43 lines
1.6 KiB
GLSL
43 lines
1.6 KiB
GLSL
#version 110
|
|
|
|
#define INTENSITY_CORRECTION 0.6
|
|
|
|
// normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31)
|
|
const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929);
|
|
#define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION)
|
|
#define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION)
|
|
#define LIGHT_TOP_SHININESS 20.0
|
|
|
|
// normalized values for (1./1.43, 0.2/1.43, 1./1.43)
|
|
const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074);
|
|
#define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION)
|
|
|
|
#define INTENSITY_AMBIENT 0.3
|
|
|
|
// x = tainted, y = specular;
|
|
varying vec2 intensity;
|
|
|
|
void main()
|
|
{
|
|
// First transform the normal into camera space and normalize the result.
|
|
vec3 normal = normalize(gl_NormalMatrix * gl_Normal);
|
|
|
|
// Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
|
|
// Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
|
|
float NdotL = max(dot(normal, LIGHT_TOP_DIR), 0.0);
|
|
|
|
intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
|
|
intensity.y = 0.0;
|
|
|
|
if (NdotL > 0.0)
|
|
{
|
|
vec3 position = (gl_ModelViewMatrix * gl_Vertex).xyz;
|
|
intensity.y += LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position), reflect(-LIGHT_TOP_DIR, normal)), 0.0), LIGHT_TOP_SHININESS);
|
|
}
|
|
|
|
// Perform the same lighting calculation for the 2nd light source (no specular applied).
|
|
intensity.x += max(dot(normal, LIGHT_FRONT_DIR), 0.0) * LIGHT_FRONT_DIFFUSE;
|
|
|
|
gl_Position = ftransform();
|
|
}
|