectangularBed : CircularBed);
if (m_bed_shape == CircularBed) {
// this may still be a custom bed, check that the points are roughly on a circle
double r2 = std::pow(m_bed_width/2., 2.);
double lim2 = std::pow(m_bed_width/10., 2.);
Vec2d center = bb.center();
for (const Vec2d& pt : bed_points)
if (std::abs(std::pow(pt.x()-center.x(), 2.) + std::pow(pt.y()-center.y(), 2.) - r2) > lim2) {
m_bed_shape = CustomBed;
break;
}
}
m_bed_bottom_left = m_bed_shape == RectangularBed
? Vec2f(bed_points.front().x(), bed_points.front().y())
: Vec2f::Zero();
}
void WipeTower::set_extruder(size_t idx, const PrintConfig& config)
{
//while (m_filpar.size() < idx+1) // makes sure the required element is in the vector
m_filpar.push_back(FilamentParameters());
m_filpar[idx].material = config.filament_type.get_at(idx);
m_filpar[idx].is_soluble = config.filament_soluble.get_at(idx);
m_filpar[idx].temperature = config.temperature.get_at(idx);
m_filpar[idx].first_layer_temperature = config.first_layer_temperature.get_at(idx);
// If this is a single extruder MM printer, we will use all the SE-specific config values.
// Otherwise, the defaults will be used to turn off the SE stuff.
if (m_semm) {
m_filpar[idx].loading_speed = float(config.filament_loading_speed.get_at(idx));
m_filpar[idx].loading_speed_start = float(config.filament_loading_speed_start.get_at(idx));
m_filpar[idx].unloading_speed = float(config.filament_unloading_speed.get_at(idx));
m_filpar[idx].unloading_speed_start = float(config.filament_unloading_speed_start.get_at(idx));
m_filpar[idx].delay = float(config.filament_toolchange_delay.get_at(idx));
m_filpar[idx].cooling_moves = config.filament_cooling_moves.get_at(idx);
m_filpar[idx].cooling_initial_speed = float(config.filament_cooling_initial_speed.get_at(idx));
m_filpar[idx].cooling_final_speed = float(config.filament_cooling_final_speed.get_at(idx));
}
m_filpar[idx].filament_area = float((M_PI/4.f) * pow(config.filament_diameter.get_at(idx), 2)); // all extruders are assumed to have the same filament diameter at this point
float nozzle_diameter = float(config.nozzle_diameter.get_at(idx));
m_filpar[idx].nozzle_diameter = nozzle_diameter; // to be used in future with (non-single) multiextruder MM
float max_vol_speed = float(config.filament_max_volumetric_speed.get_at(idx));
if (max_vol_speed!= 0.f)
m_filpar[idx].max_e_speed = (max_vol_speed / filament_area());
m_perimeter_width = nozzle_diameter * Width_To_Nozzle_Ratio; // all extruders are now assumed to have the same diameter
if (m_semm) {
std::istringstream stream{config.filament_ramming_parameters.get_at(idx)};
float speed = 0.f;
stream >> m_filpar[idx].ramming_line_width_multiplicator >> m_filpar[idx].ramming_step_multiplicator;
m_filpar[idx].ramming_line_width_multiplicator /= 100;
m_filpar[idx].ramming_step_multiplicator /= 100;
while (stream >> speed)
m_filpar[idx].ramming_speed.push_back(speed);
}
m_used_filament_length.resize(std::max(m_used_filament_length.size(), idx + 1)); // makes sure that the vector is big enough so we don't have to check later
}
// Returns gcode to prime the nozzles at the front edge of the print bed.
std::vector<WipeTower::ToolChangeResult> WipeTower::prime(
// print_z of the first layer.
float first_layer_height,
// Extruder indices, in the order to be primed. The last extruder will later print the wipe tower brim, print brim and the object.
const std::vector<unsigned int> &tools,
// If true, the last priming are will be the same as the other priming areas, and the rest of the wipe will be performed inside the wipe tower.
// If false, the last priming are will be large enough to wipe the last extruder sufficiently.
bool /*last_wipe_inside_wipe_tower*/)
{
this->set_layer(first_layer_height, first_layer_height, tools.size(), true, false);
m_current_tool = tools.front();
// The Prusa i3 MK2 has a working space of [0, -2.2] to [250, 210].
// Due to the XYZ calibration, this working space may shrink slightly from all directions,
// therefore the homing position is shifted inside the bed by 0.2 in the firmware to [0.2, -2.0].
// box_coordinates cleaning_box(xy(0.5f, - 1.5f), m_wipe_tower_width, wipe_area);
float prime_section_width = std::min(0.9f * m_bed_width / tools.size(), 60.f);
box_coordinates cleaning_box(Vec2f(0.02f * m_bed_width, 0.01f + m_perimeter_width/2.f), prime_section_width, 100.f);
if (m_bed_shape == CircularBed) {
cleaning_box = box_coordinates(Vec2f(0.f, 0.f), prime_section_width, 100.f);
float total_width_half = tools.size() * prime_section_width / 2.f;
cleaning_box.translate(-total_width_half, -std::sqrt(std::max(0.f, std::pow(m_bed_width/2, 2.f) - std::pow(1.05f * total_width_half, 2.f))));
}
else
cleaning_box.translate(m_bed_bottom_left);
std::vector<ToolChangeResult> results;
// Iterate over all priming toolchanges and push respective ToolChangeResults into results vector.
for (size_t idx_tool = 0; idx_tool < tools.size(); ++ idx_tool) {
size_t old_tool = m_current_tool;
WipeTowerWriter writer(m_layer_height, m_perimeter_width, m_gcode_flavor, m_filpar);
writer.set_extrusion_flow(m_extrusion_flow)
.set_z(m_z_pos)
.set_initial_tool(m_current_tool);
// This is the first toolchange - initiate priming
if (idx_tool == 0) {
writer.append(";--------------------\n"
"; CP PRIMING START\n")
.append(";--------------------\n")
.speed_override_backup()
.speed_override(100)
.set_initial_position(Vec2f::Zero()) // Always move to the starting position
.travel(cleaning_box.ld, 7200);
if (m_set_extruder_trimpot)
writer.set_extruder_trimpot(750); // Increase the extruder driver current to allow fast ramming.
}
else
writer.set_initial_position(results.back().end_pos);
unsigned int tool = tools[idx_tool];
m_left_to_right = true;
toolchange_Change(writer, tool, m_filpar[tool].material); // Select the tool, set a speed override for soluble and flex materials.
toolchange_Load(writer, cleaning_box); // Prime the tool.
if (idx_tool + 1 == tools.size()) {
// Last tool should not be unloaded, but it should be wiped enough to become of a pure color.
toolchange_Wipe(writer, cleaning_box, wipe_volumes[tools[idx_tool-1]][tool]);
} else {
// Ram the hot material out of the melt zone, retract the filament into the cooling tubes and let it cool.
//writer.travel(writer.x(), writer.y() + m_perimeter_width, 7200);
toolchange_Wipe(writer, cleaning_box , 20.f);
box_coordinates box = cleaning_box;
box.translate(0.f, writer.y() - cleaning_box.ld.y() + m_perimeter_width);
toolchange_Unload(writer, box , m_filpar[m_current_tool].material, m_filpar[tools[idx_tool + 1]].first_layer_temperature);
cleaning_box.translate(prime_section_width, 0.f);
writer.travel(cleaning_box.ld, 7200);
}
++ m_num_tool_changes;
// Ask our writer about how much material was consumed:
if (m_current_tool < m_used_filament_length.size())
m_used_filament_length[m_current_tool] += writer.get_and_reset_used_filament_length();
// This is the last priming toolchange - finish priming
if (idx_tool+1 == tools.size()) {
// Reset the extruder current to a normal value.
if (m_set_extruder_trimpot)
writer.set_extruder_trimpot(550);
writer.speed_override_restore()
.feedrate(m_travel_speed * 60.f)
.flush_planner_queue()
.reset_extruder()
.append("; CP PRIMING END\n"
";------------------\n"
"\n\n");
}
results.emplace_back(construct_tcr(writer, true, old_tool));
}
m_old_temperature = -1; // If the priming is turned off in config, the temperature changing commands will not actually appear
// in the output gcode - we should not remember emitting them (we will output them twice in the worst case)
return results;
}
WipeTower::ToolChangeResult WipeTower::tool_change(size_t tool)
{
size_t old_tool = m_current_tool;
float wipe_area = 0.f;
float wipe_volume = 0.f;
// Finds this toolchange info
if (tool != (unsigned int)(-1))
{
for (const auto &b : m_layer_info->tool_changes)
if ( b.new_tool == tool ) {
wipe_volume = b.wipe_volume;
wipe_area = b.required_depth * m_layer_info->extra_spacing;
break;
}
}
else {
// Otherwise we are going to Unload only. And m_layer_info would be invalid.
}
box_coordinates cleaning_box(
Vec2f(m_perimeter_width / 2.f, m_perimeter_width / 2.f),
m_wipe_tower_width - m_perimeter_width,
(tool != (unsigned int)(-1) ? wipe_area+m_depth_traversed-0.5f*m_perimeter_width
: m_wipe_tower_depth-m_perimeter_width));
WipeTowerWriter writer(m_layer_height, m_perimeter_width, m_gcode_flavor, m_filpar);
writer.set_extrusion_flow(m_extrusion_flow)
.set_z(m_z_pos)
.set_initial_tool(m_current_tool)
.set_y_shift(m_y_shift + (tool!=(unsigned int)(-1) && (m_current_shape == SHAPE_REVERSED) ? m_layer_info->depth - m_layer_info->toolchanges_depth(): 0.f))
.append(";--------------------\n"
"; CP TOOLCHANGE START\n")
.comment_with_value(" toolchange #", m_num_tool_changes + 1); // the number is zero-based
if (tool != (unsigned)(-1))
writer.append(std::string("; material : " + (m_current_tool < m_filpar.size() ? m_filpar[m_current_tool].material : "(NONE)") + " -> " + m_filpar[tool].material + "\n").c_str())
.append(";--------------------\n");
writer.speed_override_backup();
writer.speed_override(100);
Vec2f initial_position = cleaning_box.ld + Vec2f(0.f, m_depth_traversed);
writer.set_initial_position(initial_position, m_wipe_tower_width, m_wipe_tower_depth, m_internal_rotation);
// Increase the extruder driver current to allow fast ramming.
if (m_set_extruder_trimpot)
writer.set_extruder_trimpot(750);
// Ram the hot material out of the melt zone, retract the filament into the cooling tubes and let it cool.
if (tool != (unsigned int)-1){ // This is not the last change.
toolchange_Unload(writer, cleaning_box, m_filpar[m_current_tool].material,
is_first_layer() ? m_filpar[tool].first_layer_temperature : m_filpar[tool].temperature);
toolchange_Change(writer, tool, m_filpar[tool].material); // Change the tool, set a speed override for soluble and flex materials.
toolchange_Load(writer, cleaning_box);
writer.travel(writer.x(), writer.y()-m_perimeter_width); // cooling and loading were done a bit down the road
toolchange_Wipe(writer, cleaning_box, wipe_volume); // Wipe the newly loaded filament until the end of the assigned wipe area.
++ m_num_tool_changes;
} else
toolchange_Unload(writer, cleaning_box, m_filpar[m_current_tool].material, m_filpar[m_current_tool].temperature);
m_depth_traversed += wipe_area;
if (m_set_extruder_trimpot)
writer.set_extruder_trimpot(550); // Reset the extruder current to a normal value.
writer.speed_override_restore();
writer.feedrate(m_travel_speed * 60.f)
.flush_planner_queue()
.reset_extruder()
.append("; CP TOOLCHANGE END\n"
";------------------\n"
"\n\n");
// Ask our writer about how much material was consumed:
if (m_current_tool < m_used_filament_length.size())
m_used_filament_length[m_current_tool] += writer.get_and_reset_used_filament_length();
return construct_tcr(writer, false, old_tool);
}
// Ram the hot material out of the melt zone, retract the filament into the cooling tubes and let it cool.
void WipeTower::toolchange_Unload(
WipeTowerWriter &writer,
const box_coordinates &cleaning_box,
const std::string& current_material,
const int new_temperature)
{
float xl = cleaning_box.ld.x() + 1.f * m_perimeter_width;
float xr = cleaning_box.rd.x() - 1.f * m_perimeter_width;
const float line_width = m_perimeter_width * m_filpar[m_current_tool].ramming_line_width_multiplicator; // desired ramming line thickness
const float y_step = line_width * m_filpar[m_current_tool].ramming_step_multiplicator * m_extra_spacing; // spacing between lines in mm
writer.append("; CP TOOLCHANGE UNLOAD\n")
.change_analyzer_line_width(line_width);
unsigned i = 0; // iterates through ramming_speed
m_left_to_right = true; // current direction of ramming
float remaining = xr - xl ; // keeps track of distance to the next turnaround
float e_done = 0; // measures E move done from each segment
writer.travel(xl, cleaning_box.ld.y() + m_depth_traversed + y_step/2.f ); // move to starting position
// if the ending point of the ram would end up in mid air, align it with the end of the wipe tower:
if (m_layer_info > m_plan.begin() && m_layer_info < m_plan.end() && (m_layer_info-1!=m_plan.begin() || !m_adhesion )) {
// this is y of the center of previous sparse infill border
float sparse_beginning_y = 0.f;
if (m_current_shape == SHAPE_REVERSED)
sparse_beginning_y += ((m_layer_info-1)->depth - (m_layer_info-1)->toolchanges_depth())
- ((m_layer_info)->depth-(m_layer_info)->toolchanges_depth()) ;
else
sparse_beginning_y += (m_layer_info-1)->toolchanges_depth() + m_perimeter_width;
float sum_of_depths = 0.f;
for (const auto& tch : m_layer_info->tool_changes) { // let's find this toolchange
if (tch.old_tool == m_current_tool) {
sum_of_depths += tch.ramming_depth;
float ramming_end_y = sum_of_depths;
ramming_end_y -= (y_step/m_extra_spacing-m_perimeter_width) / 2.f; // center of final ramming line
if ( (m_current_shape == SHAPE_REVERSED && ramming_end_y < sparse_beginning_y - 0.5f*m_perimeter_width ) ||
(m_current_shape == SHAPE_NORMAL && ramming_end_y > sparse_beginning_y + 0.5f*m_perimeter_width ) )
{
writer.extrude(xl + tch.first_wipe_line-1.f*m_perimeter_width,writer.y());
remaining -= tch.first_wipe_line-1.f*m_perimeter_width;
}
break;
}
sum_of_depths += tch.required_depth;
}
}
writer.disable_linear_advance();
// now the ramming itself:
while (i < m_filpar[m_current_tool].ramming_speed.size())
{
const float x = volume_to_length(m_filpar[m_current_tool].ramming_speed[i] * 0.25f, line_width, m_layer_height);
const float e = m_filpar[m_current_tool].ramming_speed[i] * 0.25f / filament_area(); // transform volume per sec to E move;
const float dist = std::min(x - e_done, remaining); // distance to travel for either the next 0.25s, or to the next turnaround
const float actual_time = dist/x * 0.25f;
writer.ram(writer.x(), writer.x() + (m_left_to_right ? 1.f : -1.f) * dist, 0.f, 0.f, e * (dist / x), dist / (actual_time / 60.f));
remaining -= dist;
if (remaining < WT_EPSILON) { // we reached a turning point
writer.travel(writer.x(), writer.y() + y_step, 7200);
m_left_to_right = !m_left_to_right;
remaining = xr - xl;
}
e_done += dist; // subtract what was actually done
if (e_done > x - WT_EPSILON) { // current segment finished
++i;
e_done = 0;
}
}
Vec2f end_of_ramming(writer.x(),writer.y());
writer.change_analyzer_line_width(m_perimeter_width); // so the next lines are not affected by ramming_line_width_multiplier
// Retraction:
float old_x = writer.x();
float turning_point = (!m_left_to_right ? xl : xr );
if (m_semm && (m_cooling_tube_retraction != 0 || m_cooling_tube_length != 0)) {
float total_retraction_distance = m_cooling_tube_retraction + m_cooling_tube_length/2.f - 15.f; // the 15mm is reserved for the first part after ramming
writer.suppress_preview()
.retract(15.f, m_filpar[m_current_tool].unloading_speed_start * 60.f) // feedrate 5000mm/min = 83mm/s
.retract(0.70f * total_retraction_distance, 1.0f * m_filpar[m_current_tool].unloading_speed * 60.f)
.retract(0.20f * total_retraction_distance, 0.5f * m_filpar[m_current_tool].unloading_speed * 60.f)
.retract(0.10f * total_retraction_distance, 0.3f * m_filpar[m_current_tool].unloading_speed * 60.f)
.resume_preview();
}
// Wipe tower should only change temperature with single extruder MM. Otherwise, all temperatures should
// be already set and there is no need to change anything. Also, the temperature could be changed
// for wrong extruder.
if (m_semm) {
if (new_temperature != 0 && (new_temperature != m_old_temperature || is_first_layer()) ) { // Set the extruder temperature, but don't wait.
// If the required temperature is the same as last time, don't emit the M104 again (if user adjusted the value, it would be reset)
// However, always change temperatures on the first layer (this is to avoid issues with priming lines turned off).
writer.set_extruder_temp(new_temperature, false);
m_old_temperature = new_temperature;
}
}
// Cooling:
const int& number_of_moves = m_filpar[m_current_tool].cooling_moves;
if (number_of_moves > 0) {
const float& initial_speed = m_filpar[m_current_tool].cooling_initial_speed;
const float& final_speed = m_filpar[m_current_tool].cooling_final_speed;
float speed_inc = (final_speed - initial_speed) / (2.f * number_of_moves - 1.f);
writer.suppress_preview()
.travel(writer.x(), writer.y() + y_step);
old_x = writer.x();
turning_point = xr-old_x > old_x-xl ? xr : xl;
for (int i=0; i<number_of_moves; ++i) {
float speed = initial_speed + speed_inc * 2*i;
writer.load_move_x_advanced(turning_point, m_cooling_tube_length, speed);
speed += speed_inc;
writer.load_move_x_advanced(old_x, -m_cooling_tube_length, speed);
}
}
// let's wait is necessary:
writer.wait(m_filpar[m_current_tool].delay);
// we should be at the beginning of the cooling tube again - let's move to parking position:
writer.retract(-m_cooling_tube_length/2.f+m_parking_pos_retraction-m_cooling_tube_retraction, 2000);
// this is to align ramming and future wiping extrusions, so the future y-steps can be uniform from the start:
// the perimeter_width will later be subtracted, it is there to not load while moving over just extruded material
writer.travel(end_of_ramming.x(), end_of_ramming.y() + (y_step/m_extra_spacing-m_perimeter_width) / 2.f + m_perimeter_width, 2400.f);
writer.resume_preview()
.flush_planner_queue();
}
// Change the tool, set a speed override for soluble and flex materials.
void WipeTower::toolchange_Change(
WipeTowerWriter &writer,
const size_t new_tool,
const std::string& new_material)
{
// Ask the writer about how much of the old filament we consumed:
if (m_current_tool < m_used_filament_length.size())
m_used_filament_length[m_current_tool] += writer.get_and_reset_used_filament_length();
// This is where we want to place the custom gcodes. We will use placeholders for this.
// These will be substituted by the actual gcodes when the gcode is generated.
writer.append("[end_filament_gcode]\n");
writer.append("[toolchange_gcode]\n");
// Travel to where we assume we are. Custom toolchange or some special T code handling (parking extruder etc)
// gcode could have left the extruder somewhere, we cannot just start extruding. We should also inform the
// postprocessor that we absolutely want to have this in the gcode, even if it thought it is the same as before.
Vec2f current_pos = writer.pos_rotated();
writer.feedrate(m_travel_speed * 60.f) // see https://github.com/prusa3d/PrusaSlicer/issues/5483
.append(std::string("G1 X") + Slic3r::float_to_string_decimal_point(current_pos.x())
+ " Y" + Slic3r::float_to_string_decimal_point(current_pos.y())
+ never_skip_tag() + "\n");
// The toolchange Tn command will be inserted later, only in case that the user does
// not provide a custom toolchange gcode.
writer.set_tool(new_tool); // This outputs nothing, the writer just needs to know the tool has changed.
writer.append("[start_filament_gcode]\n");
writer.flush_planner_queue();
m_current_tool = new_tool;
}
void WipeTower::toolchange_Load(
WipeTowerWriter &writer,
const box_coordinates &cleaning_box)
{
if (m_semm && (m_parking_pos_retraction != 0 || m_extra_loading_move != 0)) {
float xl = cleaning_box.ld.x() + m_perimeter_width * 0.75f;
float xr = cleaning_box.rd.x() - m_perimeter_width * 0.75f;
float oldx = writer.x(); // the nozzle is in place to do the first wiping moves, we will remember the position
// Load the filament while moving left / right, so the excess material will not create a blob at a single position.
float turning_point = ( oldx-xl < xr-oldx ? xr : xl );
float edist = m_parking_pos_retraction+m_extra_loading_move;
writer.append("; CP TOOLCHANGE LOAD\n")
.suppress_preview()
.load(0.2f * edist, 60.f * m_filpar[m_current_tool].loading_speed_start)
.load_move_x_advanced(turning_point, 0.7f * edist, m_filpar[m_current_tool].loading_speed) // Fast phase
.load_move_x_advanced(oldx, 0.1f * edist, 0.1f * m_filpar[m_current_tool].loading_speed) // Super slow*/
.travel(oldx, writer.y()) // in case last move was shortened to limit x feedrate
.resume_preview();
// Reset the extruder current to the normal value.
if (m_set_extruder_trimpot)
writer.set_extruder_trimpot(550);
}
}
// Wipe the newly loaded filament until the end of the assigned wipe area.
void WipeTower::toolchange_Wipe(
WipeTowerWriter &writer,
const box_coordinates &cleaning_box,
float wipe_volume)
{
// Increase flow on first layer, slow down print.
writer.set_extrusion_flow(m_extrusion_flow * (is_first_layer() ? 1.18f : 1.f))
.append("; CP TOOLCHANGE WIPE\n");
const float& xl = cleaning_box.ld.x();
const float& xr = cleaning_box.rd.x();
// Variables x_to_wipe and traversed_x are here to be able to make sure it always wipes at least
// the ordered volume, even if it means violating the box. This can later be removed and simply
// wipe until the end of the assigned area.
float x_to_wipe = volume_to_length(wipe_volume, m_perimeter_width, m_layer_height);
float dy = m_extra_spacing*m_perimeter_width;
const float target_speed = is_first_layer() ? m_first_layer_speed * 60.f : 4800.f;
float wipe_speed = 0.33f * target_speed;
// if there is less than 2.5*m_perimeter_width to the edge, advance straightaway (there is likely a blob anyway)
if ((m_left_to_right ? xr-writer.x() : writer.x()-xl) < 2.5f*m_perimeter_width) {
writer.travel((m_left_to_right ? xr-m_perimeter_width : xl+m_perimeter_width),writer.y()+dy);
m_left_to_right = !m_left_to_right;
}
// now the wiping itself:
for (int i = 0; true; ++i) {
if (i!=0) {
if (wipe_speed < 0.34f * target_speed) wipe_speed = 0.375f * target_speed;
else if (wipe_speed < 0.377 * target_speed) wipe_speed = 0.458f * target_speed;
else if (wipe_speed < 0.46f * target_speed) wipe_speed = 0.875f * target_speed;
else wipe_speed = std::min(target_speed, wipe_speed + 50.f);
}
float traversed_x = writer.x();
if (m_left_to_right)
writer.extrude(xr - (i % 4 == 0 ? 0 : 1.5f*m_perimeter_width), writer.y(), wipe_speed);
else
writer.extrude(xl + (i % 4 == 1 ? 0 : 1.5f*m_perimeter_width), writer.y(), wipe_speed);
if (writer.y()+float(EPSILON) > cleaning_box.lu.y()-0.5f*m_perimeter_width)
break; // in case next line would not fit
traversed_x -= writer.x();
x_to_wipe -= std::abs(traversed_x);
if (x_to_wipe < WT_EPSILON) {
writer.travel(m_left_to_right ? xl + 1.5f*m_perimeter_width : xr - 1.5f*m_perimeter_width, writer.y(), 7200);
break;
}
// stepping to the next line:
writer.extrude(writer.x() + (i % 4 == 0 ? -1.f : (i % 4 == 1 ? 1.f : 0.f)) * 1.5f*m_perimeter_width, writer.y() + dy);
m_left_to_right = !m_left_to_right;
}
// We may be going back to the model - wipe the nozzle. If this is followed
// by finish_layer, this wipe path will be overwritten.
writer.add_wipe_point(writer.x(), writer.y())
.add_wipe_point(writer.x(), writer.y() - dy)
.add_wipe_point(! m_left_to_right ? m_wipe_tower_width : 0.f, writer.y() - dy);
if (m_layer_info != m_plan.end() && m_current_tool != m_layer_info->tool_changes.back().new_tool)
m_left_to_right = !m_left_to_right;
writer.set_extrusion_flow(m_extrusion_flow); // Reset the extrusion flow.
}
WipeTower::ToolChangeResult WipeTower::finish_layer()
{
assert(! this->layer_finished());
m_current_layer_finished = true;
size_t old_tool = m_current_tool;
WipeTowerWriter writer(m_layer_height, m_perimeter_width, m_gcode_flavor, m_filpar);
writer.set_extrusion_flow(m_extrusion_flow)
.set_z(m_z_pos)
.set_initial_tool(m_current_tool)
.set_y_shift(m_y_shift - (m_current_shape == SHAPE_REVERSED ? m_layer_info->toolchanges_depth() : 0.f));
// Slow down on the 1st layer.
bool first_layer = is_first_layer();
float feedrate = first_layer ? m_first_layer_speed * 60.f : 2900.f;
float current_depth = m_layer_info->depth - m_layer_info->toolchanges_depth();
box_coordinates fill_box(Vec2f(m_perimeter_width, m_layer_info->depth-(current_depth-m_perimeter_width)),
m_wipe_tower_width - 2 * m_perimeter_width, current_depth-m_perimeter_width);
writer.set_initial_position((m_left_to_right ? fill_box.ru : fill_box.lu), // so there is never a diagonal travel
m_wipe_tower_width, m_wipe_tower_depth, m_internal_rotation);
bool toolchanges_on_layer = m_layer_info->toolchanges_depth() > WT_EPSILON;
box_coordinates wt_box(Vec2f(0.f, (m_current_shape == SHAPE_REVERSED ? m_layer_info->toolchanges_depth() : 0.f)),
m_wipe_tower_width, m_layer_info->depth + m_perimeter_width);
// inner perimeter of the sparse section, if there is space for it:
if (fill_box.ru.y() - fill_box.rd.y() > m_perimeter_width - WT_EPSILON)
writer.rectangle(fill_box.ld, fill_box.rd.x()-fill_box.ld.x(), fill_box.ru.y()-fill_box.rd.y(), feedrate);
// we are in one of the corners, travel to ld along the perimeter:
if (writer.x() > fill_box.ld.x()+EPSILON) writer.travel(fill_box.ld.x(),writer.y());
if (writer.y() > fill_box.ld.y()+EPSILON) writer.travel(writer.x(),fill_box.ld.y());
// Extrude infill to support the material to be printed above.
const float dy = (fill_box.lu.y() - fill_box.ld.y() - m_perimeter_width);
float left = fill_box.lu.x() + 2*m_perimeter_width;
float right = fill_box.ru.x() - 2 * m_perimeter_width;
if (dy > m_perimeter_width)
{
writer.travel(fill_box.ld + Vec2f(m_perimeter_width * 2, 0.f))
.append(";--------------------\n"
"; CP EMPTY GRID START\n")
.comment_with_value(" layer #", m_num_layer_changes + 1);
// Is there a soluble filament wiped/rammed at the next layer?
// If so, the infill should not be sparse.
bool solid_infill = m_layer_info+1 == m_plan.end()
? false
: std::any_of((m_layer_info+1)->tool_changes.begin(),
(m_layer_info+1)->tool_changes.end(),
[this](const WipeTowerInfo::ToolChange& tch) {
return m_filpar[tch.new_tool].is_soluble
|| m_filpar[tch.old_tool].is_soluble;
});
solid_infill |= first_layer && m_adhesion;
if (solid_infill) {
float sparse_factor = 1.5f; // 1=solid, 2=every other line, etc.
if (first_layer) { // the infill should touch perimeters
left -= m_perimeter_width;
right += m_perimeter_width;
sparse_factor = 1.f;
}
float y = fill_box.ld.y() + m_perimeter_width;
int n = dy / (m_perimeter_width * sparse_factor);
float spacing = (dy-m_perimeter_width)/(n-1);
int i=0;
for (i=0; i<n; ++i) {
writer.extrude(writer.x(), y, feedrate)
.extrude(i%2 ? left : right, y);
y = y + spacing;
}
writer.extrude(writer.x(), fill_box.lu.y());
} else {
// Extrude an inverse U at the left of the region and the sparse infill.
writer.extrude(fill_box.lu + Vec2f(m_perimeter_width * 2, 0.f), feedrate);
const int n = 1+int((right-left)/m_bridging);
const float dx = (right-left)/n;
for (int i=1;i<=n;++i) {
float x=left+dx*i;
writer.travel(x,writer.y());
writer.extrude(x,i%2 ? fill_box.rd.y() : fill_box.ru.y());
}
}
writer.append("; CP EMPTY GRID END\n"
";------------------\n\n\n\n\n\n\n");
}
// outer perimeter (always):
writer.rectangle(wt_box, feedrate);
// brim (first layer only)
if (first_layer) {
box_coordinates box = wt_box;
float spacing = m_perimeter_width - m_layer_height*float(1.-M_PI_4);
// How many perimeters shall the brim have?
size_t loops_num = (m_wipe_tower_brim_width + spacing/2.f) / spacing;
for (size_t i = 0; i < loops_num; ++ i) {
box.expand(spacing);
writer.rectangle(box);
}
// Save actual brim width to be later passed to the Print object, which will use it
// for skirt calculation and pass it to GLCanvas for precise preview box
m_wipe_tower_brim_width_real = wt_box.ld.x() - box.ld.x() + spacing/2.f;
wt_box = box;
}
// Now prepare future wipe. box contains rectangle that was extruded last (ccw).
Vec2f target = (writer.pos() == wt_box.ld ? wt_box.rd :
(writer.pos() == wt_box.rd ? wt_box.ru :
(writer.pos() == wt_box.ru ? wt_box.lu :
wt_box.ld)));
writer.add_wipe_point(writer.pos())
.add_wipe_point(target);
// Ask our writer about how much material was consumed.
// Skip this in case the layer is sparse and config option to not print sparse layers is enabled.
if (! m_no_sparse_layers || toolchanges_on_layer)
if (m_current_tool < m_used_filament_length.size())
m_used_filament_length[m_current_tool] += writer.get_and_reset_used_filament_length();
return construct_tcr(writer, false, old_tool);
}
// Appends a toolchange into m_plan and calculates neccessary depth of the corresponding box
void WipeTower::plan_toolchange(float z_par, float layer_height_par, unsigned int old_tool,
unsigned int new_tool, float wipe_volume)
{
assert(m_plan.empty() || m_plan.back().z <= z_par + WT_EPSILON); // refuses to add a layer below the last one
if (m_plan.empty() || m_plan.back().z + WT_EPSILON < z_par) // if we moved to a new layer, we'll add it to m_plan first
m_plan.push_back(WipeTowerInfo(z_par, layer_height_par));
if (m_first_layer_idx == size_t(-1) && (! m_no_sparse_layers || old_tool != new_tool))
m_first_layer_idx = m_plan.size() - 1;
if (old_tool == new_tool) // new layer without toolchanges - we are done
return;
// this is an actual toolchange - let's calculate depth to reserve on the wipe tower
float depth = 0.f;
float width = m_wipe_tower_width - 3*m_perimeter_width;
float length_to_extrude = volume_to_length(0.25f * std::accumulate(m_filpar[old_tool].ramming_speed.begin(), m_filpar[old_tool].ramming_speed.end(), 0.f),
m_perimeter_width * m_filpar[old_tool].ramming_line_width_multiplicator,
layer_height_par);
depth = (int(length_to_extrude / width) + 1) * (m_perimeter_width * m_filpar[old_tool].ramming_line_width_multiplicator * m_filpar[old_tool].ramming_step_multiplicator);
float ramming_depth = depth;
length_to_extrude = width*((length_to_extrude / width)-int(length_to_extrude / width)) - width;
float first_wipe_line = -length_to_extrude;
length_to_extrude += volume_to_length(wipe_volume, m_perimeter_width, layer_height_par);
length_to_extrude = std::max(length_to_extrude,0.f);
depth += (int(length_to_extrude / width) + 1) * m_perimeter_width;
depth *= m_extra_spacing;
m_plan.back().tool_changes.push_back(WipeTowerInfo::ToolChange(old_tool, new_tool, depth, ramming_depth, first_wipe_line, wipe_volume));
}
void WipeTower::plan_tower()
{
// Calculate m_wipe_tower_depth (maximum depth for all the layers) and propagate depths downwards
m_wipe_tower_depth = 0.f;
for (auto& layer : m_plan)
layer.depth = 0.f;
for (int layer_index = int(m_plan.size()) - 1; layer_index >= 0; --layer_index)
{
float this_layer_depth = std::max(m_plan[layer_index].depth, m_plan[layer_index].toolchanges_depth());
m_plan[layer_index].depth = this_layer_depth;
if (this_layer_depth > m_wipe_tower_depth - m_perimeter_width)
m_wipe_tower_depth = this_layer_depth + m_perimeter_width;
for (int i = layer_index - 1; i >= 0 ; i--)
{
if (m_plan[i].depth - this_layer_depth < 2*m_perimeter_width )
m_plan[i].depth = this_layer_depth;
}
}
}
void WipeTower::save_on_last_wipe()
{
for (m_layer_info=m_plan.begin();m_layer_info<m_plan.end();++m_layer_info) {
set_layer(m_layer_info->z, m_layer_info->height, 0, m_layer_info->z == m_plan.front().z, m_layer_info->z == m_plan.back().z);
if (m_layer_info->tool_changes.size()==0) // we have no way to save anything on an empty layer
continue;
// Which toolchange will finish_layer extrusions be subtracted from?
int idx = first_toolchange_to_nonsoluble(m_layer_info->tool_changes);
for (int i=0; i<int(m_layer_info->tool_changes.size()); ++i) {
auto& toolchange = m_layer_info->tool_changes[i];
tool_change(toolchange.new_tool);
if (i == idx) {
float width = m_wipe_tower_width - 3*m_perimeter_width; // width we draw into
float length_to_save = finish_layer().total_extrusion_length_in_plane();
float length_to_wipe = volume_to_length(toolchange.wipe_volume,
m_perimeter_width, m_layer_info->height) - toolchange.first_wipe_line - length_to_save;
length_to_wipe = std::max(length_to_wipe,0.f);
float depth_to_wipe = m_perimeter_width * (std::floor(length_to_wipe/width) + ( length_to_wipe > 0.f ? 1.f : 0.f ) ) * m_extra_spacing;
toolchange.required_depth = toolchange.ramming_depth + depth_to_wipe;
}
}
}
}
// Return index of first toolchange that switches to non-soluble extruder
// ot -1 if there is no such toolchange.
int WipeTower::first_toolchange_to_nonsoluble(
const std::vector<WipeTowerInfo::ToolChange>& tool_changes) const
{
for (size_t idx=0; idx<tool_changes.size(); ++idx)
if (! m_filpar[tool_changes[idx].new_tool].is_soluble)
return idx;
return -1;
}
static WipeTower::ToolChangeResult merge_tcr(WipeTower::ToolChangeResult& first,
WipeTower::ToolChangeResult& second)
{
assert(first.new_tool == second.initial_tool);
WipeTower::ToolChangeResult out = first;
if (first.end_pos != second.start_pos)
out.gcode += "G1 X" + Slic3r::float_to_string_decimal_point(second.start_pos.x(), 3)
+ " Y" + Slic3r::float_to_string_decimal_point(second.start_pos.y(), 3)
+ " F7200\n";
out.gcode += second.gcode;
out.extrusions.insert(out.extrusions.end(), second.extrusions.begin(), second.extrusions.end());
out.end_pos = second.end_pos;
out.wipe_path = second.wipe_path;
out.initial_tool = first.initial_tool;
out.new_tool = second.new_tool;
return out;
}
// Processes vector m_plan and calls respective functions to generate G-code for the wipe tower
// Resulting ToolChangeResults are appended into vector "result"
void WipeTower::generate(std::vector<std::vector<WipeTower::ToolChangeResult>> &result)
{
if (m_plan.empty())
return;
m_extra_spacing = 1.f;
plan_tower();
for (int i=0;i<5;++i) {
save_on_last_wipe();
plan_tower();
}
m_layer_info = m_plan.begin();
// we don't know which extruder to start with - we'll set it according to the first toolchange
for (const auto& layer : m_plan) {
if (!layer.tool_changes.empty()) {
m_current_tool = layer.tool_changes.front().old_tool;
break;
}
}
for (auto& used : m_used_filament_length) // reset used filament stats
used = 0.f;
m_old_temperature = -1; // reset last temperature written in the gcode
std::vector<WipeTower::ToolChangeResult> layer_result;
for (auto layer : m_plan)
{
set_layer(layer.z, layer.height, 0, false/*layer.z == m_plan.front().z*/, layer.z == m_plan.back().z);
m_internal_rotation += 180.f;
if (m_layer_info->depth < m_wipe_tower_depth - m_perimeter_width)
m_y_shift = (m_wipe_tower_depth-m_layer_info->depth-m_perimeter_width)/2.f;
int idx = first_toolchange_to_nonsoluble(layer.tool_changes);
ToolChangeResult finish_layer_tcr;
if (idx == -1) {
// if there is no toolchange switching to non-soluble, finish layer
// will be called at the very beginning. That's the last possibility
// where a nonsoluble tool can be.
finish_layer_tcr = finish_layer();
}
for (int i=0; i<int(layer.tool_changes.size()); ++i) {
layer_result.emplace_back(tool_change(layer.tool_changes[i].new_tool));
if (i == idx) // finish_layer will be called after this toolchange
finish_layer_tcr = finish_layer();
}
if (layer_result.empty()) {
// there is nothing to merge finish_layer with
layer_result.emplace_back(std::move(finish_layer_tcr));
}
else {
if (idx == -1)
layer_result[0] = merge_tcr(finish_layer_tcr, layer_result[0]);
else
layer_result[idx] = merge_tcr(layer_result[idx], finish_layer_tcr);
}
result.emplace_back(std::move(layer_result));
}
}
} // namespace Slic3r