PrusaSlicer-NonPlainar/src/libslic3r/SupportMaterial.cpp

4431 lines
248 KiB
C++

#include "ClipperUtils.hpp"
#include "ExtrusionEntityCollection.hpp"
#include "Layer.hpp"
#include "Print.hpp"
#include "SupportMaterial.hpp"
#include "Fill/FillBase.hpp"
#include "Geometry.hpp"
#include "Point.hpp"
#include "MutablePolygon.hpp"
#include <cmath>
#include <memory>
#include <boost/log/trivial.hpp>
#include <boost/container/static_vector.hpp>
#include <tbb/parallel_for.h>
#include <tbb/spin_mutex.h>
#include <tbb/task_group.h>
#define SUPPORT_USE_AGG_RASTERIZER
#ifdef SUPPORT_USE_AGG_RASTERIZER
#include <agg/agg_pixfmt_gray.h>
#include <agg/agg_renderer_scanline.h>
#include <agg/agg_scanline_p.h>
#include <agg/agg_rasterizer_scanline_aa.h>
#include <agg/agg_path_storage.h>
#include "PNGReadWrite.hpp"
#else
#include "EdgeGrid.hpp"
#endif // SUPPORT_USE_AGG_RASTERIZER
// #define SLIC3R_DEBUG
// Make assert active if SLIC3R_DEBUG
#ifdef SLIC3R_DEBUG
#define DEBUG
#define _DEBUG
#undef NDEBUG
#include "utils.hpp"
#include "SVG.hpp"
#endif
// #undef NDEBUG
#include <cassert>
namespace Slic3r {
// how much we extend support around the actual contact area
//FIXME this should be dependent on the nozzle diameter!
#define SUPPORT_MATERIAL_MARGIN 1.5
// Increment used to reach MARGIN in steps to avoid trespassing thin objects
#define NUM_MARGIN_STEPS 3
// Dimensions of a tree-like structure to save material
#define PILLAR_SIZE (2.5)
#define PILLAR_SPACING 10
//#define SUPPORT_SURFACES_OFFSET_PARAMETERS ClipperLib::jtMiter, 3.
//#define SUPPORT_SURFACES_OFFSET_PARAMETERS ClipperLib::jtMiter, 1.5
#define SUPPORT_SURFACES_OFFSET_PARAMETERS ClipperLib::jtSquare, 0.
#ifdef SLIC3R_DEBUG
const char* support_surface_type_to_color_name(const PrintObjectSupportMaterial::SupporLayerType surface_type)
{
switch (surface_type) {
case PrintObjectSupportMaterial::sltTopContact: return "rgb(255,0,0)"; // "red";
case PrintObjectSupportMaterial::sltTopInterface: return "rgb(0,255,0)"; // "green";
case PrintObjectSupportMaterial::sltBase: return "rgb(0,0,255)"; // "blue";
case PrintObjectSupportMaterial::sltBottomInterface:return "rgb(255,255,128)"; // yellow
case PrintObjectSupportMaterial::sltBottomContact: return "rgb(255,0,255)"; // magenta
case PrintObjectSupportMaterial::sltRaftInterface: return "rgb(0,255,255)";
case PrintObjectSupportMaterial::sltRaftBase: return "rgb(128,128,128)";
case PrintObjectSupportMaterial::sltUnknown: return "rgb(128,0,0)"; // maroon
default: return "rgb(64,64,64)";
};
}
Point export_support_surface_type_legend_to_svg_box_size()
{
return Point(scale_(1.+10.*8.), scale_(3.));
}
void export_support_surface_type_legend_to_svg(SVG &svg, const Point &pos)
{
// 1st row
coord_t pos_x0 = pos(0) + scale_(1.);
coord_t pos_x = pos_x0;
coord_t pos_y = pos(1) + scale_(1.5);
coord_t step_x = scale_(10.);
svg.draw_legend(Point(pos_x, pos_y), "top contact" , support_surface_type_to_color_name(PrintObjectSupportMaterial::sltTopContact));
pos_x += step_x;
svg.draw_legend(Point(pos_x, pos_y), "top iface" , support_surface_type_to_color_name(PrintObjectSupportMaterial::sltTopInterface));
pos_x += step_x;
svg.draw_legend(Point(pos_x, pos_y), "base" , support_surface_type_to_color_name(PrintObjectSupportMaterial::sltBase));
pos_x += step_x;
svg.draw_legend(Point(pos_x, pos_y), "bottom iface" , support_surface_type_to_color_name(PrintObjectSupportMaterial::sltBottomInterface));
pos_x += step_x;
svg.draw_legend(Point(pos_x, pos_y), "bottom contact" , support_surface_type_to_color_name(PrintObjectSupportMaterial::sltBottomContact));
// 2nd row
pos_x = pos_x0;
pos_y = pos(1)+scale_(2.8);
svg.draw_legend(Point(pos_x, pos_y), "raft interface" , support_surface_type_to_color_name(PrintObjectSupportMaterial::sltRaftInterface));
pos_x += step_x;
svg.draw_legend(Point(pos_x, pos_y), "raft base" , support_surface_type_to_color_name(PrintObjectSupportMaterial::sltRaftBase));
pos_x += step_x;
svg.draw_legend(Point(pos_x, pos_y), "unknown" , support_surface_type_to_color_name(PrintObjectSupportMaterial::sltUnknown));
pos_x += step_x;
svg.draw_legend(Point(pos_x, pos_y), "intermediate" , support_surface_type_to_color_name(PrintObjectSupportMaterial::sltIntermediate));
}
void export_print_z_polygons_to_svg(const char *path, PrintObjectSupportMaterial::MyLayer ** const layers, size_t n_layers)
{
BoundingBox bbox;
for (int i = 0; i < n_layers; ++ i)
bbox.merge(get_extents(layers[i]->polygons));
Point legend_size = export_support_surface_type_legend_to_svg_box_size();
Point legend_pos(bbox.min(0), bbox.max(1));
bbox.merge(Point(std::max(bbox.min(0) + legend_size(0), bbox.max(0)), bbox.max(1) + legend_size(1)));
SVG svg(path, bbox);
const float transparency = 0.5f;
for (int i = 0; i < n_layers; ++ i)
svg.draw(union_ex(layers[i]->polygons), support_surface_type_to_color_name(layers[i]->layer_type), transparency);
for (int i = 0; i < n_layers; ++ i)
svg.draw(to_polylines(layers[i]->polygons), support_surface_type_to_color_name(layers[i]->layer_type));
export_support_surface_type_legend_to_svg(svg, legend_pos);
svg.Close();
}
void export_print_z_polygons_and_extrusions_to_svg(
const char *path,
PrintObjectSupportMaterial::MyLayer ** const layers,
size_t n_layers,
SupportLayer &support_layer)
{
BoundingBox bbox;
for (int i = 0; i < n_layers; ++ i)
bbox.merge(get_extents(layers[i]->polygons));
Point legend_size = export_support_surface_type_legend_to_svg_box_size();
Point legend_pos(bbox.min(0), bbox.max(1));
bbox.merge(Point(std::max(bbox.min(0) + legend_size(0), bbox.max(0)), bbox.max(1) + legend_size(1)));
SVG svg(path, bbox);
const float transparency = 0.5f;
for (int i = 0; i < n_layers; ++ i)
svg.draw(union_ex(layers[i]->polygons), support_surface_type_to_color_name(layers[i]->layer_type), transparency);
for (int i = 0; i < n_layers; ++ i)
svg.draw(to_polylines(layers[i]->polygons), support_surface_type_to_color_name(layers[i]->layer_type));
Polygons polygons_support, polygons_interface;
support_layer.support_fills.polygons_covered_by_width(polygons_support, float(SCALED_EPSILON));
// support_layer.support_interface_fills.polygons_covered_by_width(polygons_interface, SCALED_EPSILON);
svg.draw(union_ex(polygons_support), "brown");
svg.draw(union_ex(polygons_interface), "black");
export_support_surface_type_legend_to_svg(svg, legend_pos);
svg.Close();
}
#endif /* SLIC3R_DEBUG */
#ifdef SUPPORT_USE_AGG_RASTERIZER
static std::vector<unsigned char> rasterize_polygons(const Vec2i &grid_size, const double pixel_size, const Point &left_bottom, const Polygons &polygons)
{
std::vector<unsigned char> data(grid_size.x() * grid_size.y());
agg::rendering_buffer rendering_buffer(data.data(), unsigned(grid_size.x()), unsigned(grid_size.y()), grid_size.x());
agg::pixfmt_gray8 pixel_renderer(rendering_buffer);
agg::renderer_base<agg::pixfmt_gray8> raw_renderer(pixel_renderer);
agg::renderer_scanline_aa_solid<agg::renderer_base<agg::pixfmt_gray8>> renderer(raw_renderer);
renderer.color(agg::pixfmt_gray8::color_type(255));
raw_renderer.clear(agg::pixfmt_gray8::color_type(0));
agg::scanline_p8 scanline;
agg::rasterizer_scanline_aa<> rasterizer;
auto convert_pt = [left_bottom, pixel_size](const Point &pt) {
return Vec2d((pt.x() - left_bottom.x()) / pixel_size, (pt.y() - left_bottom.y()) / pixel_size);
};
rasterizer.reset();
for (const Polygon &polygon : polygons) {
agg::path_storage path;
auto it = polygon.points.begin();
Vec2d pt_front = convert_pt(*it);
path.move_to(pt_front.x(), pt_front.y());
while (++ it != polygon.points.end()) {
Vec2d pt = convert_pt(*it);
path.line_to(pt.x(), pt.y());
}
path.line_to(pt_front.x(), pt_front.y());
rasterizer.add_path(std::move(path));
}
agg::render_scanlines(rasterizer, scanline, renderer);
return data;
}
// Grid has to have the boundary pixels unset.
static Polygons contours_simplified(const Vec2i &grid_size, const double pixel_size, Point left_bottom, const std::vector<unsigned char> &grid, coord_t offset, bool fill_holes)
{
assert(std::abs(2 * offset) < pixel_size - 10);
// Fill in empty cells, which have a left / right neighbor filled.
// Fill in empty cells, which have the top / bottom neighbor filled.
std::vector<unsigned char> cell_inside_data;
const std::vector<unsigned char> &cell_inside = fill_holes ? cell_inside_data : grid;
if (fill_holes) {
cell_inside_data = grid;
for (int r = 1; r + 1 < grid_size.y(); ++ r) {
for (int c = 1; c + 1 < grid_size.x(); ++ c) {
int addr = r * grid_size.x() + c;
if ((grid[addr - 1] != 0 && grid[addr + 1] != 0) ||
(grid[addr - grid_size.x()] != 0 && grid[addr + grid_size.x()] != 0))
cell_inside_data[addr] = true;
}
}
}
// 1) Collect the lines.
std::vector<Line> lines;
std::vector<std::pair<Point, int>> start_point_to_line_idx;
for (int r = 1; r < grid_size.y(); ++ r) {
for (int c = 1; c < grid_size.x(); ++ c) {
int addr = r * grid_size.x() + c;
bool left = cell_inside[addr - 1] != 0;
bool top = cell_inside[addr - grid_size.x()] != 0;
bool current = cell_inside[addr] != 0;
if (left != current) {
lines.push_back(
left ?
Line(Point(c, r+1), Point(c, r )) :
Line(Point(c, r ), Point(c, r+1)));
start_point_to_line_idx.emplace_back(lines.back().a, int(lines.size()) - 1);
}
if (top != current) {
lines.push_back(
top ?
Line(Point(c , r), Point(c+1, r)) :
Line(Point(c+1, r), Point(c , r)));
start_point_to_line_idx.emplace_back(lines.back().a, int(lines.size()) - 1);
}
}
}
std::sort(start_point_to_line_idx.begin(), start_point_to_line_idx.end(), [](const auto &l, const auto &r){ return l.first < r.first; });
// 2) Chain the lines.
std::vector<char> line_processed(lines.size(), false);
Polygons out;
for (int i_candidate = 0; i_candidate < int(lines.size()); ++ i_candidate) {
if (line_processed[i_candidate])
continue;
Polygon poly;
line_processed[i_candidate] = true;
poly.points.push_back(lines[i_candidate].b);
int i_line_current = i_candidate;
for (;;) {
auto line_range = std::equal_range(std::begin(start_point_to_line_idx), std::end(start_point_to_line_idx),
std::make_pair(lines[i_line_current].b, 0), [](const auto& l, const auto& r) { return l.first < r.first; });
// The interval has to be non empty, there shall be at least one line continuing the current one.
assert(line_range.first != line_range.second);
int i_next = -1;
for (auto it = line_range.first; it != line_range.second; ++ it) {
if (it->second == i_candidate) {
// closing the loop.
goto end_of_poly;
}
if (line_processed[it->second])
continue;
if (i_next == -1) {
i_next = it->second;
} else {
// This is a corner, where two lines meet exactly. Pick the line, which encloses a smallest angle with
// the current edge.
const Line &line_current = lines[i_line_current];
const Line &line_next = lines[it->second];
const Vector v1 = line_current.vector();
const Vector v2 = line_next.vector();
int64_t cross = int64_t(v1(0)) * int64_t(v2(1)) - int64_t(v2(0)) * int64_t(v1(1));
if (cross > 0) {
// This has to be a convex right angle. There is no better next line.
i_next = it->second;
break;
}
}
}
line_processed[i_next] = true;
i_line_current = i_next;
poly.points.push_back(lines[i_line_current].b);
}
end_of_poly:
out.push_back(std::move(poly));
}
// 3) Scale the polygons back into world, shrink slightly and remove collinear points.
for (Polygon &poly : out) {
for (Point &p : poly.points) {
#if 0
p.x() = (p.x() + 1) * pixel_size + left_bottom.x();
p.y() = (p.y() + 1) * pixel_size + left_bottom.y();
#else
p *= pixel_size;
p += left_bottom;
#endif
}
// Shrink the contour slightly, so if the same contour gets discretized and simplified again, one will get the same result.
// Remove collinear points.
Points pts;
pts.reserve(poly.points.size());
for (size_t j = 0; j < poly.points.size(); ++ j) {
size_t j0 = (j == 0) ? poly.points.size() - 1 : j - 1;
size_t j2 = (j + 1 == poly.points.size()) ? 0 : j + 1;
Point v = poly.points[j2] - poly.points[j0];
if (v(0) != 0 && v(1) != 0) {
// This is a corner point. Copy it to the output contour.
Point p = poly.points[j];
p(1) += (v(0) < 0) ? - offset : offset;
p(0) += (v(1) > 0) ? - offset : offset;
pts.push_back(p);
}
}
poly.points = std::move(pts);
}
return out;
}
#endif // SUPPORT_USE_AGG_RASTERIZER
PrintObjectSupportMaterial::PrintObjectSupportMaterial(const PrintObject *object, const SlicingParameters &slicing_params) :
m_object (object),
m_print_config (&object->print()->config()),
m_object_config (&object->config()),
m_slicing_params (slicing_params)
{
m_support_params.first_layer_flow = support_material_1st_layer_flow(object, float(slicing_params.first_print_layer_height));
m_support_params.support_material_flow = support_material_flow(object, float(slicing_params.layer_height));
m_support_params.support_material_interface_flow = support_material_interface_flow(object, float(slicing_params.layer_height));
m_support_params.support_layer_height_min = 0.01;
// Calculate a minimum support layer height as a minimum over all extruders, but not smaller than 10um.
m_support_params.support_layer_height_min = 1000000.;
for (auto lh : m_print_config->min_layer_height.values)
m_support_params.support_layer_height_min = std::min(m_support_params.support_layer_height_min, std::max(0.01, lh));
for (auto layer : m_object->layers())
m_support_params.support_layer_height_min = std::min(m_support_params.support_layer_height_min, std::max(0.01, layer->height));
if (m_object_config->support_material_interface_layers.value == 0) {
// No interface layers allowed, print everything with the base support pattern.
m_support_params.support_material_interface_flow = m_support_params.support_material_flow;
}
// Evaluate the XY gap between the object outer perimeters and the support structures.
// Evaluate the XY gap between the object outer perimeters and the support structures.
coordf_t external_perimeter_width = 0.;
coordf_t bridge_flow_ratio = 0;
for (size_t region_id = 0; region_id < object->num_printing_regions(); ++ region_id) {
const PrintRegion &region = object->printing_region(region_id);
external_perimeter_width = std::max(external_perimeter_width, coordf_t(region.flow(*object, frExternalPerimeter, slicing_params.layer_height).width()));
bridge_flow_ratio += region.config().bridge_flow_ratio;
}
m_support_params.gap_xy = m_object_config->support_material_xy_spacing.get_abs_value(external_perimeter_width);
bridge_flow_ratio /= object->num_printing_regions();
m_support_params.support_material_bottom_interface_flow = m_slicing_params.soluble_interface || ! m_object_config->thick_bridges ?
m_support_params.support_material_interface_flow.with_flow_ratio(bridge_flow_ratio) :
Flow::bridging_flow(bridge_flow_ratio * m_support_params.support_material_interface_flow.nozzle_diameter(), m_support_params.support_material_interface_flow.nozzle_diameter());
m_support_params.can_merge_support_regions = m_object_config->support_material_extruder.value == m_object_config->support_material_interface_extruder.value;
if (!m_support_params.can_merge_support_regions && (m_object_config->support_material_extruder.value == 0 || m_object_config->support_material_interface_extruder.value == 0)) {
// One of the support extruders is of "don't care" type.
auto object_extruders = m_object->object_extruders();
if (object_extruders.size() == 1 &&
*object_extruders.begin() == std::max<unsigned int>(m_object_config->support_material_extruder.value, m_object_config->support_material_interface_extruder.value))
// Object is printed with the same extruder as the support.
m_support_params.can_merge_support_regions = true;
}
m_support_params.base_angle = Geometry::deg2rad(float(m_object_config->support_material_angle.value));
m_support_params.interface_angle = Geometry::deg2rad(float(m_object_config->support_material_angle.value + 90.));
m_support_params.interface_spacing = m_object_config->support_material_interface_spacing.value + m_support_params.support_material_interface_flow.spacing();
m_support_params.interface_density = std::min(1., m_support_params.support_material_interface_flow.spacing() / m_support_params.interface_spacing);
m_support_params.support_spacing = m_object_config->support_material_spacing.value + m_support_params.support_material_flow.spacing();
m_support_params.support_density = std::min(1., m_support_params.support_material_flow.spacing() / m_support_params.support_spacing);
if (m_object_config->support_material_interface_layers.value == 0) {
// No interface layers allowed, print everything with the base support pattern.
m_support_params.interface_spacing = m_support_params.support_spacing;
m_support_params.interface_density = m_support_params.support_density;
}
SupportMaterialPattern support_pattern = m_object_config->support_material_pattern;
m_support_params.with_sheath = m_object_config->support_material_with_sheath;
m_support_params.base_fill_pattern =
support_pattern == smpHoneycomb ? ipHoneycomb :
m_support_params.support_density > 0.95 || m_support_params.with_sheath ? ipRectilinear : ipSupportBase;
m_support_params.interface_fill_pattern = (m_support_params.interface_density > 0.95 ? ipRectilinear : ipSupportBase);
m_support_params.contact_fill_pattern =
(m_object_config->support_material_interface_pattern == smipAuto && m_slicing_params.soluble_interface) ||
m_object_config->support_material_interface_pattern == smipConcentric ?
ipConcentric :
(m_support_params.interface_density > 0.95 ? ipRectilinear : ipSupportBase);
}
// Using the std::deque as an allocator.
inline PrintObjectSupportMaterial::MyLayer& layer_allocate(
std::deque<PrintObjectSupportMaterial::MyLayer> &layer_storage,
PrintObjectSupportMaterial::SupporLayerType layer_type)
{
layer_storage.push_back(PrintObjectSupportMaterial::MyLayer());
layer_storage.back().layer_type = layer_type;
return layer_storage.back();
}
inline PrintObjectSupportMaterial::MyLayer& layer_allocate(
std::deque<PrintObjectSupportMaterial::MyLayer> &layer_storage,
tbb::spin_mutex &layer_storage_mutex,
PrintObjectSupportMaterial::SupporLayerType layer_type)
{
layer_storage_mutex.lock();
layer_storage.push_back(PrintObjectSupportMaterial::MyLayer());
PrintObjectSupportMaterial::MyLayer *layer_new = &layer_storage.back();
layer_storage_mutex.unlock();
layer_new->layer_type = layer_type;
return *layer_new;
}
inline void layers_append(PrintObjectSupportMaterial::MyLayersPtr &dst, const PrintObjectSupportMaterial::MyLayersPtr &src)
{
dst.insert(dst.end(), src.begin(), src.end());
}
// Support layer that is covered by some form of dense interface.
static constexpr const std::initializer_list<PrintObjectSupportMaterial::SupporLayerType> support_types_interface {
PrintObjectSupportMaterial::sltRaftInterface, PrintObjectSupportMaterial::sltBottomContact, PrintObjectSupportMaterial::sltBottomInterface, PrintObjectSupportMaterial::sltTopContact, PrintObjectSupportMaterial::sltTopInterface
};
void PrintObjectSupportMaterial::generate(PrintObject &object)
{
BOOST_LOG_TRIVIAL(info) << "Support generator - Start";
coordf_t max_object_layer_height = 0.;
for (size_t i = 0; i < object.layer_count(); ++ i)
max_object_layer_height = std::max(max_object_layer_height, object.layers()[i]->height);
// Layer instances will be allocated by std::deque and they will be kept until the end of this function call.
// The layers will be referenced by various LayersPtr (of type std::vector<Layer*>)
MyLayerStorage layer_storage;
BOOST_LOG_TRIVIAL(info) << "Support generator - Creating top contacts";
// Per object layer projection of the object below the layer into print bed.
std::vector<Polygons> buildplate_covered = this->buildplate_covered(object);
// Determine the top contact surfaces of the support, defined as:
// contact = overhangs - clearance + margin
// This method is responsible for identifying what contact surfaces
// should the support material expose to the object in order to guarantee
// that it will be effective, regardless of how it's built below.
// If raft is to be generated, the 1st top_contact layer will contain the 1st object layer silhouette without holes.
MyLayersPtr top_contacts = this->top_contact_layers(object, buildplate_covered, layer_storage);
if (top_contacts.empty())
// Nothing is supported, no supports are generated.
return;
#ifdef SLIC3R_DEBUG
static int iRun = 0;
iRun ++;
for (const MyLayer *layer : top_contacts)
Slic3r::SVG::export_expolygons(
debug_out_path("support-top-contacts-%d-%lf.svg", iRun, layer->print_z),
union_ex(layer->polygons));
#endif /* SLIC3R_DEBUG */
BOOST_LOG_TRIVIAL(info) << "Support generator - Creating bottom contacts";
// Determine the bottom contact surfaces of the supports over the top surfaces of the object.
// Depending on whether the support is soluble or not, the contact layer thickness is decided.
// layer_support_areas contains the per object layer support areas. These per object layer support areas
// may get merged and trimmed by this->generate_base_layers() if the support layers are not synchronized with object layers.
std::vector<Polygons> layer_support_areas;
MyLayersPtr bottom_contacts = this->bottom_contact_layers_and_layer_support_areas(
object, top_contacts, buildplate_covered,
layer_storage, layer_support_areas);
#ifdef SLIC3R_DEBUG
for (size_t layer_id = 0; layer_id < object.layers().size(); ++ layer_id)
Slic3r::SVG::export_expolygons(
debug_out_path("support-areas-%d-%lf.svg", iRun, object.layers()[layer_id]->print_z),
union_ex(layer_support_areas[layer_id]));
#endif /* SLIC3R_DEBUG */
BOOST_LOG_TRIVIAL(info) << "Support generator - Creating intermediate layers - indices";
// Allocate empty layers between the top / bottom support contact layers
// as placeholders for the base and intermediate support layers.
// The layers may or may not be synchronized with the object layers, depending on the configuration.
// For example, a single nozzle multi material printing will need to generate a waste tower, which in turn
// wastes less material, if there are as little tool changes as possible.
MyLayersPtr intermediate_layers = this->raft_and_intermediate_support_layers(
object, bottom_contacts, top_contacts, layer_storage);
this->trim_support_layers_by_object(object, top_contacts, m_slicing_params.gap_support_object, m_slicing_params.gap_object_support, m_support_params.gap_xy);
#ifdef SLIC3R_DEBUG
for (const MyLayer *layer : top_contacts)
Slic3r::SVG::export_expolygons(
debug_out_path("support-top-contacts-trimmed-by-object-%d-%lf.svg", iRun, layer->print_z),
union_ex(layer->polygons));
#endif
BOOST_LOG_TRIVIAL(info) << "Support generator - Creating base layers";
// Fill in intermediate layers between the top / bottom support contact layers, trim them by the object.
this->generate_base_layers(object, bottom_contacts, top_contacts, intermediate_layers, layer_support_areas);
#ifdef SLIC3R_DEBUG
for (MyLayersPtr::const_iterator it = intermediate_layers.begin(); it != intermediate_layers.end(); ++ it)
Slic3r::SVG::export_expolygons(
debug_out_path("support-base-layers-%d-%lf.svg", iRun, (*it)->print_z),
union_ex((*it)->polygons));
#endif /* SLIC3R_DEBUG */
BOOST_LOG_TRIVIAL(info) << "Support generator - Trimming top contacts by bottom contacts";
// Because the top and bottom contacts are thick slabs, they may overlap causing over extrusion
// and unwanted strong bonds to the object.
// Rather trim the top contacts by their overlapping bottom contacts to leave a gap instead of over extruding
// top contacts over the bottom contacts.
this->trim_top_contacts_by_bottom_contacts(object, bottom_contacts, top_contacts);
BOOST_LOG_TRIVIAL(info) << "Support generator - Creating interfaces";
// Propagate top / bottom contact layers to generate interface layers
// and base interface layers (for soluble interface / non souble base only)
auto [interface_layers, base_interface_layers] = this->generate_interface_layers(bottom_contacts, top_contacts, intermediate_layers, layer_storage);
BOOST_LOG_TRIVIAL(info) << "Support generator - Creating raft";
// If raft is to be generated, the 1st top_contact layer will contain the 1st object layer silhouette with holes filled.
// There is also a 1st intermediate layer containing bases of support columns.
// Inflate the bases of the support columns and create the raft base under the object.
MyLayersPtr raft_layers = this->generate_raft_base(object, top_contacts, interface_layers, base_interface_layers, intermediate_layers, layer_storage);
#ifdef SLIC3R_DEBUG
for (const MyLayer *l : interface_layers)
Slic3r::SVG::export_expolygons(
debug_out_path("support-interface-layers-%d-%lf.svg", iRun, l->print_z),
union_ex(l->polygons));
for (const MyLayer *l : base_interface_layers)
Slic3r::SVG::export_expolygons(
debug_out_path("support-base-interface-layers-%d-%lf.svg", iRun, l->print_z),
union_ex(l->polygons));
#endif // SLIC3R_DEBUG
/*
// Clip with the pillars.
if (! shape.empty()) {
this->clip_with_shape(interface, shape);
this->clip_with_shape(base, shape);
}
*/
BOOST_LOG_TRIVIAL(info) << "Support generator - Creating layers";
// For debugging purposes, one may want to show only some of the support extrusions.
// raft_layers.clear();
// bottom_contacts.clear();
// top_contacts.clear();
// intermediate_layers.clear();
// interface_layers.clear();
// Install support layers into the object.
// A support layer installed on a PrintObject has a unique print_z.
MyLayersPtr layers_sorted;
layers_sorted.reserve(raft_layers.size() + bottom_contacts.size() + top_contacts.size() + intermediate_layers.size() + interface_layers.size() + base_interface_layers.size());
layers_append(layers_sorted, raft_layers);
layers_append(layers_sorted, bottom_contacts);
layers_append(layers_sorted, top_contacts);
layers_append(layers_sorted, intermediate_layers);
layers_append(layers_sorted, interface_layers);
layers_append(layers_sorted, base_interface_layers);
// Sort the layers lexicographically by a raising print_z and a decreasing height.
std::sort(layers_sorted.begin(), layers_sorted.end(), [](auto *l1, auto *l2) { return *l1 < *l2; });
int layer_id = 0;
int layer_id_interface = 0;
assert(object.support_layers().empty());
for (size_t i = 0; i < layers_sorted.size();) {
// Find the last layer with roughly the same print_z, find the minimum layer height of all.
// Due to the floating point inaccuracies, the print_z may not be the same even if in theory they should.
size_t j = i + 1;
coordf_t zmax = layers_sorted[i]->print_z + EPSILON;
for (; j < layers_sorted.size() && layers_sorted[j]->print_z <= zmax; ++j) ;
// Assign an average print_z to the set of layers with nearly equal print_z.
coordf_t zavg = 0.5 * (layers_sorted[i]->print_z + layers_sorted[j - 1]->print_z);
coordf_t height_min = layers_sorted[i]->height;
bool empty = true;
// For snug supports, layers where the direction of the support interface shall change are accounted for.
size_t num_interfaces = 0;
size_t num_top_contacts = 0;
double top_contact_bottom_z = 0;
for (size_t u = i; u < j; ++u) {
MyLayer &layer = *layers_sorted[u];
if (! layer.polygons.empty()) {
empty = false;
num_interfaces += one_of(layer.layer_type, support_types_interface);
if (layer.layer_type == sltTopContact) {
++ num_top_contacts;
assert(num_top_contacts <= 1);
// All top contact layers sharing this print_z shall also share bottom_z.
//assert(num_top_contacts == 1 || (top_contact_bottom_z - layer.bottom_z) < EPSILON);
top_contact_bottom_z = layer.bottom_z;
}
}
layer.print_z = zavg;
height_min = std::min(height_min, layer.height);
}
if (! empty) {
// Here the upper_layer and lower_layer pointers are left to null at the support layers,
// as they are never used. These pointers are candidates for removal.
bool this_layer_contacts_only = num_top_contacts > 0 && num_top_contacts == num_interfaces;
size_t this_layer_id_interface = layer_id_interface;
if (this_layer_contacts_only) {
// Find a supporting layer for its interface ID.
for (auto it = object.support_layers().rbegin(); it != object.support_layers().rend(); ++ it)
if (const SupportLayer &other_layer = **it; std::abs(other_layer.print_z - top_contact_bottom_z) < EPSILON) {
// other_layer supports this top contact layer. Assign a different support interface direction to this layer
// from the layer that supports it.
this_layer_id_interface = other_layer.interface_id() + 1;
}
}
object.add_support_layer(layer_id ++, this_layer_id_interface, height_min, zavg);
if (num_interfaces && ! this_layer_contacts_only)
++ layer_id_interface;
}
i = j;
}
BOOST_LOG_TRIVIAL(info) << "Support generator - Generating tool paths";
#if 0 // #ifdef SLIC3R_DEBUG
{
size_t layer_id = 0;
for (int i = 0; i < int(layers_sorted.size());) {
// Find the last layer with roughly the same print_z, find the minimum layer height of all.
// Due to the floating point inaccuracies, the print_z may not be the same even if in theory they should.
int j = i + 1;
coordf_t zmax = layers_sorted[i]->print_z + EPSILON;
bool empty = true;
for (; j < layers_sorted.size() && layers_sorted[j]->print_z <= zmax; ++j)
if (!layers_sorted[j]->polygons.empty())
empty = false;
if (!empty) {
export_print_z_polygons_to_svg(
debug_out_path("support-%d-%lf-before.svg", iRun, layers_sorted[i]->print_z).c_str(),
layers_sorted.data() + i, j - i);
export_print_z_polygons_and_extrusions_to_svg(
debug_out_path("support-w-fills-%d-%lf-before.svg", iRun, layers_sorted[i]->print_z).c_str(),
layers_sorted.data() + i, j - i,
*object.support_layers()[layer_id]);
++layer_id;
}
i = j;
}
}
#endif /* SLIC3R_DEBUG */
// Generate the actual toolpaths and save them into each layer.
this->generate_toolpaths(object.support_layers(), raft_layers, bottom_contacts, top_contacts, intermediate_layers, interface_layers, base_interface_layers);
#ifdef SLIC3R_DEBUG
{
size_t layer_id = 0;
for (int i = 0; i < int(layers_sorted.size());) {
// Find the last layer with roughly the same print_z, find the minimum layer height of all.
// Due to the floating point inaccuracies, the print_z may not be the same even if in theory they should.
int j = i + 1;
coordf_t zmax = layers_sorted[i]->print_z + EPSILON;
bool empty = true;
for (; j < layers_sorted.size() && layers_sorted[j]->print_z <= zmax; ++j)
if (! layers_sorted[j]->polygons.empty())
empty = false;
if (! empty) {
export_print_z_polygons_to_svg(
debug_out_path("support-%d-%lf.svg", iRun, layers_sorted[i]->print_z).c_str(),
layers_sorted.data() + i, j - i);
export_print_z_polygons_and_extrusions_to_svg(
debug_out_path("support-w-fills-%d-%lf.svg", iRun, layers_sorted[i]->print_z).c_str(),
layers_sorted.data() + i, j - i,
*object.support_layers()[layer_id]);
++layer_id;
}
i = j;
}
}
#endif /* SLIC3R_DEBUG */
BOOST_LOG_TRIVIAL(info) << "Support generator - End";
}
// Collect all polygons of all regions in a layer with a given surface type.
Polygons collect_region_slices_by_type(const Layer &layer, SurfaceType surface_type)
{
// 1) Count the new polygons first.
size_t n_polygons_new = 0;
for (const LayerRegion *region : layer.regions())
for (const Surface &surface : region->slices.surfaces)
if (surface.surface_type == surface_type)
n_polygons_new += surface.expolygon.holes.size() + 1;
// 2) Collect the new polygons.
Polygons out;
out.reserve(n_polygons_new);
for (const LayerRegion *region : layer.regions())
for (const Surface &surface : region->slices.surfaces)
if (surface.surface_type == surface_type)
polygons_append(out, surface.expolygon);
return out;
}
// Collect outer contours of all slices of this layer.
// This is useful for calculating the support base with holes filled.
Polygons collect_slices_outer(const Layer &layer)
{
Polygons out;
out.reserve(out.size() + layer.lslices.size());
for (const ExPolygon &expoly : layer.lslices)
out.emplace_back(expoly.contour);
return out;
}
struct SupportGridParams {
SupportGridParams(const PrintObjectConfig &object_config, const Flow &support_material_flow) :
style(object_config.support_material_style.value),
grid_resolution(object_config.support_material_spacing.value + support_material_flow.spacing()),
support_angle(Geometry::deg2rad(object_config.support_material_angle.value)),
extrusion_width(support_material_flow.spacing()),
support_material_closing_radius(object_config.support_material_closing_radius.value),
expansion_to_slice(coord_t(support_material_flow.scaled_spacing() / 2 + 5)),
expansion_to_propagate(-3) {}
SupportMaterialStyle style;
double grid_resolution;
double support_angle;
double extrusion_width;
double support_material_closing_radius;
coord_t expansion_to_slice;
coord_t expansion_to_propagate;
};
class SupportGridPattern
{
public:
SupportGridPattern(
// Support islands, to be stretched into a grid. Already trimmed with min(lower_layer_offset, m_gap_xy)
const Polygons *support_polygons,
// Trimming polygons, to trim the stretched support islands. support_polygons were already trimmed with trimming_polygons.
const Polygons *trimming_polygons,
const SupportGridParams &params) :
m_style(params.style),
m_support_polygons(support_polygons), m_trimming_polygons(trimming_polygons),
m_support_spacing(params.grid_resolution), m_support_angle(params.support_angle),
m_extrusion_width(params.extrusion_width),
m_support_material_closing_radius(params.support_material_closing_radius)
{
switch (m_style) {
case smsGrid:
{
// Prepare the grid data, it will be reused when extracting support structures.
if (m_support_angle != 0.) {
// Create a copy of the rotated contours.
m_support_polygons_rotated = *support_polygons;
m_trimming_polygons_rotated = *trimming_polygons;
m_support_polygons = &m_support_polygons_rotated;
m_trimming_polygons = &m_trimming_polygons_rotated;
polygons_rotate(m_support_polygons_rotated, - params.support_angle);
polygons_rotate(m_trimming_polygons_rotated, - params.support_angle);
}
// Resolution of the sparse support grid.
coord_t grid_resolution = coord_t(scale_(m_support_spacing));
BoundingBox bbox = get_extents(*m_support_polygons);
bbox.offset(20);
// Align the bounding box with the sparse support grid.
bbox.align_to_grid(grid_resolution);
#ifdef SUPPORT_USE_AGG_RASTERIZER
m_bbox = bbox;
// Oversample the grid to avoid leaking of supports through or around the object walls.
int extrusion_width_scaled = scale_(params.extrusion_width);
int oversampling = std::clamp(int(scale_(m_support_spacing) / (extrusion_width_scaled + 100)), 1, 8);
m_pixel_size = std::max<double>(extrusion_width_scaled + 21, scale_(m_support_spacing / oversampling));
// Add one empty column / row boundaries.
m_bbox.offset(m_pixel_size);
// Grid size fitting the support polygons plus one pixel boundary around the polygons.
Vec2i grid_size_raw(int(ceil((m_bbox.max.x() - m_bbox.min.x()) / m_pixel_size)),
int(ceil((m_bbox.max.y() - m_bbox.min.y()) / m_pixel_size)));
// Overlay macro blocks of (oversampling x oversampling) over the grid.
Vec2i grid_blocks((grid_size_raw.x() + oversampling - 1 - 2) / oversampling,
(grid_size_raw.y() + oversampling - 1 - 2) / oversampling);
// and resize the grid to fit the macro blocks + one pixel boundary.
m_grid_size = grid_blocks * oversampling + Vec2i(2, 2);
assert(m_grid_size.x() >= grid_size_raw.x());
assert(m_grid_size.y() >= grid_size_raw.y());
m_grid2 = rasterize_polygons(m_grid_size, m_pixel_size, m_bbox.min, *m_support_polygons);
seed_fill_block(m_grid2, m_grid_size,
dilate_trimming_region(rasterize_polygons(m_grid_size, m_pixel_size, m_bbox.min, *m_trimming_polygons), m_grid_size),
grid_blocks, oversampling);
#ifdef SLIC3R_DEBUG
{
static int irun;
Slic3r::png::write_gray_to_file_scaled(debug_out_path("support-rasterizer-%d.png", irun++), m_grid_size.x(), m_grid_size.y(), m_grid2.data(), 4);
}
#endif // SLIC3R_DEBUG
#else // SUPPORT_USE_AGG_RASTERIZER
// Create an EdgeGrid, initialize it with projection, initialize signed distance field.
m_grid.set_bbox(bbox);
m_grid.create(*m_support_polygons, grid_resolution);
#if 0
if (m_grid.has_intersecting_edges()) {
// EdgeGrid fails to produce valid signed distance function for self-intersecting polygons.
m_support_polygons_rotated = simplify_polygons(*m_support_polygons);
m_support_polygons = &m_support_polygons_rotated;
m_grid.set_bbox(bbox);
m_grid.create(*m_support_polygons, grid_resolution);
// assert(! m_grid.has_intersecting_edges());
printf("SupportGridPattern: fixing polygons with intersection %s\n",
m_grid.has_intersecting_edges() ? "FAILED" : "SUCCEEDED");
}
#endif
m_grid.calculate_sdf();
#endif // SUPPORT_USE_AGG_RASTERIZER
break;
}
case smsSnug:
default:
// nothing to prepare
break;
}
}
// Extract polygons from the grid, offsetted by offset_in_grid,
// and trim the extracted polygons by trimming_polygons.
// Trimming by the trimming_polygons may split the extracted polygons into pieces.
// Remove all the pieces, which do not contain any of the island_samples.
Polygons extract_support(const coord_t offset_in_grid, bool fill_holes
#ifdef SLIC3R_DEBUG
, const char *step_name, int iRun, size_t layer_id, double print_z
#endif
)
{
switch (m_style) {
case smsGrid:
{
#ifdef SUPPORT_USE_AGG_RASTERIZER
Polygons support_polygons_simplified = contours_simplified(m_grid_size, m_pixel_size, m_bbox.min, m_grid2, offset_in_grid, fill_holes);
#else // SUPPORT_USE_AGG_RASTERIZER
// Generate islands, so each island may be tested for overlap with island_samples.
assert(std::abs(2 * offset_in_grid) < m_grid.resolution());
Polygons support_polygons_simplified = m_grid.contours_simplified(offset_in_grid, fill_holes);
#endif // SUPPORT_USE_AGG_RASTERIZER
ExPolygons islands = diff_ex(support_polygons_simplified, *m_trimming_polygons);
// Extract polygons, which contain some of the island_samples.
Polygons out;
// Sample a single point per input support polygon, keep it as a reference to maintain corresponding
// polygons if ever these polygons get split into parts by the trimming polygons.
// As offset_in_grid may be negative, m_support_polygons may stick slightly outside of islands.
// Trim ti with islands.
Points samples = island_samples(
offset_in_grid > 0 ?
// Expanding, thus m_support_polygons are all inside islands.
union_ex(*m_support_polygons) :
// Shrinking, thus m_support_polygons may be trimmed a tiny bit by islands.
intersection_ex(*m_support_polygons, islands));
std::vector<std::pair<Point,bool>> samples_inside;
for (ExPolygon &island : islands) {
BoundingBox bbox = get_extents(island.contour);
// Samples are sorted lexicographically.
auto it_lower = std::lower_bound(samples.begin(), samples.end(), Point(bbox.min - Point(1, 1)));
auto it_upper = std::upper_bound(samples.begin(), samples.end(), Point(bbox.max + Point(1, 1)));
samples_inside.clear();
for (auto it = it_lower; it != it_upper; ++ it)
if (bbox.contains(*it))
samples_inside.push_back(std::make_pair(*it, false));
if (! samples_inside.empty()) {
// For all samples_inside count the boundary crossing.
for (size_t i_contour = 0; i_contour <= island.holes.size(); ++ i_contour) {
Polygon &contour = (i_contour == 0) ? island.contour : island.holes[i_contour - 1];
Points::const_iterator i = contour.points.begin();
Points::const_iterator j = contour.points.end() - 1;
for (; i != contour.points.end(); j = i ++) {
//FIXME this test is not numerically robust. Particularly, it does not handle horizontal segments at y == point(1) well.
// Does the ray with y == point(1) intersect this line segment?
for (auto &sample_inside : samples_inside) {
if (((*i)(1) > sample_inside.first(1)) != ((*j)(1) > sample_inside.first(1))) {
double x1 = (double)sample_inside.first(0);
double x2 = (double)(*i)(0) + (double)((*j)(0) - (*i)(0)) * (double)(sample_inside.first(1) - (*i)(1)) / (double)((*j)(1) - (*i)(1));
if (x1 < x2)
sample_inside.second = !sample_inside.second;
}
}
}
}
// If any of the sample is inside this island, add this island to the output.
for (auto &sample_inside : samples_inside)
if (sample_inside.second) {
polygons_append(out, std::move(island));
island.clear();
break;
}
}
}
#ifdef SLIC3R_DEBUG
BoundingBox bbox = get_extents(*m_trimming_polygons);
if (! islands.empty())
bbox.merge(get_extents(islands));
if (!out.empty())
bbox.merge(get_extents(out));
if (!support_polygons_simplified.empty())
bbox.merge(get_extents(support_polygons_simplified));
SVG svg(debug_out_path("extract_support_from_grid_trimmed-%s-%d-%d-%lf.svg", step_name, iRun, layer_id, print_z).c_str(), bbox);
svg.draw(union_ex(support_polygons_simplified), "gray", 0.25f);
svg.draw(islands, "red", 0.5f);
svg.draw(union_ex(out), "green", 0.5f);
svg.draw(union_ex(*m_support_polygons), "blue", 0.5f);
svg.draw_outline(islands, "red", "red", scale_(0.05));
svg.draw_outline(union_ex(out), "green", "green", scale_(0.05));
svg.draw_outline(union_ex(*m_support_polygons), "blue", "blue", scale_(0.05));
for (const Point &pt : samples)
svg.draw(pt, "black", coord_t(scale_(0.15)));
svg.Close();
#endif /* SLIC3R_DEBUG */
if (m_support_angle != 0.)
polygons_rotate(out, m_support_angle);
return out;
}
case smsSnug:
// Merge the support polygons by applying morphological closing and inwards smoothing.
auto closing_distance = scaled<float>(m_support_material_closing_radius);
auto smoothing_distance = scaled<float>(m_extrusion_width);
#ifdef SLIC3R_DEBUG
SVG::export_expolygons(debug_out_path("extract_support_from_grid_trimmed-%s-%d-%d-%lf.svg", step_name, iRun, layer_id, print_z),
{ { { diff_ex(expand(*m_support_polygons, closing_distance), closing(*m_support_polygons, closing_distance, SUPPORT_SURFACES_OFFSET_PARAMETERS)) }, { "closed", "blue", 0.5f } },
{ { union_ex(smooth_outward(closing(*m_support_polygons, closing_distance, SUPPORT_SURFACES_OFFSET_PARAMETERS), smoothing_distance)) }, { "regularized", "red", "black", "", scaled<coord_t>(0.1f), 0.5f } },
{ { union_ex(*m_support_polygons) }, { "src", "green", 0.5f } },
});
#endif /* SLIC3R_DEBUG */
//FIXME do we want to trim with the object here? On one side the columns will be thinner, on the other side support interfaces may disappear for snug supports.
// return diff(smooth_outward(closing(*m_support_polygons, closing_distance, SUPPORT_SURFACES_OFFSET_PARAMETERS), smoothing_distance), *m_trimming_polygons);
return smooth_outward(closing(*m_support_polygons, closing_distance, SUPPORT_SURFACES_OFFSET_PARAMETERS), smoothing_distance);
}
assert(false);
return Polygons();
}
#if defined(SLIC3R_DEBUG) && ! defined(SUPPORT_USE_AGG_RASTERIZER)
void serialize(const std::string &path)
{
FILE *file = ::fopen(path.c_str(), "wb");
::fwrite(&m_support_spacing, 8, 1, file);
::fwrite(&m_support_angle, 8, 1, file);
uint32_t n_polygons = m_support_polygons->size();
::fwrite(&n_polygons, 4, 1, file);
for (uint32_t i = 0; i < n_polygons; ++ i) {
const Polygon &poly = (*m_support_polygons)[i];
uint32_t n_points = poly.size();
::fwrite(&n_points, 4, 1, file);
for (uint32_t j = 0; j < n_points; ++ j) {
const Point &pt = poly.points[j];
::fwrite(&pt.x(), sizeof(coord_t), 1, file);
::fwrite(&pt.y(), sizeof(coord_t), 1, file);
}
}
n_polygons = m_trimming_polygons->size();
::fwrite(&n_polygons, 4, 1, file);
for (uint32_t i = 0; i < n_polygons; ++ i) {
const Polygon &poly = (*m_trimming_polygons)[i];
uint32_t n_points = poly.size();
::fwrite(&n_points, 4, 1, file);
for (uint32_t j = 0; j < n_points; ++ j) {
const Point &pt = poly.points[j];
::fwrite(&pt.x(), sizeof(coord_t), 1, file);
::fwrite(&pt.y(), sizeof(coord_t), 1, file);
}
}
::fclose(file);
}
static SupportGridPattern deserialize(const std::string &path, int which = -1)
{
SupportGridPattern out;
out.deserialize_(path, which);
return out;
}
// Deserialization constructor
bool deserialize_(const std::string &path, int which = -1)
{
FILE *file = ::fopen(path.c_str(), "rb");
if (file == nullptr)
return false;
m_support_polygons = &m_support_polygons_deserialized;
m_trimming_polygons = &m_trimming_polygons_deserialized;
::fread(&m_support_spacing, 8, 1, file);
::fread(&m_support_angle, 8, 1, file);
//FIXME
//m_support_spacing *= 0.01 / 2;
uint32_t n_polygons;
::fread(&n_polygons, 4, 1, file);
m_support_polygons_deserialized.reserve(n_polygons);
int32_t scale = 1;
for (uint32_t i = 0; i < n_polygons; ++ i) {
Polygon poly;
uint32_t n_points;
::fread(&n_points, 4, 1, file);
poly.points.reserve(n_points);
for (uint32_t j = 0; j < n_points; ++ j) {
coord_t x, y;
::fread(&x, sizeof(coord_t), 1, file);
::fread(&y, sizeof(coord_t), 1, file);
poly.points.emplace_back(Point(x * scale, y * scale));
}
if (which == -1 || which == i)
m_support_polygons_deserialized.emplace_back(std::move(poly));
printf("Polygon %d, area: %lf\n", i, area(poly.points));
}
::fread(&n_polygons, 4, 1, file);
m_trimming_polygons_deserialized.reserve(n_polygons);
for (uint32_t i = 0; i < n_polygons; ++ i) {
Polygon poly;
uint32_t n_points;
::fread(&n_points, 4, 1, file);
poly.points.reserve(n_points);
for (uint32_t j = 0; j < n_points; ++ j) {
coord_t x, y;
::fread(&x, sizeof(coord_t), 1, file);
::fread(&y, sizeof(coord_t), 1, file);
poly.points.emplace_back(Point(x * scale, y * scale));
}
m_trimming_polygons_deserialized.emplace_back(std::move(poly));
}
::fclose(file);
m_support_polygons_deserialized = simplify_polygons(m_support_polygons_deserialized, false);
//m_support_polygons_deserialized = to_polygons(union_ex(m_support_polygons_deserialized, false));
// Create an EdgeGrid, initialize it with projection, initialize signed distance field.
coord_t grid_resolution = coord_t(scale_(m_support_spacing));
BoundingBox bbox = get_extents(*m_support_polygons);
bbox.offset(20);
bbox.align_to_grid(grid_resolution);
m_grid.set_bbox(bbox);
m_grid.create(*m_support_polygons, grid_resolution);
m_grid.calculate_sdf();
return true;
}
const Polygons& support_polygons() const { return *m_support_polygons; }
const Polygons& trimming_polygons() const { return *m_trimming_polygons; }
const EdgeGrid::Grid& grid() const { return m_grid; }
#endif // defined(SLIC3R_DEBUG) && ! defined(SUPPORT_USE_AGG_RASTERIZER)
private:
SupportGridPattern() {}
SupportGridPattern& operator=(const SupportGridPattern &rhs);
#ifdef SUPPORT_USE_AGG_RASTERIZER
// Dilate the trimming region (unmask the boundary pixels).
static std::vector<unsigned char> dilate_trimming_region(const std::vector<unsigned char> &trimming, const Vec2i &grid_size)
{
std::vector<unsigned char> dilated(trimming.size(), 0);
for (int r = 1; r + 1 < grid_size.y(); ++ r)
for (int c = 1; c + 1 < grid_size.x(); ++ c) {
//int addr = c + r * m_grid_size.x();
// 4-neighborhood is not sufficient.
// dilated[addr] = trimming[addr] != 0 && trimming[addr - 1] != 0 && trimming[addr + 1] != 0 && trimming[addr - m_grid_size.x()] != 0 && trimming[addr + m_grid_size.x()] != 0;
// 8-neighborhood
int addr = c + (r - 1) * grid_size.x();
bool b = trimming[addr - 1] != 0 && trimming[addr] != 0 && trimming[addr + 1] != 0;
addr += grid_size.x();
b = b && trimming[addr - 1] != 0 && trimming[addr] != 0 && trimming[addr + 1] != 0;
addr += grid_size.x();
b = b && trimming[addr - 1] != 0 && trimming[addr] != 0 && trimming[addr + 1] != 0;
dilated[addr - grid_size.x()] = b;
}
return dilated;
}
// Seed fill each of the (oversampling x oversampling) block up to the dilated trimming region.
static void seed_fill_block(std::vector<unsigned char> &grid, Vec2i grid_size, const std::vector<unsigned char> &trimming,const Vec2i &grid_blocks, int oversampling)
{
int size = oversampling;
int stride = grid_size.x();
for (int block_r = 0; block_r < grid_blocks.y(); ++ block_r)
for (int block_c = 0; block_c < grid_blocks.x(); ++ block_c) {
// Propagate the support pixels over the macro cell up to the trimming mask.
int addr = block_c * size + 1 + (block_r * size + 1) * stride;
unsigned char *grid_data = grid.data() + addr;
const unsigned char *mask_data = trimming.data() + addr;
// Top to bottom propagation.
#define PROPAGATION_STEP(offset) \
do { \
int addr = r * stride + c; \
int addr2 = addr + offset; \
if (grid_data[addr2] && ! mask_data[addr] && ! mask_data[addr2]) \
grid_data[addr] = 1; \
} while (0);
for (int r = 0; r < size; ++ r) {
if (r > 0)
for (int c = 0; c < size; ++ c)
PROPAGATION_STEP(- stride);
for (int c = 1; c < size; ++ c)
PROPAGATION_STEP(- 1);
for (int c = size - 2; c >= 0; -- c)
PROPAGATION_STEP(+ 1);
}
// Bottom to top propagation.
for (int r = size - 2; r >= 0; -- r) {
for (int c = 0; c < size; ++ c)
PROPAGATION_STEP(+ stride);
for (int c = 1; c < size; ++ c)
PROPAGATION_STEP(- 1);
for (int c = size - 2; c >= 0; -- c)
PROPAGATION_STEP(+ 1);
}
#undef PROPAGATION_STEP
}
}
#endif // SUPPORT_USE_AGG_RASTERIZER
#if 0
// Get some internal point of an expolygon, to be used as a representative
// sample to test, whether this island is inside another island.
//FIXME this was quick, but not sufficiently robust.
static Point island_sample(const ExPolygon &expoly)
{
// Find the lowest point lexicographically.
const Point *pt_min = &expoly.contour.points.front();
for (size_t i = 1; i < expoly.contour.points.size(); ++ i)
if (expoly.contour.points[i] < *pt_min)
pt_min = &expoly.contour.points[i];
// Lowest corner will always be convex, in worst case denegenerate with zero angle.
const Point &p1 = (pt_min == &expoly.contour.points.front()) ? expoly.contour.points.back() : *(pt_min - 1);
const Point &p2 = *pt_min;
const Point &p3 = (pt_min == &expoly.contour.points.back()) ? expoly.contour.points.front() : *(pt_min + 1);
Vector v = (p3 - p2) + (p1 - p2);
double l2 = double(v(0))*double(v(0))+double(v(1))*double(v(1));
if (l2 == 0.)
return p2;
double coef = 20. / sqrt(l2);
return Point(p2(0) + coef * v(0), p2(1) + coef * v(1));
}
#endif
// Sample one internal point per expolygon.
// FIXME this is quite an overkill to calculate a complete offset just to get a single point, but at least it is robust.
static Points island_samples(const ExPolygons &expolygons)
{
Points pts;
pts.reserve(expolygons.size());
for (const ExPolygon &expoly : expolygons)
if (expoly.contour.points.size() > 2) {
#if 0
pts.push_back(island_sample(expoly));
#else
Polygons polygons = offset(expoly, - 20.f);
for (const Polygon &poly : polygons)
if (! poly.points.empty()) {
// Take a small fixed number of samples of this polygon for robustness.
int num_points = int(poly.points.size());
int num_samples = std::min(num_points, 4);
int stride = num_points / num_samples;
for (int i = 0; i < num_points; i += stride)
pts.push_back(poly.points[i]);
break;
}
#endif
}
// Sort the points lexicographically, so a binary search could be used to locate points inside a bounding box.
std::sort(pts.begin(), pts.end());
return pts;
}
SupportMaterialStyle m_style;
const Polygons *m_support_polygons;
const Polygons *m_trimming_polygons;
Polygons m_support_polygons_rotated;
Polygons m_trimming_polygons_rotated;
// Angle in radians, by which the whole support is rotated.
coordf_t m_support_angle;
// X spacing of the support lines parallel with the Y axis.
coordf_t m_support_spacing;
coordf_t m_extrusion_width;
// For snug supports: Morphological closing of support areas.
coordf_t m_support_material_closing_radius;
#ifdef SUPPORT_USE_AGG_RASTERIZER
Vec2i m_grid_size;
double m_pixel_size;
BoundingBox m_bbox;
std::vector<unsigned char> m_grid2;
#else // SUPPORT_USE_AGG_RASTERIZER
Slic3r::EdgeGrid::Grid m_grid;
#endif // SUPPORT_USE_AGG_RASTERIZER
#ifdef SLIC3R_DEBUG
// support for deserialization of m_support_polygons, m_trimming_polygons
Polygons m_support_polygons_deserialized;
Polygons m_trimming_polygons_deserialized;
#endif /* SLIC3R_DEBUG */
};
namespace SupportMaterialInternal {
static inline bool has_bridging_perimeters(const ExtrusionLoop &loop)
{
for (const ExtrusionPath &ep : loop.paths)
if (ep.role() == erOverhangPerimeter && ! ep.polyline.empty())
return int(ep.size()) >= (ep.is_closed() ? 3 : 2);
return false;
}
static bool has_bridging_perimeters(const ExtrusionEntityCollection &perimeters)
{
for (const ExtrusionEntity *ee : perimeters.entities) {
if (ee->is_collection()) {
for (const ExtrusionEntity *ee2 : static_cast<const ExtrusionEntityCollection*>(ee)->entities) {
assert(! ee2->is_collection());
if (ee2->is_loop())
if (has_bridging_perimeters(*static_cast<const ExtrusionLoop*>(ee2)))
return true;
}
} else if (ee->is_loop() && has_bridging_perimeters(*static_cast<const ExtrusionLoop*>(ee)))
return true;
}
return false;
}
static bool has_bridging_fills(const ExtrusionEntityCollection &fills)
{
for (const ExtrusionEntity *ee : fills.entities) {
assert(ee->is_collection());
for (const ExtrusionEntity *ee2 : static_cast<const ExtrusionEntityCollection*>(ee)->entities) {
assert(! ee2->is_collection());
assert(! ee2->is_loop());
if (ee2->role() == erBridgeInfill)
return true;
}
}
return false;
}
static bool has_bridging_extrusions(const Layer &layer)
{
for (const LayerRegion *region : layer.regions()) {
if (SupportMaterialInternal::has_bridging_perimeters(region->perimeters))
return true;
if (region->fill_surfaces.has(stBottomBridge) && has_bridging_fills(region->fills))
return true;
}
return false;
}
static inline void collect_bridging_perimeter_areas(const ExtrusionLoop &loop, const float expansion_scaled, Polygons &out)
{
assert(expansion_scaled >= 0.f);
for (const ExtrusionPath &ep : loop.paths)
if (ep.role() == erOverhangPerimeter && ! ep.polyline.empty()) {
float exp = 0.5f * (float)scale_(ep.width) + expansion_scaled;
if (ep.is_closed()) {
if (ep.size() >= 3) {
// This is a complete loop.
// Add the outer contour first.
Polygon poly;
poly.points = ep.polyline.points;
poly.points.pop_back();
if (poly.area() < 0)
poly.reverse();
polygons_append(out, offset(poly, exp, SUPPORT_SURFACES_OFFSET_PARAMETERS));
Polygons holes = offset(poly, - exp, SUPPORT_SURFACES_OFFSET_PARAMETERS);
polygons_reverse(holes);
polygons_append(out, holes);
}
} else if (ep.size() >= 2) {
// Offset the polyline.
polygons_append(out, offset(ep.polyline, exp, SUPPORT_SURFACES_OFFSET_PARAMETERS));
}
}
}
static void collect_bridging_perimeter_areas(const ExtrusionEntityCollection &perimeters, const float expansion_scaled, Polygons &out)
{
for (const ExtrusionEntity *ee : perimeters.entities) {
if (ee->is_collection()) {
for (const ExtrusionEntity *ee2 : static_cast<const ExtrusionEntityCollection*>(ee)->entities) {
assert(! ee2->is_collection());
if (ee2->is_loop())
collect_bridging_perimeter_areas(*static_cast<const ExtrusionLoop*>(ee2), expansion_scaled, out);
}
} else if (ee->is_loop())
collect_bridging_perimeter_areas(*static_cast<const ExtrusionLoop*>(ee), expansion_scaled, out);
}
}
static void remove_bridges_from_contacts(
const PrintConfig &print_config,
const Layer &lower_layer,
const Polygons &lower_layer_polygons,
const LayerRegion &layerm,
float fw,
Polygons &contact_polygons)
{
// compute the area of bridging perimeters
Polygons bridges;
{
// Surface supporting this layer, expanded by 0.5 * nozzle_diameter, as we consider this kind of overhang to be sufficiently supported.
Polygons lower_grown_slices = expand(lower_layer_polygons,
//FIXME to mimic the decision in the perimeter generator, we should use half the external perimeter width.
0.5f * float(scale_(print_config.nozzle_diameter.get_at(layerm.region().config().perimeter_extruder-1))),
SUPPORT_SURFACES_OFFSET_PARAMETERS);
// Collect perimeters of this layer.
//FIXME split_at_first_point() could split a bridge mid-way
#if 0
Polylines overhang_perimeters = layerm.perimeters.as_polylines();
// workaround for Clipper bug, see Slic3r::Polygon::clip_as_polyline()
for (Polyline &polyline : overhang_perimeters)
polyline.points[0].x += 1;
// Trim the perimeters of this layer by the lower layer to get the unsupported pieces of perimeters.
overhang_perimeters = diff_pl(overhang_perimeters, lower_grown_slices);
#else
Polylines overhang_perimeters = diff_pl(layerm.perimeters.as_polylines(), lower_grown_slices);
#endif
// only consider straight overhangs
// only consider overhangs having endpoints inside layer's slices
// convert bridging polylines into polygons by inflating them with their thickness
// since we're dealing with bridges, we can't assume width is larger than spacing,
// so we take the largest value and also apply safety offset to be ensure no gaps
// are left in between
Flow perimeter_bridge_flow = layerm.bridging_flow(frPerimeter);
//FIXME one may want to use a maximum of bridging flow width and normal flow width, as the perimeters are calculated using the normal flow
// and then turned to bridging flow, thus their centerlines are derived from non-bridging flow and expanding them by a bridging flow
// may not expand them to the edge of their respective islands.
const float w = float(0.5 * std::max(perimeter_bridge_flow.scaled_width(), perimeter_bridge_flow.scaled_spacing())) + scaled<float>(0.001);
for (Polyline &polyline : overhang_perimeters)
if (polyline.is_straight()) {
// This is a bridge
polyline.extend_start(fw);
polyline.extend_end(fw);
// Is the straight perimeter segment supported at both sides?
Point pts[2] = { polyline.first_point(), polyline.last_point() };
bool supported[2] = { false, false };
for (size_t i = 0; i < lower_layer.lslices.size() && ! (supported[0] && supported[1]); ++ i)
for (int j = 0; j < 2; ++ j)
if (! supported[j] && lower_layer.lslices_bboxes[i].contains(pts[j]) && lower_layer.lslices[i].contains(pts[j]))
supported[j] = true;
if (supported[0] && supported[1])
// Offset a polyline into a thick line.
polygons_append(bridges, offset(polyline, w));
}
bridges = union_(bridges);
}
// remove the entire bridges and only support the unsupported edges
//FIXME the brided regions are already collected as layerm.bridged. Use it?
for (const Surface &surface : layerm.fill_surfaces.surfaces)
if (surface.surface_type == stBottomBridge && surface.bridge_angle != -1)
polygons_append(bridges, surface.expolygon);
//FIXME add the gap filled areas. Extrude the gaps with a bridge flow?
// Remove the unsupported ends of the bridges from the bridged areas.
//FIXME add supports at regular intervals to support long bridges!
bridges = diff(bridges,
// Offset unsupported edges into polygons.
offset(layerm.unsupported_bridge_edges, scale_(SUPPORT_MATERIAL_MARGIN), SUPPORT_SURFACES_OFFSET_PARAMETERS));
// Remove bridged areas from the supported areas.
contact_polygons = diff(contact_polygons, bridges, ApplySafetyOffset::Yes);
#ifdef SLIC3R_DEBUG
static int iRun = 0;
SVG::export_expolygons(debug_out_path("support-top-contacts-remove-bridges-run%d.svg", iRun ++),
{ { { union_ex(offset(layerm.unsupported_bridge_edges, scale_(SUPPORT_MATERIAL_MARGIN), SUPPORT_SURFACES_OFFSET_PARAMETERS)) }, { "unsupported_bridge_edges", "orange", 0.5f } },
{ { union_ex(contact_polygons) }, { "contact_polygons", "blue", 0.5f } },
{ { union_ex(bridges) }, { "bridges", "red", "black", "", scaled<coord_t>(0.1f), 0.5f } } });
#endif /* SLIC3R_DEBUG */
}
}
std::vector<Polygons> PrintObjectSupportMaterial::buildplate_covered(const PrintObject &object) const
{
// Build support on a build plate only? If so, then collect and union all the surfaces below the current layer.
// Unfortunately this is an inherently serial process.
const bool buildplate_only = this->build_plate_only();
std::vector<Polygons> buildplate_covered;
if (buildplate_only) {
BOOST_LOG_TRIVIAL(debug) << "PrintObjectSupportMaterial::buildplate_covered() - start";
buildplate_covered.assign(object.layers().size(), Polygons());
//FIXME prefix sum algorithm, parallelize it! Parallelization will also likely be more numerically stable.
for (size_t layer_id = 1; layer_id < object.layers().size(); ++ layer_id) {
const Layer &lower_layer = *object.layers()[layer_id-1];
// Merge the new slices with the preceding slices.
// Apply the safety offset to the newly added polygons, so they will connect
// with the polygons collected before,
// but don't apply the safety offset during the union operation as it would
// inflate the polygons over and over.
Polygons &covered = buildplate_covered[layer_id];
covered = buildplate_covered[layer_id - 1];
polygons_append(covered, offset(lower_layer.lslices, scale_(0.01)));
covered = union_(covered);
}
BOOST_LOG_TRIVIAL(debug) << "PrintObjectSupportMaterial::buildplate_covered() - end";
}
return buildplate_covered;
}
struct SupportAnnotations
{
SupportAnnotations(const PrintObject &object, const std::vector<Polygons> &buildplate_covered) :
enforcers_layers(object.slice_support_enforcers()),
blockers_layers(object.slice_support_blockers()),
buildplate_covered(buildplate_covered)
{
// Append custom supports.
object.project_and_append_custom_facets(false, EnforcerBlockerType::ENFORCER, enforcers_layers);
object.project_and_append_custom_facets(false, EnforcerBlockerType::BLOCKER, blockers_layers);
}
std::vector<Polygons> enforcers_layers;
std::vector<Polygons> blockers_layers;
const std::vector<Polygons>& buildplate_covered;
};
struct SlicesMarginCache
{
float offset { -1 };
// Trimming polygons, including possibly the "build plate only" mask.
Polygons polygons;
// Trimming polygons, without the "build plate only" mask. If empty, use polygons.
Polygons all_polygons;
};
// Tuple: overhang_polygons, contact_polygons, enforcer_polygons, no_interface_offset
// no_interface_offset: minimum of external perimeter widths
static inline std::tuple<Polygons, Polygons, Polygons, float> detect_overhangs(
const Layer &layer,
const size_t layer_id,
const Polygons &lower_layer_polygons,
const PrintConfig &print_config,
const PrintObjectConfig &object_config,
SupportAnnotations &annotations,
SlicesMarginCache &slices_margin,
const double gap_xy
#ifdef SLIC3R_DEBUG
, size_t iRun
#endif // SLIC3R_DEBUG
)
{
// Snug overhang polygons.
Polygons overhang_polygons;
// Expanded for stability, trimmed by gap_xy.
Polygons contact_polygons;
// Enforcers projected to overhangs, trimmed
Polygons enforcer_polygons;
const bool support_auto = object_config.support_material.value && object_config.support_material_auto.value;
const bool buildplate_only = ! annotations.buildplate_covered.empty();
// If user specified a custom angle threshold, convert it to radians.
// Zero means automatic overhang detection.
const double threshold_rad = (object_config.support_material_threshold.value > 0) ?
M_PI * double(object_config.support_material_threshold.value + 1) / 180. : // +1 makes the threshold inclusive
0.;
float no_interface_offset = 0.f;
if (layer_id == 0)
{
// This is the first object layer, so the object is being printed on a raft and
// we're here just to get the object footprint for the raft.
#if 0
// The following line was filling excessive holes in the raft, see GH #430
overhang_polygons = collect_slices_outer(layer);
#else
// Don't fill in the holes. The user may apply a higher raft_expansion if one wants a better 1st layer adhesion.
overhang_polygons = to_polygons(layer.lslices);
#endif
// Expand for better stability.
contact_polygons = object_config.raft_expansion.value > 0 ? expand(overhang_polygons, scaled<float>(object_config.raft_expansion.value)) : overhang_polygons;
}
else if (! layer.regions().empty())
{
// Generate overhang / contact_polygons for non-raft layers.
const Layer &lower_layer = *layer.lower_layer;
const bool has_enforcer = ! annotations.enforcers_layers.empty() && ! annotations.enforcers_layers[layer_id].empty();
// Cache support trimming polygons derived from lower layer polygons, possible merged with "on build plate only" trimming polygons.
auto slices_margin_update =
[&slices_margin, &lower_layer, &lower_layer_polygons, buildplate_only, has_enforcer, &annotations, layer_id]
(float slices_margin_offset, float no_interface_offset) {
if (slices_margin.offset != slices_margin_offset) {
slices_margin.offset = slices_margin_offset;
slices_margin.polygons = (slices_margin_offset == 0.f) ?
lower_layer_polygons :
// What is the purpose of no_interface_offset? Likely to not trim the contact layer by lower layer regions that are too thin to extrude?
offset2(lower_layer.lslices, -no_interface_offset * 0.5f, slices_margin_offset + no_interface_offset * 0.5f, SUPPORT_SURFACES_OFFSET_PARAMETERS);
if (buildplate_only && !annotations.buildplate_covered[layer_id].empty()) {
if (has_enforcer)
// Make a backup of trimming polygons before enforcing "on build plate only".
slices_margin.all_polygons = slices_margin.polygons;
// Trim the inflated contact surfaces by the top surfaces as well.
slices_margin.polygons = union_(slices_margin.polygons, annotations.buildplate_covered[layer_id]);
}
}
};
no_interface_offset = std::accumulate(layer.regions().begin(), layer.regions().end(), FLT_MAX,
[](float acc, const LayerRegion *layerm) { return std::min(acc, float(layerm->flow(frExternalPerimeter).scaled_width())); });
float lower_layer_offset = 0;
for (LayerRegion *layerm : layer.regions()) {
// Extrusion width accounts for the roundings of the extrudates.
// It is the maximum widh of the extrudate.
float fw = float(layerm->flow(frExternalPerimeter).scaled_width());
lower_layer_offset =
(layer_id < (size_t)object_config.support_material_enforce_layers.value) ?
// Enforce a full possible support, ignore the overhang angle.
0.f :
(threshold_rad > 0. ?
// Overhang defined by an angle.
float(scale_(lower_layer.height / tan(threshold_rad))) :
// Overhang defined by half the extrusion width.
0.5f * fw);
// Overhang polygons for this layer and region.
Polygons diff_polygons;
Polygons layerm_polygons = to_polygons(layerm->slices.surfaces);
if (lower_layer_offset == 0.f) {
// Support everything.
diff_polygons = diff(layerm_polygons, lower_layer_polygons);
if (buildplate_only) {
// Don't support overhangs above the top surfaces.
// This step is done before the contact surface is calculated by growing the overhang region.
diff_polygons = diff(diff_polygons, annotations.buildplate_covered[layer_id]);
}
} else if (support_auto) {
// Get the regions needing a suport, collapse very tiny spots.
//FIXME cache the lower layer offset if this layer has multiple regions.
#if 0
//FIXME this solution will trigger stupid supports for sharp corners, see GH #4874
diff_polygons = opening(
diff(layerm_polygons,
// Likely filtering out thin regions from the lower layer, that will not be covered by perimeters, thus they
// are not supporting this layer.
// However this may lead to a situation where regions at the current layer that are narrow thus not extrudable will generate unnecessary supports.
// For example, see GH issue #3094
opening(lower_layer_polygons, 0.5f * fw, lower_layer_offset + 0.5f * fw, SUPPORT_SURFACES_OFFSET_PARAMETERS)),
//FIXME This opening is targeted to reduce very thin regions to support, but it may lead to
// no support at all for not so steep overhangs.
0.1f * fw);
#else
diff_polygons =
diff(layerm_polygons,
expand(lower_layer_polygons, lower_layer_offset, SUPPORT_SURFACES_OFFSET_PARAMETERS));
#endif
if (buildplate_only && ! annotations.buildplate_covered[layer_id].empty()) {
// Don't support overhangs above the top surfaces.
// This step is done before the contact surface is calculated by growing the overhang region.
diff_polygons = diff(diff_polygons, annotations.buildplate_covered[layer_id]);
}
if (! diff_polygons.empty()) {
// Offset the support regions back to a full overhang, restrict them to the full overhang.
// This is done to increase size of the supporting columns below, as they are calculated by
// propagating these contact surfaces downwards.
diff_polygons = diff(
intersection(expand(diff_polygons, lower_layer_offset, SUPPORT_SURFACES_OFFSET_PARAMETERS), layerm_polygons),
lower_layer_polygons);
}
//FIXME add user defined filtering here based on minimal area or minimum radius or whatever.
}
if (diff_polygons.empty())
continue;
// Apply the "support blockers".
if (! annotations.blockers_layers.empty() && ! annotations.blockers_layers[layer_id].empty()) {
// Expand the blocker a bit. Custom blockers produce strips
// spanning just the projection between the two slices.
// Subtracting them as they are may leave unwanted narrow
// residues of diff_polygons that would then be supported.
diff_polygons = diff(diff_polygons,
expand(union_(annotations.blockers_layers[layer_id]), float(1000.*SCALED_EPSILON)));
}
#ifdef SLIC3R_DEBUG
{
::Slic3r::SVG svg(debug_out_path("support-top-contacts-raw-run%d-layer%d-region%d.svg",
iRun, layer_id,
std::find_if(layer.regions().begin(), layer.regions().end(), [layerm](const LayerRegion* other){return other == layerm;}) - layer.regions().begin()),
get_extents(diff_polygons));
Slic3r::ExPolygons expolys = union_ex(diff_polygons);
svg.draw(expolys);
}
#endif /* SLIC3R_DEBUG */
if (object_config.dont_support_bridges)
//FIXME Expensive, potentially not precise enough. Misses gap fill extrusions, which bridge.
SupportMaterialInternal::remove_bridges_from_contacts(
print_config, lower_layer, lower_layer_polygons, *layerm, fw, diff_polygons);
if (diff_polygons.empty())
continue;
#ifdef SLIC3R_DEBUG
Slic3r::SVG::export_expolygons(
debug_out_path("support-top-contacts-filtered-run%d-layer%d-region%d-z%f.svg",
iRun, layer_id,
std::find_if(layer.regions().begin(), layer.regions().end(), [layerm](const LayerRegion* other){return other == layerm;}) - layer.regions().begin(),
layer.print_z),
union_ex(diff_polygons));
#endif /* SLIC3R_DEBUG */
//FIXME the overhang_polygons are used to construct the support towers as well.
//if (this->has_contact_loops())
// Store the exact contour of the overhang for the contact loops.
polygons_append(overhang_polygons, diff_polygons);
// Let's define the required contact area by using a max gap of half the upper
// extrusion width and extending the area according to the configured margin.
// We increment the area in steps because we don't want our support to overflow
// on the other side of the object (if it's very thin).
{
//FIMXE 1) Make the offset configurable, 2) Make the Z span configurable.
//FIXME one should trim with the layer span colliding with the support layer, this layer
// may be lower than lower_layer, so the support area needed may need to be actually bigger!
// For the same reason, the non-bridging support area may be smaller than the bridging support area!
slices_margin_update(std::min(lower_layer_offset, float(scale_(gap_xy))), no_interface_offset);
// Offset the contact polygons outside.
#if 0
for (size_t i = 0; i < NUM_MARGIN_STEPS; ++ i) {
diff_polygons = diff(
offset(
diff_polygons,
scaled<float>(SUPPORT_MATERIAL_MARGIN / NUM_MARGIN_STEPS),
ClipperLib::jtRound,
// round mitter limit
scale_(0.05)),
slices_margin.polygons);
}
#else
diff_polygons = diff(diff_polygons, slices_margin.polygons);
#endif
}
polygons_append(contact_polygons, diff_polygons);
} // for each layer.region
if (has_enforcer)
if (const Polygons &enforcer_polygons_src = annotations.enforcers_layers[layer_id]; ! enforcer_polygons_src.empty()) {
// Enforce supports (as if with 90 degrees of slope) for the regions covered by the enforcer meshes.
#ifdef SLIC3R_DEBUG
ExPolygons enforcers_united = union_ex(enforcer_polygons_src);
#endif // SLIC3R_DEBUG
enforcer_polygons = diff(intersection(layer.lslices, enforcer_polygons_src),
// Inflate just a tiny bit to avoid intersection of the overhang areas with the object.
expand(lower_layer_polygons, 0.05f * no_interface_offset, SUPPORT_SURFACES_OFFSET_PARAMETERS));
#ifdef SLIC3R_DEBUG
SVG::export_expolygons(debug_out_path("support-top-contacts-enforcers-run%d-layer%d-z%f.svg", iRun, layer_id, layer.print_z),
{ { layer.lslices, { "layer.lslices", "gray", 0.2f } },
{ { union_ex(lower_layer_polygons) }, { "lower_layer_polygons", "green", 0.5f } },
{ enforcers_united, { "enforcers", "blue", 0.5f } },
{ { union_safety_offset_ex(enforcer_polygons) }, { "new_contacts", "red", "black", "", scaled<coord_t>(0.1f), 0.5f } } });
#endif /* SLIC3R_DEBUG */
if (! enforcer_polygons.empty()) {
polygons_append(overhang_polygons, enforcer_polygons);
slices_margin_update(std::min(lower_layer_offset, float(scale_(gap_xy))), no_interface_offset);
polygons_append(contact_polygons, diff(enforcer_polygons, slices_margin.all_polygons.empty() ? slices_margin.polygons : slices_margin.all_polygons));
}
}
}
return std::make_tuple(std::move(overhang_polygons), std::move(contact_polygons), std::move(enforcer_polygons), no_interface_offset);
}
// Allocate one, possibly two support contact layers.
// For "thick" overhangs, one support layer will be generated to support normal extrusions, the other to support the "thick" extrusions.
static inline std::pair<PrintObjectSupportMaterial::MyLayer*, PrintObjectSupportMaterial::MyLayer*> new_contact_layer(
const PrintConfig &print_config,
const PrintObjectConfig &object_config,
const SlicingParameters &slicing_params,
const coordf_t support_layer_height_min,
const Layer &layer,
std::deque<PrintObjectSupportMaterial::MyLayer> &layer_storage,
tbb::spin_mutex &layer_storage_mutex)
{
double print_z, bottom_z, height;
PrintObjectSupportMaterial::MyLayer* bridging_layer = nullptr;
assert(layer.id() >= slicing_params.raft_layers());
size_t layer_id = layer.id() - slicing_params.raft_layers();
if (layer_id == 0) {
// This is a raft contact layer sitting directly on the print bed.
assert(slicing_params.has_raft());
print_z = slicing_params.raft_contact_top_z;
bottom_z = slicing_params.raft_interface_top_z;
height = slicing_params.contact_raft_layer_height;
} else if (slicing_params.soluble_interface) {
// Align the contact surface height with a layer immediately below the supported layer.
// Interface layer will be synchronized with the object.
print_z = layer.bottom_z();
height = layer.lower_layer->height;
bottom_z = (layer_id == 1) ? slicing_params.object_print_z_min : layer.lower_layer->lower_layer->print_z;
} else {
print_z = layer.bottom_z() - slicing_params.gap_support_object;
bottom_z = print_z;
height = 0.;
// Ignore this contact area if it's too low.
// Don't want to print a layer below the first layer height as it may not stick well.
//FIXME there may be a need for a single layer support, then one may decide to print it either as a bottom contact or a top contact
// and it may actually make sense to do it with a thinner layer than the first layer height.
if (print_z < slicing_params.first_print_layer_height - EPSILON) {
// This contact layer is below the first layer height, therefore not printable. Don't support this surface.
return std::pair<PrintObjectSupportMaterial::MyLayer*, PrintObjectSupportMaterial::MyLayer*>(nullptr, nullptr);
}
const bool has_raft = slicing_params.raft_layers() > 1;
const coordf_t min_print_z = has_raft ? slicing_params.raft_contact_top_z : slicing_params.first_print_layer_height;
if (print_z < min_print_z + support_layer_height_min) {
// Align the layer with the 1st layer height or the raft contact layer.
// With raft active, any contact layer below the raft_contact_top_z will be brought to raft_contact_top_z to extend the raft area.
print_z = min_print_z;
bottom_z = has_raft ? slicing_params.raft_interface_top_z : 0;
height = has_raft ? slicing_params.contact_raft_layer_height : min_print_z;
} else {
// Don't know the height of the top contact layer yet. The top contact layer is printed with a normal flow and
// its height will be set adaptively later on.
}
// Contact layer will be printed with a normal flow, but
// it will support layers printed with a bridging flow.
if (object_config.thick_bridges && SupportMaterialInternal::has_bridging_extrusions(layer)) {
coordf_t bridging_height = 0.;
for (const LayerRegion* region : layer.regions())
bridging_height += region->region().bridging_height_avg(print_config);
bridging_height /= coordf_t(layer.regions().size());
coordf_t bridging_print_z = layer.print_z - bridging_height - slicing_params.gap_support_object;
if (bridging_print_z >= min_print_z) {
// Not below the first layer height means this layer is printable.
if (print_z < min_print_z + support_layer_height_min) {
// Align the layer with the 1st layer height or the raft contact layer.
bridging_print_z = min_print_z;
}
if (bridging_print_z < print_z - EPSILON) {
// Allocate the new layer.
bridging_layer = &layer_allocate(layer_storage, layer_storage_mutex, PrintObjectSupportMaterial::sltTopContact);
bridging_layer->idx_object_layer_above = layer_id;
bridging_layer->print_z = bridging_print_z;
if (bridging_print_z == slicing_params.first_print_layer_height) {
bridging_layer->bottom_z = 0;
bridging_layer->height = slicing_params.first_print_layer_height;
} else {
// Don't know the height yet.
bridging_layer->bottom_z = bridging_print_z;
bridging_layer->height = 0;
}
}
}
}
}
PrintObjectSupportMaterial::MyLayer &new_layer = layer_allocate(layer_storage, layer_storage_mutex, PrintObjectSupportMaterial::sltTopContact);
new_layer.idx_object_layer_above = layer_id;
new_layer.print_z = print_z;
new_layer.bottom_z = bottom_z;
new_layer.height = height;
return std::make_pair(&new_layer, bridging_layer);
}
static inline void fill_contact_layer(
PrintObjectSupportMaterial::MyLayer &new_layer,
size_t layer_id,
const SlicingParameters &slicing_params,
const PrintObjectConfig &object_config,
const SlicesMarginCache &slices_margin,
const Polygons &overhang_polygons,
const Polygons &contact_polygons,
const Polygons &enforcer_polygons,
const Polygons &lower_layer_polygons,
const Flow &support_material_flow,
float no_interface_offset
#ifdef SLIC3R_DEBUG
, size_t iRun,
const Layer &layer
#endif // SLIC3R_DEBUG
)
{
const SupportGridParams grid_params(object_config, support_material_flow);
Polygons lower_layer_polygons_for_dense_interface_cache;
auto lower_layer_polygons_for_dense_interface = [&lower_layer_polygons_for_dense_interface_cache, &lower_layer_polygons, no_interface_offset]() -> const Polygons& {
if (lower_layer_polygons_for_dense_interface_cache.empty())
lower_layer_polygons_for_dense_interface_cache =
//FIXME no_interface_offset * 0.6f offset is not quite correct, one shall derive it based on an angle thus depending on layer height.
opening(lower_layer_polygons, no_interface_offset * 0.5f, no_interface_offset * (0.6f + 0.5f), SUPPORT_SURFACES_OFFSET_PARAMETERS);
return lower_layer_polygons_for_dense_interface_cache;
};
// Stretch support islands into a grid, trim them.
SupportGridPattern support_grid_pattern(&contact_polygons, &slices_margin.polygons, grid_params);
// 1) Contact polygons will be projected down. To keep the interface and base layers from growing, return a contour a tiny bit smaller than the grid cells.
new_layer.contact_polygons = std::make_unique<Polygons>(support_grid_pattern.extract_support(grid_params.expansion_to_propagate, true
#ifdef SLIC3R_DEBUG
, "top_contact_polygons", iRun, layer_id, layer.print_z
#endif // SLIC3R_DEBUG
));
// 2) infill polygons, expand them by half the extrusion width + a tiny bit of extra.
bool reduce_interfaces = object_config.support_material_style.value != smsSnug && layer_id > 0 && !slicing_params.soluble_interface;
if (reduce_interfaces) {
// Reduce the amount of dense interfaces: Do not generate dense interfaces below overhangs with 60% overhang of the extrusions.
Polygons dense_interface_polygons = diff(overhang_polygons, lower_layer_polygons_for_dense_interface());
if (! dense_interface_polygons.empty()) {
dense_interface_polygons =
diff(
// Regularize the contour.
expand(dense_interface_polygons, no_interface_offset * 0.1f),
slices_margin.polygons);
// Support islands, to be stretched into a grid.
//FIXME The regularization of dense_interface_polygons above may stretch dense_interface_polygons outside of the contact polygons,
// thus some dense interface areas may not get supported. Trim the excess with contact_polygons at the following line.
// See for example GH #4874.
Polygons dense_interface_polygons_trimmed = intersection(dense_interface_polygons, *new_layer.contact_polygons);
// Stretch support islands into a grid, trim them.
SupportGridPattern support_grid_pattern(&dense_interface_polygons_trimmed, &slices_margin.polygons, grid_params);
new_layer.polygons = support_grid_pattern.extract_support(grid_params.expansion_to_slice, false
#ifdef SLIC3R_DEBUG
, "top_contact_polygons2", iRun, layer_id, layer.print_z
#endif // SLIC3R_DEBUG
);
#ifdef SLIC3R_DEBUG
SVG::export_expolygons(debug_out_path("support-top-contacts-final1-run%d-layer%d-z%f.svg", iRun, layer_id, layer.print_z),
{ { { union_ex(lower_layer_polygons) }, { "lower_layer_polygons", "gray", 0.2f } },
{ { union_ex(*new_layer.contact_polygons) }, { "new_layer.contact_polygons", "yellow", 0.5f } },
{ { union_ex(slices_margin.polygons) }, { "slices_margin_cached", "blue", 0.5f } },
{ { union_ex(dense_interface_polygons) }, { "dense_interface_polygons", "green", 0.5f } },
{ { union_safety_offset_ex(new_layer.polygons) }, { "new_layer.polygons", "red", "black", "", scaled<coord_t>(0.1f), 0.5f } } });
//support_grid_pattern.serialize(debug_out_path("support-top-contacts-final-run%d-layer%d-z%f.bin", iRun, layer_id, layer.print_z));
SVG::export_expolygons(debug_out_path("support-top-contacts-final2-run%d-layer%d-z%f.svg", iRun, layer_id, layer.print_z),
{ { { union_ex(lower_layer_polygons) }, { "lower_layer_polygons", "gray", 0.2f } },
{ { union_ex(*new_layer.contact_polygons) }, { "new_layer.contact_polygons", "yellow", 0.5f } },
{ { union_ex(contact_polygons) }, { "contact_polygons", "blue", 0.5f } },
{ { union_ex(dense_interface_polygons) }, { "dense_interface_polygons", "green", 0.5f } },
{ { union_safety_offset_ex(new_layer.polygons) }, { "new_layer.polygons", "red", "black", "", scaled<coord_t>(0.1f), 0.5f } } });
#endif /* SLIC3R_DEBUG */
}
} else {
new_layer.polygons = support_grid_pattern.extract_support(grid_params.expansion_to_slice, true
#ifdef SLIC3R_DEBUG
, "top_contact_polygons3", iRun, layer_id, layer.print_z
#endif // SLIC3R_DEBUG
);
}
if (! enforcer_polygons.empty() && ! slices_margin.all_polygons.empty() && layer_id > 0) {
// Support enforcers used together with support enforcers. The support enforcers need to be handled separately from the rest of the support.
SupportGridPattern support_grid_pattern(&enforcer_polygons, &slices_margin.all_polygons, grid_params);
// 1) Contact polygons will be projected down. To keep the interface and base layers from growing, return a contour a tiny bit smaller than the grid cells.
new_layer.enforcer_polygons = std::make_unique<Polygons>(support_grid_pattern.extract_support(grid_params.expansion_to_propagate, true
#ifdef SLIC3R_DEBUG
, "top_contact_polygons4", iRun, layer_id, layer.print_z
#endif // SLIC3R_DEBUG
));
Polygons new_polygons;
bool needs_union = ! new_layer.polygons.empty();
if (reduce_interfaces) {
// 2) infill polygons, expand them by half the extrusion width + a tiny bit of extra.
// Reduce the amount of dense interfaces: Do not generate dense interfaces below overhangs with 60% overhang of the extrusions.
Polygons dense_interface_polygons = diff(enforcer_polygons, lower_layer_polygons_for_dense_interface());
if (! dense_interface_polygons.empty()) {
dense_interface_polygons =
diff(
// Regularize the contour.
expand(dense_interface_polygons, no_interface_offset * 0.1f),
slices_margin.all_polygons);
// Support islands, to be stretched into a grid.
//FIXME The regularization of dense_interface_polygons above may stretch dense_interface_polygons outside of the contact polygons,
// thus some dense interface areas may not get supported. Trim the excess with contact_polygons at the following line.
// See for example GH #4874.
Polygons dense_interface_polygons_trimmed = intersection(dense_interface_polygons, *new_layer.enforcer_polygons);
SupportGridPattern support_grid_pattern(&dense_interface_polygons_trimmed, &slices_margin.all_polygons, grid_params);
// Extend the polygons to extrude with the contact polygons of support enforcers.
new_polygons = support_grid_pattern.extract_support(grid_params.expansion_to_slice, false
#ifdef SLIC3R_DEBUG
, "top_contact_polygons5", iRun, layer_id, layer.print_z
#endif // SLIC3R_DEBUG
);
}
} else {
new_polygons = support_grid_pattern.extract_support(grid_params.expansion_to_slice, true
#ifdef SLIC3R_DEBUG
, "top_contact_polygons6", iRun, layer_id, layer.print_z
#endif // SLIC3R_DEBUG
);
}
append(new_layer.polygons, std::move(new_polygons));
if (needs_union)
new_layer.polygons = union_(new_layer.polygons);
}
#ifdef SLIC3R_DEBUG
SVG::export_expolygons(debug_out_path("support-top-contacts-final0-run%d-layer%d-z%f.svg", iRun, layer_id, layer.print_z),
{ { { union_ex(lower_layer_polygons) }, { "lower_layer_polygons", "gray", 0.2f } },
{ { union_ex(*new_layer.contact_polygons) }, { "new_layer.contact_polygons", "yellow", 0.5f } },
{ { union_ex(contact_polygons) }, { "contact_polygons", "blue", 0.5f } },
{ { union_ex(overhang_polygons) }, { "overhang_polygons", "green", 0.5f } },
{ { union_safety_offset_ex(new_layer.polygons) }, { "new_layer.polygons", "red", "black", "", scaled<coord_t>(0.1f), 0.5f } } });
#endif /* SLIC3R_DEBUG */
// Even after the contact layer was expanded into a grid, some of the contact islands may be too tiny to be extruded.
// Remove those tiny islands from new_layer.polygons and new_layer.contact_polygons.
// Store the overhang polygons.
// The overhang polygons are used in the path generator for planning of the contact loops.
// if (this->has_contact_loops()). Compared to "polygons", "overhang_polygons" are snug.
new_layer.overhang_polygons = std::make_unique<Polygons>(std::move(overhang_polygons));
if (! enforcer_polygons.empty())
new_layer.enforcer_polygons = std::make_unique<Polygons>(std::move(enforcer_polygons));
}
// Merge close contact layers conservatively: If two layers are closer than the minimum allowed print layer height (the min_layer_height parameter),
// the top contact layer is merged into the bottom contact layer.
static void merge_contact_layers(const SlicingParameters &slicing_params, double support_layer_height_min, PrintObjectSupportMaterial::MyLayersPtr &layers)
{
// Sort the layers, as one layer may produce bridging and non-bridging contact layers with different print_z.
std::sort(layers.begin(), layers.end(), [](const PrintObjectSupportMaterial::MyLayer *l1, const PrintObjectSupportMaterial::MyLayer *l2) { return l1->print_z < l2->print_z; });
int i = 0;
int k = 0;
{
// Find the span of layers, which are to be printed at the first layer height.
int j = 0;
for (; j < (int)layers.size() && layers[j]->print_z < slicing_params.first_print_layer_height + support_layer_height_min - EPSILON; ++ j);
if (j > 0) {
// Merge the layers layers (0) to (j - 1) into the layers[0].
PrintObjectSupportMaterial::MyLayer &dst = *layers.front();
for (int u = 1; u < j; ++ u)
dst.merge(std::move(*layers[u]));
// Snap the first layer to the 1st layer height.
dst.print_z = slicing_params.first_print_layer_height;
dst.height = slicing_params.first_print_layer_height;
dst.bottom_z = 0;
++ k;
}
i = j;
}
for (; i < int(layers.size()); ++ k) {
// Find the span of layers closer than m_support_layer_height_min.
int j = i + 1;
coordf_t zmax = layers[i]->print_z + support_layer_height_min + EPSILON;
for (; j < (int)layers.size() && layers[j]->print_z < zmax; ++ j) ;
if (i + 1 < j) {
// Merge the layers layers (i + 1) to (j - 1) into the layers[i].
PrintObjectSupportMaterial::MyLayer &dst = *layers[i];
for (int u = i + 1; u < j; ++ u)
dst.merge(std::move(*layers[u]));
}
if (k < i)
layers[k] = layers[i];
i = j;
}
if (k < (int)layers.size())
layers.erase(layers.begin() + k, layers.end());
}
// Generate top contact layers supporting overhangs.
// For a soluble interface material synchronize the layer heights with the object, otherwise leave the layer height undefined.
// If supports over bed surface only are requested, don't generate contact layers over an object.
PrintObjectSupportMaterial::MyLayersPtr PrintObjectSupportMaterial::top_contact_layers(
const PrintObject &object, const std::vector<Polygons> &buildplate_covered, MyLayerStorage &layer_storage) const
{
#ifdef SLIC3R_DEBUG
static int iRun = 0;
++ iRun;
#define SLIC3R_IRUN , iRun
#endif /* SLIC3R_DEBUG */
// Slice support enforcers / support blockers.
SupportAnnotations annotations(object, buildplate_covered);
// Output layers, sorted by top Z.
MyLayersPtr contact_out;
BOOST_LOG_TRIVIAL(debug) << "PrintObjectSupportMaterial::top_contact_layers() in parallel - start";
// Determine top contact areas.
// If generating raft only (no support), only calculate top contact areas for the 0th layer.
// If having a raft, start with 0th layer, otherwise with 1st layer.
// Note that layer_id < layer->id when raft_layers > 0 as the layer->id incorporates the raft layers.
// So layer_id == 0 means first object layer and layer->id == 0 means first print layer if there are no explicit raft layers.
size_t num_layers = this->has_support() ? object.layer_count() : 1;
// For each overhang layer, two supporting layers may be generated: One for the overhangs extruded with a bridging flow,
// and the other for the overhangs extruded with a normal flow.
contact_out.assign(num_layers * 2, nullptr);
tbb::spin_mutex layer_storage_mutex;
tbb::parallel_for(tbb::blocked_range<size_t>(this->has_raft() ? 0 : 1, num_layers),
[this, &object, &annotations, &layer_storage, &layer_storage_mutex, &contact_out]
(const tbb::blocked_range<size_t>& range) {
for (size_t layer_id = range.begin(); layer_id < range.end(); ++ layer_id)
{
const Layer &layer = *object.layers()[layer_id];
Polygons lower_layer_polygons = (layer_id == 0) ? Polygons() : to_polygons(object.layers()[layer_id - 1]->lslices);
SlicesMarginCache slices_margin;
auto [overhang_polygons, contact_polygons, enforcer_polygons, no_interface_offset] =
detect_overhangs(layer, layer_id, lower_layer_polygons, *m_print_config, *m_object_config, annotations, slices_margin, m_support_params.gap_xy
#ifdef SLIC3R_DEBUG
, iRun
#endif // SLIC3R_DEBUG
);
// Now apply the contact areas to the layer where they need to be made.
if (! contact_polygons.empty() || ! overhang_polygons.empty()) {
// Allocate the two empty layers.
auto [new_layer, bridging_layer] = new_contact_layer(*m_print_config, *m_object_config, m_slicing_params, m_support_params.support_layer_height_min, layer, layer_storage, layer_storage_mutex);
if (new_layer) {
// Fill the non-bridging layer with polygons.
fill_contact_layer(*new_layer, layer_id, m_slicing_params,
*m_object_config, slices_margin, overhang_polygons, contact_polygons, enforcer_polygons, lower_layer_polygons,
m_support_params.support_material_flow, no_interface_offset
#ifdef SLIC3R_DEBUG
, iRun, layer
#endif // SLIC3R_DEBUG
);
// Insert new layer even if there is no interface generated: Likely the support angle is not steep enough to require dense interface,
// however generating a sparse support will be useful for the object stability.
// if (! new_layer->polygons.empty())
contact_out[layer_id * 2] = new_layer;
if (bridging_layer != nullptr) {
bridging_layer->polygons = new_layer->polygons;
bridging_layer->contact_polygons = std::make_unique<Polygons>(*new_layer->contact_polygons);
bridging_layer->overhang_polygons = std::make_unique<Polygons>(*new_layer->overhang_polygons);
if (new_layer->enforcer_polygons)
bridging_layer->enforcer_polygons = std::make_unique<Polygons>(*new_layer->enforcer_polygons);
contact_out[layer_id * 2 + 1] = bridging_layer;
}
}
}
}
});
// Compress contact_out, remove the nullptr items.
remove_nulls(contact_out);
// Merge close contact layers conservatively: If two layers are closer than the minimum allowed print layer height (the min_layer_height parameter),
// the top contact layer is merged into the bottom contact layer.
merge_contact_layers(m_slicing_params, m_support_params.support_layer_height_min, contact_out);
BOOST_LOG_TRIVIAL(debug) << "PrintObjectSupportMaterial::top_contact_layers() in parallel - end";
return contact_out;
}
// Find the bottom contact layers above the top surfaces of this layer.
static inline PrintObjectSupportMaterial::MyLayer* detect_bottom_contacts(
const SlicingParameters &slicing_params,
const PrintObjectSupportMaterial::SupportParams &support_params,
const PrintObject &object,
const Layer &layer,
// Existing top contact layers, to which this newly created bottom contact layer will be snapped to guarantee a minimum layer height.
const PrintObjectSupportMaterial::MyLayersPtr &top_contacts,
// First top contact layer index overlapping with this new bottom interface layer.
size_t contact_idx,
// To allocate a new layer from.
std::deque<PrintObjectSupportMaterial::MyLayer> &layer_storage,
// To trim the support areas above this bottom interface layer with this newly created bottom interface layer.
std::vector<Polygons> &layer_support_areas,
// Support areas projected from top to bottom, starting with top support interfaces.
const Polygons &supports_projected
#ifdef SLIC3R_DEBUG
, size_t iRun
, const Polygons &polygons_new
#endif // SLIC3R_DEBUG
)
{
Polygons top = collect_region_slices_by_type(layer, stTop);
#ifdef SLIC3R_DEBUG
SVG::export_expolygons(debug_out_path("support-bottom-layers-raw-%d-%lf.svg", iRun, layer.print_z),
{ { { union_ex(top) }, { "top", "blue", 0.5f } },
{ { union_safety_offset_ex(supports_projected) }, { "overhangs", "magenta", 0.5f } },
{ layer.lslices, { "layer.lslices", "green", 0.5f } },
{ { union_safety_offset_ex(polygons_new) }, { "polygons_new", "red", "black", "", scaled<coord_t>(0.1f), 0.5f } } });
#endif /* SLIC3R_DEBUG */
// Now find whether any projection of the contact surfaces above layer.print_z not yet supported by any
// top surfaces above layer.print_z falls onto this top surface.
// Touching are the contact surfaces supported exclusively by this top surfaces.
// Don't use a safety offset as it has been applied during insertion of polygons.
if (top.empty())
return nullptr;
Polygons touching = intersection(top, supports_projected);
if (touching.empty())
return nullptr;
assert(layer.id() >= slicing_params.raft_layers());
size_t layer_id = layer.id() - slicing_params.raft_layers();
// Allocate a new bottom contact layer.
PrintObjectSupportMaterial::MyLayer &layer_new = layer_allocate(layer_storage, PrintObjectSupportMaterial::sltBottomContact);
// Grow top surfaces so that interface and support generation are generated
// with some spacing from object - it looks we don't need the actual
// top shapes so this can be done here
//FIXME calculate layer height based on the actual thickness of the layer:
// If the layer is extruded with no bridging flow, support just the normal extrusions.
layer_new.height = slicing_params.soluble_interface ?
// Align the interface layer with the object's layer height.
layer.upper_layer->height :
// Place a bridge flow interface layer or the normal flow interface layer over the top surface.
support_params.support_material_bottom_interface_flow.height();
layer_new.print_z = slicing_params.soluble_interface ? layer.upper_layer->print_z :
layer.print_z + layer_new.height + slicing_params.gap_object_support;
layer_new.bottom_z = layer.print_z;
layer_new.idx_object_layer_below = layer_id;
layer_new.bridging = !slicing_params.soluble_interface && object.config().thick_bridges;
//FIXME how much to inflate the bottom surface, as it is being extruded with a bridging flow? The following line uses a normal flow.
layer_new.polygons = expand(touching, float(support_params.support_material_flow.scaled_width()), SUPPORT_SURFACES_OFFSET_PARAMETERS);
if (! slicing_params.soluble_interface) {
// Walk the top surfaces, snap the top of the new bottom surface to the closest top of the top surface,
// so there will be no support surfaces generated with thickness lower than m_support_layer_height_min.
for (size_t top_idx = size_t(std::max<int>(0, contact_idx));
top_idx < top_contacts.size() && top_contacts[top_idx]->print_z < layer_new.print_z + support_params.support_layer_height_min + EPSILON;
++ top_idx) {
if (top_contacts[top_idx]->print_z > layer_new.print_z - support_params.support_layer_height_min - EPSILON) {
// A top layer has been found, which is close to the new bottom layer.
coordf_t diff = layer_new.print_z - top_contacts[top_idx]->print_z;
assert(std::abs(diff) <= support_params.support_layer_height_min + EPSILON);
if (diff > 0.) {
// The top contact layer is below this layer. Make the bridging layer thinner to align with the existing top layer.
assert(diff < layer_new.height + EPSILON);
assert(layer_new.height - diff >= support_params.support_layer_height_min - EPSILON);
layer_new.print_z = top_contacts[top_idx]->print_z;
layer_new.height -= diff;
}
else {
// The top contact layer is above this layer. One may either make this layer thicker or thinner.
// By making the layer thicker, one will decrease the number of discrete layers with the price of extruding a bit too thick bridges.
// By making the layer thinner, one adds one more discrete layer.
layer_new.print_z = top_contacts[top_idx]->print_z;
layer_new.height -= diff;
}
break;
}
}
}
#ifdef SLIC3R_DEBUG
Slic3r::SVG::export_expolygons(
debug_out_path("support-bottom-contacts-%d-%lf.svg", iRun, layer_new.print_z),
union_ex(layer_new.polygons));
#endif /* SLIC3R_DEBUG */
// Trim the already created base layers above the current layer intersecting with the new bottom contacts layer.
//FIXME Maybe this is no more needed, as the overlapping base layers are trimmed by the bottom layers at the final stage?
touching = expand(touching, float(SCALED_EPSILON));
for (int layer_id_above = layer_id + 1; layer_id_above < int(object.total_layer_count()); ++ layer_id_above) {
const Layer &layer_above = *object.layers()[layer_id_above];
if (layer_above.print_z > layer_new.print_z - EPSILON)
break;
if (Polygons &above = layer_support_areas[layer_id_above]; ! above.empty()) {
#ifdef SLIC3R_DEBUG
SVG::export_expolygons(debug_out_path("support-support-areas-raw-before-trimming-%d-with-%f-%lf.svg", iRun, layer.print_z, layer_above.print_z),
{ { { union_ex(touching) }, { "touching", "blue", 0.5f } },
{ { union_safety_offset_ex(above) }, { "above", "red", "black", "", scaled<coord_t>(0.1f), 0.5f } } });
#endif /* SLIC3R_DEBUG */
above = diff(above, touching);
#ifdef SLIC3R_DEBUG
Slic3r::SVG::export_expolygons(
debug_out_path("support-support-areas-raw-after-trimming-%d-with-%f-%lf.svg", iRun, layer.print_z, layer_above.print_z),
union_ex(above));
#endif /* SLIC3R_DEBUG */
}
}
return &layer_new;
}
// Returns polygons to print + polygons to propagate downwards.
// Called twice: First for normal supports, possibly trimmed by "on build plate only", second for support enforcers not trimmed by "on build plate only".
static inline std::pair<Polygons, Polygons> project_support_to_grid(const Layer &layer, const SupportGridParams &grid_params, const Polygons &overhangs, Polygons *layer_buildplate_covered
#ifdef SLIC3R_DEBUG
, size_t iRun, size_t layer_id, const char *debug_name
#endif /* SLIC3R_DEBUG */
)
{
// Remove the areas that touched from the projection that will continue on next, lower, top surfaces.
// Polygons trimming = union_(to_polygons(layer.slices), touching, true);
Polygons trimming = layer_buildplate_covered ? std::move(*layer_buildplate_covered) : offset(layer.lslices, float(SCALED_EPSILON));
Polygons overhangs_projection = diff(overhangs, trimming);
#ifdef SLIC3R_DEBUG
SVG::export_expolygons(debug_out_path("support-support-areas-%s-raw-%d-%lf.svg", debug_name, iRun, layer.print_z),
{ { { union_ex(trimming) }, { "trimming", "blue", 0.5f } },
{ { union_safety_offset_ex(overhangs_projection) }, { "overhangs_projection", "red", "black", "", scaled<coord_t>(0.1f), 0.5f } } });
#endif /* SLIC3R_DEBUG */
remove_sticks(overhangs_projection);
remove_degenerate(overhangs_projection);
#ifdef SLIC3R_DEBUG
SVG::export_expolygons(debug_out_path("support-support-areas-%s-raw-cleaned-%d-%lf.svg", debug_name, iRun, layer.print_z),
{ { { union_ex(trimming) }, { "trimming", "blue", 0.5f } },
{ { union_ex(overhangs_projection) }, { "overhangs_projection", "red", "black", "", scaled<coord_t>(0.1f), 0.5f } } });
#endif /* SLIC3R_DEBUG */
SupportGridPattern support_grid_pattern(&overhangs_projection, &trimming, grid_params);
tbb::task_group task_group_inner;
std::pair<Polygons, Polygons> out;
// 1) Cache the slice of a support volume. The support volume is expanded by 1/2 of support material flow spacing
// to allow a placement of suppot zig-zag snake along the grid lines.
task_group_inner.run([&grid_params, &support_grid_pattern, &out
#ifdef SLIC3R_DEBUG
, &layer, layer_id, iRun, debug_name
#endif /* SLIC3R_DEBUG */
] {
out.first = support_grid_pattern.extract_support(grid_params.expansion_to_slice, true
#ifdef SLIC3R_DEBUG
, (std::string(debug_name) + "_support_area").c_str(), iRun, layer_id, layer.print_z
#endif // SLIC3R_DEBUG
);
#ifdef SLIC3R_DEBUG
Slic3r::SVG::export_expolygons(
debug_out_path("support-layer_support_area-gridded-%s-%d-%lf.svg", debug_name, iRun, layer.print_z),
union_ex(out.first));
#endif /* SLIC3R_DEBUG */
});
// 2) Support polygons will be projected down. To keep the interface and base layers from growing, return a contour a tiny bit smaller than the grid cells.
task_group_inner.run([&grid_params, &support_grid_pattern, &out
#ifdef SLIC3R_DEBUG
, &layer, layer_id, &overhangs_projection, &trimming, iRun, debug_name
#endif /* SLIC3R_DEBUG */
] {
out.second = support_grid_pattern.extract_support(grid_params.expansion_to_propagate, true
#ifdef SLIC3R_DEBUG
, "support_projection", iRun, layer_id, layer.print_z
#endif // SLIC3R_DEBUG
);
#ifdef SLIC3R_DEBUG
Slic3r::SVG::export_expolygons(
debug_out_path("support-projection_new-gridded-%d-%lf.svg", iRun, layer.print_z),
union_ex(out.second));
#endif /* SLIC3R_DEBUG */
#ifdef SLIC3R_DEBUG
SVG::export_expolygons(debug_out_path("support-projection_new-gridded-%d-%lf.svg", iRun, layer.print_z),
{ { { union_ex(trimming) }, { "trimming", "gray", 0.5f } },
{ { union_safety_offset_ex(overhangs_projection) }, { "overhangs_projection", "blue", 0.5f } },
{ { union_safety_offset_ex(out.second) }, { "projection_new", "red", "black", "", scaled<coord_t>(0.1f), 0.5f } } });
#endif /* SLIC3R_DEBUG */
});
task_group_inner.wait();
return out;
}
// Generate bottom contact layers supporting the top contact layers.
// For a soluble interface material synchronize the layer heights with the object,
// otherwise set the layer height to a bridging flow of a support interface nozzle.
PrintObjectSupportMaterial::MyLayersPtr PrintObjectSupportMaterial::bottom_contact_layers_and_layer_support_areas(
const PrintObject &object, const MyLayersPtr &top_contacts, std::vector<Polygons> &buildplate_covered,
MyLayerStorage &layer_storage, std::vector<Polygons> &layer_support_areas) const
{
if (top_contacts.empty())
return MyLayersPtr();
#ifdef SLIC3R_DEBUG
static size_t s_iRun = 0;
size_t iRun = s_iRun ++;
#endif /* SLIC3R_DEBUG */
//FIXME higher expansion_to_slice here? why?
//const auto expansion_to_slice = m_support_material_flow.scaled_spacing() / 2 + 25;
const SupportGridParams grid_params(*m_object_config, m_support_params.support_material_flow);
const bool buildplate_only = ! buildplate_covered.empty();
// Allocate empty surface areas, one per object layer.
layer_support_areas.assign(object.total_layer_count(), Polygons());
// find object top surfaces
// we'll use them to clip our support and detect where does it stick
MyLayersPtr bottom_contacts;
// There is some support to be built, if there are non-empty top surfaces detected.
// Sum of unsupported contact areas above the current layer.print_z.
Polygons overhangs_projection;
// Sum of unsupported enforcer contact areas above the current layer.print_z.
// Only used if "supports on build plate only" is enabled and both automatic and support enforcers are enabled.
Polygons enforcers_projection;
// Last top contact layer visited when collecting the projection of contact areas.
int contact_idx = int(top_contacts.size()) - 1;
for (int layer_id = int(object.total_layer_count()) - 2; layer_id >= 0; -- layer_id) {
BOOST_LOG_TRIVIAL(trace) << "Support generator - bottom_contact_layers - layer " << layer_id;
const Layer &layer = *object.get_layer(layer_id);
// Collect projections of all contact areas above or at the same level as this top surface.
#ifdef SLIC3R_DEBUG
Polygons polygons_new;
Polygons enforcers_new;
#endif // SLIC3R_DEBUG
for (; contact_idx >= 0 && top_contacts[contact_idx]->print_z > layer.print_z - EPSILON; -- contact_idx) {
MyLayer &top_contact = *top_contacts[contact_idx];
#ifndef SLIC3R_DEBUG
Polygons polygons_new;
Polygons enforcers_new;
#endif // SLIC3R_DEBUG
// Contact surfaces are expanded away from the object, trimmed by the object.
// Use a slight positive offset to overlap the touching regions.
#if 0
// Merge and collect the contact polygons. The contact polygons are inflated, but not extended into a grid form.
polygons_append(polygons_new, offset(*top_contact.contact_polygons, SCALED_EPSILON));
if (top_contact.enforcer_polygons)
polygons_append(enforcers_new, offset(*top_contact.enforcer_polygons, SCALED_EPSILON));
#else
// Consume the contact_polygons. The contact polygons are already expanded into a grid form, and they are a tiny bit smaller
// than the grid cells.
polygons_append(polygons_new, std::move(*top_contact.contact_polygons));
if (top_contact.enforcer_polygons)
polygons_append(enforcers_new, std::move(*top_contact.enforcer_polygons));
#endif
// These are the overhang surfaces. They are touching the object and they are not expanded away from the object.
// Use a slight positive offset to overlap the touching regions.
polygons_append(polygons_new, expand(*top_contact.overhang_polygons, float(SCALED_EPSILON)));
polygons_append(overhangs_projection, union_(polygons_new));
polygons_append(enforcers_projection, enforcers_new);
}
if (overhangs_projection.empty() && enforcers_projection.empty())
continue;
// Overhangs_projection will be filled in asynchronously, move it away.
Polygons overhangs_projection_raw = union_(std::move(overhangs_projection));
Polygons enforcers_projection_raw = union_(std::move(enforcers_projection));
tbb::task_group task_group;
const Polygons &overhangs_for_bottom_contacts = buildplate_only ? enforcers_projection_raw : overhangs_projection_raw;
if (! overhangs_for_bottom_contacts.empty())
// Find the bottom contact layers above the top surfaces of this layer.
task_group.run([this, &object, &layer, &top_contacts, contact_idx, &layer_storage, &layer_support_areas, &bottom_contacts, &overhangs_for_bottom_contacts
#ifdef SLIC3R_DEBUG
, iRun, &polygons_new
#endif // SLIC3R_DEBUG
] {
// Find the bottom contact layers above the top surfaces of this layer.
MyLayer *layer_new = detect_bottom_contacts(
m_slicing_params, m_support_params, object, layer, top_contacts, contact_idx, layer_storage, layer_support_areas, overhangs_for_bottom_contacts
#ifdef SLIC3R_DEBUG
, iRun, polygons_new
#endif // SLIC3R_DEBUG
);
if (layer_new)
bottom_contacts.push_back(layer_new);
});
Polygons &layer_support_area = layer_support_areas[layer_id];
Polygons *layer_buildplate_covered = buildplate_covered.empty() ? nullptr : &buildplate_covered[layer_id];
// Filtering the propagated support columns to two extrusions, overlapping by maximum 20%.
// float column_propagation_filtering_radius = scaled<float>(0.8 * 0.5 * (m_support_params.support_material_flow.spacing() + m_support_params.support_material_flow.width()));
task_group.run([&grid_params, &overhangs_projection, &overhangs_projection_raw, &layer, &layer_support_area, layer_buildplate_covered /* , column_propagation_filtering_radius */
#ifdef SLIC3R_DEBUG
, iRun, layer_id
#endif /* SLIC3R_DEBUG */
] {
// buildplate_covered[layer_id] will be consumed here.
std::tie(layer_support_area, overhangs_projection) = project_support_to_grid(layer, grid_params, overhangs_projection_raw, layer_buildplate_covered
#ifdef SLIC3R_DEBUG
, iRun, layer_id, "general"
#endif /* SLIC3R_DEBUG */
);
// When propagating support areas downwards, stop propagating the support column if it becomes too thin to be printable.
//overhangs_projection = opening(overhangs_projection, column_propagation_filtering_radius);
});
Polygons layer_support_area_enforcers;
if (! enforcers_projection.empty())
// Project the enforcers polygons downwards, don't trim them with the "buildplate only" polygons.
task_group.run([&grid_params, &enforcers_projection, &enforcers_projection_raw, &layer, &layer_support_area_enforcers
#ifdef SLIC3R_DEBUG
, iRun, layer_id
#endif /* SLIC3R_DEBUG */
]{
std::tie(layer_support_area_enforcers, enforcers_projection) = project_support_to_grid(layer, grid_params, enforcers_projection_raw, nullptr
#ifdef SLIC3R_DEBUG
, iRun, layer_id, "enforcers"
#endif /* SLIC3R_DEBUG */
);
});
task_group.wait();
if (! layer_support_area_enforcers.empty()) {
if (layer_support_area.empty())
layer_support_area = std::move(layer_support_area_enforcers);
else
layer_support_area = union_(layer_support_area, layer_support_area_enforcers);
}
} // over all layers downwards
std::reverse(bottom_contacts.begin(), bottom_contacts.end());
trim_support_layers_by_object(object, bottom_contacts, m_slicing_params.gap_support_object, m_slicing_params.gap_object_support, m_support_params.gap_xy);
return bottom_contacts;
}
// FN_HIGHER_EQUAL: the provided object pointer has a Z value >= of an internal threshold.
// Find the first item with Z value >= of an internal threshold of fn_higher_equal.
// If no vec item with Z value >= of an internal threshold of fn_higher_equal is found, return vec.size()
// If the initial idx is size_t(-1), then use binary search.
// Otherwise search linearly upwards.
template<typename IteratorType, typename IndexType, typename FN_HIGHER_EQUAL>
IndexType idx_higher_or_equal(IteratorType begin, IteratorType end, IndexType idx, FN_HIGHER_EQUAL fn_higher_equal)
{
auto size = int(end - begin);
if (size == 0) {
idx = 0;
} else if (idx == IndexType(-1)) {
// First of the batch of layers per thread pool invocation. Use binary search.
int idx_low = 0;
int idx_high = std::max(0, size - 1);
while (idx_low + 1 < idx_high) {
int idx_mid = (idx_low + idx_high) / 2;
if (fn_higher_equal(begin[idx_mid]))
idx_high = idx_mid;
else
idx_low = idx_mid;
}
idx = fn_higher_equal(begin[idx_low]) ? idx_low :
(fn_higher_equal(begin[idx_high]) ? idx_high : size);
} else {
// For the other layers of this batch of layers, search incrementally, which is cheaper than the binary search.
while (int(idx) < size && ! fn_higher_equal(begin[idx]))
++ idx;
}
return idx;
}
template<typename T, typename IndexType, typename FN_HIGHER_EQUAL>
IndexType idx_higher_or_equal(const std::vector<T>& vec, IndexType idx, FN_HIGHER_EQUAL fn_higher_equal)
{
return idx_higher_or_equal(vec.begin(), vec.end(), idx, fn_higher_equal);
}
// FN_LOWER_EQUAL: the provided object pointer has a Z value <= of an internal threshold.
// Find the first item with Z value <= of an internal threshold of fn_lower_equal.
// If no vec item with Z value <= of an internal threshold of fn_lower_equal is found, return -1.
// If the initial idx is < -1, then use binary search.
// Otherwise search linearly downwards.
template<typename IT, typename FN_LOWER_EQUAL>
int idx_lower_or_equal(IT begin, IT end, int idx, FN_LOWER_EQUAL fn_lower_equal)
{
auto size = int(end - begin);
if (size == 0) {
idx = -1;
} else if (idx < -1) {
// First of the batch of layers per thread pool invocation. Use binary search.
int idx_low = 0;
int idx_high = std::max(0, size - 1);
while (idx_low + 1 < idx_high) {
int idx_mid = (idx_low + idx_high) / 2;
if (fn_lower_equal(begin[idx_mid]))
idx_low = idx_mid;
else
idx_high = idx_mid;
}
idx = fn_lower_equal(begin[idx_high]) ? idx_high :
(fn_lower_equal(begin[idx_low ]) ? idx_low : -1);
} else {
// For the other layers of this batch of layers, search incrementally, which is cheaper than the binary search.
while (idx >= 0 && ! fn_lower_equal(begin[idx]))
-- idx;
}
return idx;
}
template<typename T, typename FN_LOWER_EQUAL>
int idx_lower_or_equal(const std::vector<T*> &vec, int idx, FN_LOWER_EQUAL fn_lower_equal)
{
return idx_lower_or_equal(vec.begin(), vec.end(), idx, fn_lower_equal);
}
// Trim the top_contacts layers with the bottom_contacts layers if they overlap, so there would not be enough vertical space for both of them.
void PrintObjectSupportMaterial::trim_top_contacts_by_bottom_contacts(
const PrintObject &object, const MyLayersPtr &bottom_contacts, MyLayersPtr &top_contacts) const
{
tbb::parallel_for(tbb::blocked_range<int>(0, int(top_contacts.size())),
[&bottom_contacts, &top_contacts](const tbb::blocked_range<int>& range) {
int idx_bottom_overlapping_first = -2;
// For all top contact layers, counting downwards due to the way idx_higher_or_equal caches the last index to avoid repeated binary search.
for (int idx_top = range.end() - 1; idx_top >= range.begin(); -- idx_top) {
MyLayer &layer_top = *top_contacts[idx_top];
// Find the first bottom layer overlapping with layer_top.
idx_bottom_overlapping_first = idx_lower_or_equal(bottom_contacts, idx_bottom_overlapping_first, [&layer_top](const MyLayer *layer_bottom){ return layer_bottom->bottom_print_z() - EPSILON <= layer_top.bottom_z; });
// For all top contact layers overlapping with the thick bottom contact layer:
for (int idx_bottom_overlapping = idx_bottom_overlapping_first; idx_bottom_overlapping >= 0; -- idx_bottom_overlapping) {
const MyLayer &layer_bottom = *bottom_contacts[idx_bottom_overlapping];
assert(layer_bottom.bottom_print_z() - EPSILON <= layer_top.bottom_z);
if (layer_top.print_z < layer_bottom.print_z + EPSILON) {
// Layers overlap. Trim layer_top with layer_bottom.
layer_top.polygons = diff(layer_top.polygons, layer_bottom.polygons);
} else
break;
}
}
});
}
PrintObjectSupportMaterial::MyLayersPtr PrintObjectSupportMaterial::raft_and_intermediate_support_layers(
const PrintObject &object,
const MyLayersPtr &bottom_contacts,
const MyLayersPtr &top_contacts,
MyLayerStorage &layer_storage) const
{
MyLayersPtr intermediate_layers;
// Collect and sort the extremes (bottoms of the top contacts and tops of the bottom contacts).
MyLayersPtr extremes;
extremes.reserve(top_contacts.size() + bottom_contacts.size());
for (size_t i = 0; i < top_contacts.size(); ++ i)
// Bottoms of the top contact layers. In case of non-soluble supports,
// the top contact layer thickness is not known yet.
extremes.push_back(top_contacts[i]);
for (size_t i = 0; i < bottom_contacts.size(); ++ i)
// Tops of the bottom contact layers.
extremes.push_back(bottom_contacts[i]);
if (extremes.empty())
return intermediate_layers;
auto layer_extreme_lower = [](const MyLayer *l1, const MyLayer *l2) {
coordf_t z1 = l1->extreme_z();
coordf_t z2 = l2->extreme_z();
// If the layers are aligned, return the top contact surface first.
return z1 < z2 || (z1 == z2 && l1->layer_type == PrintObjectSupportMaterial::sltTopContact && l2->layer_type == PrintObjectSupportMaterial::sltBottomContact);
};
std::sort(extremes.begin(), extremes.end(), layer_extreme_lower);
assert(extremes.empty() ||
(extremes.front()->extreme_z() > m_slicing_params.raft_interface_top_z - EPSILON &&
(m_slicing_params.raft_layers() == 1 || // only raft contact layer
extremes.front()->layer_type == sltTopContact || // first extreme is a top contact layer
extremes.front()->extreme_z() > m_slicing_params.first_print_layer_height - EPSILON)));
bool synchronize = this->synchronize_layers();
#ifdef _DEBUG
// Verify that the extremes are separated by m_support_layer_height_min.
for (size_t i = 1; i < extremes.size(); ++ i) {
assert(extremes[i]->extreme_z() - extremes[i-1]->extreme_z() == 0. ||
extremes[i]->extreme_z() - extremes[i-1]->extreme_z() > m_support_params.support_layer_height_min - EPSILON);
assert(extremes[i]->extreme_z() - extremes[i-1]->extreme_z() > 0. ||
extremes[i]->layer_type == extremes[i-1]->layer_type ||
(extremes[i]->layer_type == sltBottomContact && extremes[i - 1]->layer_type == sltTopContact));
}
#endif
// Generate intermediate layers.
// The first intermediate layer is the same as the 1st layer if there is no raft,
// or the bottom of the first intermediate layer is aligned with the bottom of the raft contact layer.
// Intermediate layers are always printed with a normal etrusion flow (non-bridging).
size_t idx_layer_object = 0;
size_t idx_extreme_first = 0;
if (! extremes.empty() && std::abs(extremes.front()->extreme_z() - m_slicing_params.raft_interface_top_z) < EPSILON) {
// This is a raft contact layer, its height has been decided in this->top_contact_layers().
// Ignore this layer when calculating the intermediate support layers.
assert(extremes.front()->layer_type == sltTopContact);
++ idx_extreme_first;
}
for (size_t idx_extreme = idx_extreme_first; idx_extreme < extremes.size(); ++ idx_extreme) {
MyLayer *extr2 = extremes[idx_extreme];
coordf_t extr2z = extr2->extreme_z();
if (std::abs(extr2z - m_slicing_params.first_print_layer_height) < EPSILON) {
// This is a bottom of a synchronized (or soluble) top contact layer, its height has been decided in this->top_contact_layers().
assert(extr2->layer_type == sltTopContact);
assert(extr2->bottom_z == m_slicing_params.first_print_layer_height);
assert(extr2->print_z >= m_slicing_params.first_print_layer_height + m_support_params.support_layer_height_min - EPSILON);
if (intermediate_layers.empty() || intermediate_layers.back()->print_z < m_slicing_params.first_print_layer_height) {
MyLayer &layer_new = layer_allocate(layer_storage, sltIntermediate);
layer_new.bottom_z = 0.;
layer_new.print_z = m_slicing_params.first_print_layer_height;
layer_new.height = m_slicing_params.first_print_layer_height;
intermediate_layers.push_back(&layer_new);
}
continue;
}
assert(extr2z >= m_slicing_params.raft_interface_top_z + EPSILON);
assert(extr2z >= m_slicing_params.first_print_layer_height + EPSILON);
MyLayer *extr1 = (idx_extreme == idx_extreme_first) ? nullptr : extremes[idx_extreme - 1];
// Fuse a support layer firmly to the raft top interface (not to the raft contacts).
coordf_t extr1z = (extr1 == nullptr) ? m_slicing_params.raft_interface_top_z : extr1->extreme_z();
assert(extr2z >= extr1z);
assert(extr2z > extr1z || (extr1 != nullptr && extr2->layer_type == sltBottomContact));
if (std::abs(extr1z) < EPSILON) {
// This layer interval starts with the 1st layer. Print the 1st layer using the prescribed 1st layer thickness.
// assert(! m_slicing_params.has_raft()); RaftingEdition: unclear where the issue is: assert fails with 1-layer raft & base supports
assert(intermediate_layers.empty() || intermediate_layers.back()->print_z <= m_slicing_params.first_print_layer_height);
// At this point only layers above first_print_layer_heigth + EPSILON are expected as the other cases were captured earlier.
assert(extr2z >= m_slicing_params.first_print_layer_height + EPSILON);
// Generate a new intermediate layer.
MyLayer &layer_new = layer_allocate(layer_storage, sltIntermediate);
layer_new.bottom_z = 0.;
layer_new.print_z = extr1z = m_slicing_params.first_print_layer_height;
layer_new.height = extr1z;
intermediate_layers.push_back(&layer_new);
// Continue printing the other layers up to extr2z.
}
coordf_t dist = extr2z - extr1z;
assert(dist >= 0.);
if (dist == 0.)
continue;
// The new layers shall be at least m_support_layer_height_min thick.
assert(dist >= m_support_params.support_layer_height_min - EPSILON);
if (synchronize) {
// Emit support layers synchronized with the object layers.
// Find the first object layer, which has its print_z in this support Z range.
while (idx_layer_object < object.layers().size() && object.layers()[idx_layer_object]->print_z < extr1z + EPSILON)
++ idx_layer_object;
if (idx_layer_object == 0 && extr1z == m_slicing_params.raft_interface_top_z) {
// Insert one base support layer below the object.
MyLayer &layer_new = layer_allocate(layer_storage, sltIntermediate);
layer_new.print_z = m_slicing_params.object_print_z_min;
layer_new.bottom_z = m_slicing_params.raft_interface_top_z;
layer_new.height = layer_new.print_z - layer_new.bottom_z;
intermediate_layers.push_back(&layer_new);
}
// Emit all intermediate support layers synchronized with object layers up to extr2z.
for (; idx_layer_object < object.layers().size() && object.layers()[idx_layer_object]->print_z < extr2z + EPSILON; ++ idx_layer_object) {
MyLayer &layer_new = layer_allocate(layer_storage, sltIntermediate);
layer_new.print_z = object.layers()[idx_layer_object]->print_z;
layer_new.height = object.layers()[idx_layer_object]->height;
layer_new.bottom_z = (idx_layer_object > 0) ? object.layers()[idx_layer_object - 1]->print_z : (layer_new.print_z - layer_new.height);
assert(intermediate_layers.empty() || intermediate_layers.back()->print_z < layer_new.print_z + EPSILON);
intermediate_layers.push_back(&layer_new);
}
} else {
// Insert intermediate layers.
size_t n_layers_extra = size_t(ceil(dist / m_slicing_params.max_suport_layer_height));
assert(n_layers_extra > 0);
coordf_t step = dist / coordf_t(n_layers_extra);
if (extr1 != nullptr && extr1->layer_type == sltTopContact &&
extr1->print_z + m_support_params.support_layer_height_min > extr1->bottom_z + step) {
// The bottom extreme is a bottom of a top surface. Ensure that the gap
// between the 1st intermediate layer print_z and extr1->print_z is not too small.
assert(extr1->bottom_z + m_support_params.support_layer_height_min < extr1->print_z + EPSILON);
// Generate the first intermediate layer.
MyLayer &layer_new = layer_allocate(layer_storage, sltIntermediate);
layer_new.bottom_z = extr1->bottom_z;
layer_new.print_z = extr1z = extr1->print_z;
layer_new.height = extr1->height;
intermediate_layers.push_back(&layer_new);
dist = extr2z - extr1z;
n_layers_extra = size_t(ceil(dist / m_slicing_params.max_suport_layer_height));
if (n_layers_extra == 0)
continue;
// Continue printing the other layers up to extr2z.
step = dist / coordf_t(n_layers_extra);
}
if (! m_slicing_params.soluble_interface && extr2->layer_type == sltTopContact) {
// This is a top interface layer, which does not have a height assigned yet. Do it now.
assert(extr2->height == 0.);
assert(extr1z > m_slicing_params.first_print_layer_height - EPSILON);
extr2->height = step;
extr2->bottom_z = extr2z = extr2->print_z - step;
if (-- n_layers_extra == 0)
continue;
}
coordf_t extr2z_large_steps = extr2z;
// Take the largest allowed step in the Z axis until extr2z_large_steps is reached.
for (size_t i = 0; i < n_layers_extra; ++ i) {
MyLayer &layer_new = layer_allocate(layer_storage, sltIntermediate);
if (i + 1 == n_layers_extra) {
// Last intermediate layer added. Align the last entered layer with extr2z_large_steps exactly.
layer_new.bottom_z = (i == 0) ? extr1z : intermediate_layers.back()->print_z;
layer_new.print_z = extr2z_large_steps;
layer_new.height = layer_new.print_z - layer_new.bottom_z;
}
else {
// Intermediate layer, not the last added.
layer_new.height = step;
layer_new.bottom_z = extr1z + i * step;
layer_new.print_z = layer_new.bottom_z + step;
}
assert(intermediate_layers.empty() || intermediate_layers.back()->print_z <= layer_new.print_z);
intermediate_layers.push_back(&layer_new);
}
}
}
#ifdef _DEBUG
for (size_t i = 0; i < top_contacts.size(); ++i)
assert(top_contacts[i]->height > 0.);
#endif /* _DEBUG */
return intermediate_layers;
}
// At this stage there shall be intermediate_layers allocated between bottom_contacts and top_contacts, but they have no polygons assigned.
// Also the bottom/top_contacts shall have a layer thickness assigned already.
void PrintObjectSupportMaterial::generate_base_layers(
const PrintObject &object,
const MyLayersPtr &bottom_contacts,
const MyLayersPtr &top_contacts,
MyLayersPtr &intermediate_layers,
const std::vector<Polygons> &layer_support_areas) const
{
#ifdef SLIC3R_DEBUG
static int iRun = 0;
#endif /* SLIC3R_DEBUG */
if (top_contacts.empty())
// No top contacts -> no intermediate layers will be produced.
return;
BOOST_LOG_TRIVIAL(debug) << "PrintObjectSupportMaterial::generate_base_layers() in parallel - start";
tbb::parallel_for(
tbb::blocked_range<size_t>(0, intermediate_layers.size()),
[&object, &bottom_contacts, &top_contacts, &intermediate_layers, &layer_support_areas](const tbb::blocked_range<size_t>& range) {
// index -2 means not initialized yet, -1 means intialized and decremented to 0 and then -1.
int idx_top_contact_above = -2;
int idx_bottom_contact_overlapping = -2;
int idx_object_layer_above = -2;
// Counting down due to the way idx_lower_or_equal caches indices to avoid repeated binary search over the complete sequence.
for (int idx_intermediate = int(range.end()) - 1; idx_intermediate >= int(range.begin()); -- idx_intermediate)
{
BOOST_LOG_TRIVIAL(trace) << "Support generator - generate_base_layers - creating layer " <<
idx_intermediate << " of " << intermediate_layers.size();
MyLayer &layer_intermediate = *intermediate_layers[idx_intermediate];
// Layers must be sorted by print_z.
assert(idx_intermediate == 0 || layer_intermediate.print_z >= intermediate_layers[idx_intermediate - 1]->print_z);
// Find a top_contact layer touching the layer_intermediate from above, if any, and collect its polygons into polygons_new.
// New polygons for layer_intermediate.
Polygons polygons_new;
// Use the precomputed layer_support_areas. "idx_object_layer_above": above means above since the last iteration, not above after this call.
idx_object_layer_above = idx_lower_or_equal(object.layers().begin(), object.layers().end(), idx_object_layer_above,
[&layer_intermediate](const Layer* layer) { return layer->print_z <= layer_intermediate.print_z + EPSILON; });
// Polygons to trim polygons_new.
Polygons polygons_trimming;
// Trimming the base layer with any overlapping top layer.
// Following cases are recognized:
// 1) top.bottom_z >= base.top_z -> No overlap, no trimming needed.
// 2) base.bottom_z >= top.print_z -> No overlap, no trimming needed.
// 3) base.print_z > top.print_z && base.bottom_z >= top.bottom_z -> Overlap, which will be solved inside generate_toolpaths() by reducing the base layer height where it overlaps the top layer. No trimming needed here.
// 4) base.print_z > top.bottom_z && base.bottom_z < top.bottom_z -> Base overlaps with top.bottom_z. This must not happen.
// 5) base.print_z <= top.print_z && base.bottom_z >= top.bottom_z -> Base is fully inside top. Trim base by top.
idx_top_contact_above = idx_lower_or_equal(top_contacts, idx_top_contact_above,
[&layer_intermediate](const MyLayer *layer){ return layer->bottom_z <= layer_intermediate.print_z - EPSILON; });
// Collect all the top_contact layer intersecting with this layer.
for (int idx_top_contact_overlapping = idx_top_contact_above; idx_top_contact_overlapping >= 0; -- idx_top_contact_overlapping) {
MyLayer &layer_top_overlapping = *top_contacts[idx_top_contact_overlapping];
if (layer_top_overlapping.print_z < layer_intermediate.bottom_z + EPSILON)
break;
// Base must not overlap with top.bottom_z.
assert(! (layer_intermediate.print_z > layer_top_overlapping.bottom_z + EPSILON && layer_intermediate.bottom_z < layer_top_overlapping.bottom_z - EPSILON));
if (layer_intermediate.print_z <= layer_top_overlapping.print_z + EPSILON && layer_intermediate.bottom_z >= layer_top_overlapping.bottom_z - EPSILON)
// Base is fully inside top. Trim base by top.
polygons_append(polygons_trimming, layer_top_overlapping.polygons);
}
if (idx_object_layer_above < 0) {
// layer_support_areas are synchronized with object layers and they contain projections of the contact layers above them.
// This intermediate layer is not above any object layer, thus there is no information in layer_support_areas about
// towers supporting contact layers intersecting the first object layer. Project these contact layers now.
polygons_new = layer_support_areas.front();
double first_layer_z = object.layers().front()->print_z;
for (int i = idx_top_contact_above + 1; i < int(top_contacts.size()); ++ i) {
MyLayer &contacts = *top_contacts[i];
if (contacts.print_z > first_layer_z + EPSILON)
break;
assert(contacts.bottom_z > layer_intermediate.print_z - EPSILON);
polygons_append(polygons_new, contacts.polygons);
}
} else
polygons_new = layer_support_areas[idx_object_layer_above];
// Trimming the base layer with any overlapping bottom layer.
// Following cases are recognized:
// 1) bottom.bottom_z >= base.top_z -> No overlap, no trimming needed.
// 2) base.bottom_z >= bottom.print_z -> No overlap, no trimming needed.
// 3) base.print_z > bottom.bottom_z && base.bottom_z < bottom.bottom_z -> Overlap, which will be solved inside generate_toolpaths() by reducing the bottom layer height where it overlaps the base layer. No trimming needed here.
// 4) base.print_z > bottom.print_z && base.bottom_z >= bottom.print_z -> Base overlaps with bottom.print_z. This must not happen.
// 5) base.print_z <= bottom.print_z && base.bottom_z >= bottom.bottom_z -> Base is fully inside top. Trim base by top.
idx_bottom_contact_overlapping = idx_lower_or_equal(bottom_contacts, idx_bottom_contact_overlapping,
[&layer_intermediate](const MyLayer *layer){ return layer->bottom_print_z() <= layer_intermediate.print_z - EPSILON; });
// Collect all the bottom_contacts layer intersecting with this layer.
for (int i = idx_bottom_contact_overlapping; i >= 0; -- i) {
MyLayer &layer_bottom_overlapping = *bottom_contacts[i];
if (layer_bottom_overlapping.print_z < layer_intermediate.bottom_print_z() + EPSILON)
break;
// Base must not overlap with bottom.top_z.
assert(! (layer_intermediate.print_z > layer_bottom_overlapping.print_z + EPSILON && layer_intermediate.bottom_z < layer_bottom_overlapping.print_z - EPSILON));
if (layer_intermediate.print_z <= layer_bottom_overlapping.print_z + EPSILON && layer_intermediate.bottom_z >= layer_bottom_overlapping.bottom_print_z() - EPSILON)
// Base is fully inside bottom. Trim base by bottom.
polygons_append(polygons_trimming, layer_bottom_overlapping.polygons);
}
#ifdef SLIC3R_DEBUG
{
BoundingBox bbox = get_extents(polygons_new);
bbox.merge(get_extents(polygons_trimming));
::Slic3r::SVG svg(debug_out_path("support-intermediate-layers-raw-%d-%lf.svg", iRun, layer_intermediate.print_z), bbox);
svg.draw(union_ex(polygons_new), "blue", 0.5f);
svg.draw(to_polylines(polygons_new), "blue");
svg.draw(union_safety_offset_ex(polygons_trimming), "red", 0.5f);
svg.draw(to_polylines(polygons_trimming), "red");
}
#endif /* SLIC3R_DEBUG */
// Trim the polygons, store them.
if (polygons_trimming.empty())
layer_intermediate.polygons = std::move(polygons_new);
else
layer_intermediate.polygons = diff(
polygons_new,
polygons_trimming,
ApplySafetyOffset::Yes); // safety offset to merge the touching source polygons
layer_intermediate.layer_type = sltBase;
#if 0
// coordf_t fillet_radius_scaled = scale_(m_object_config->support_material_spacing);
// Fillet the base polygons and trim them again with the top, interface and contact layers.
$base->{$i} = diff(
offset2(
$base->{$i},
$fillet_radius_scaled,
-$fillet_radius_scaled,
# Use a geometric offsetting for filleting.
JT_ROUND,
0.2*$fillet_radius_scaled),
$trim_polygons,
false); // don't apply the safety offset.
}
#endif
}
});
BOOST_LOG_TRIVIAL(debug) << "PrintObjectSupportMaterial::generate_base_layers() in parallel - end";
#ifdef SLIC3R_DEBUG
for (MyLayersPtr::const_iterator it = intermediate_layers.begin(); it != intermediate_layers.end(); ++it)
::Slic3r::SVG::export_expolygons(
debug_out_path("support-intermediate-layers-untrimmed-%d-%lf.svg", iRun, (*it)->print_z),
union_ex((*it)->polygons));
++ iRun;
#endif /* SLIC3R_DEBUG */
this->trim_support_layers_by_object(object, intermediate_layers, m_slicing_params.gap_support_object, m_slicing_params.gap_object_support, m_support_params.gap_xy);
}
void PrintObjectSupportMaterial::trim_support_layers_by_object(
const PrintObject &object,
MyLayersPtr &support_layers,
const coordf_t gap_extra_above,
const coordf_t gap_extra_below,
const coordf_t gap_xy) const
{
const float gap_xy_scaled = float(scale_(gap_xy));
// Collect non-empty layers to be processed in parallel.
// This is a good idea as pulling a thread from a thread pool for an empty task is expensive.
MyLayersPtr nonempty_layers;
nonempty_layers.reserve(support_layers.size());
for (size_t idx_layer = 0; idx_layer < support_layers.size(); ++ idx_layer) {
MyLayer *support_layer = support_layers[idx_layer];
if (! support_layer->polygons.empty() && support_layer->print_z >= m_slicing_params.raft_contact_top_z + EPSILON)
// Non-empty support layer and not a raft layer.
nonempty_layers.push_back(support_layer);
}
// For all intermediate support layers:
BOOST_LOG_TRIVIAL(debug) << "PrintObjectSupportMaterial::trim_support_layers_by_object() in parallel - start";
tbb::parallel_for(
tbb::blocked_range<size_t>(0, nonempty_layers.size()),
[this, &object, &nonempty_layers, gap_extra_above, gap_extra_below, gap_xy_scaled](const tbb::blocked_range<size_t>& range) {
size_t idx_object_layer_overlapping = size_t(-1);
for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++ idx_layer) {
MyLayer &support_layer = *nonempty_layers[idx_layer];
// BOOST_LOG_TRIVIAL(trace) << "Support generator - trim_support_layers_by_object - trimmming non-empty layer " << idx_layer << " of " << nonempty_layers.size();
assert(! support_layer.polygons.empty() && support_layer.print_z >= m_slicing_params.raft_contact_top_z + EPSILON);
// Find the overlapping object layers including the extra above / below gap.
coordf_t z_threshold = support_layer.bottom_print_z() - gap_extra_below + EPSILON;
idx_object_layer_overlapping = idx_higher_or_equal(
object.layers().begin(), object.layers().end(), idx_object_layer_overlapping,
[z_threshold](const Layer *layer){ return layer->print_z >= z_threshold; });
// Collect all the object layers intersecting with this layer.
Polygons polygons_trimming;
size_t i = idx_object_layer_overlapping;
for (; i < object.layers().size(); ++ i) {
const Layer &object_layer = *object.layers()[i];
if (object_layer.bottom_z() > support_layer.print_z + gap_extra_above - EPSILON)
break;
polygons_append(polygons_trimming, offset(object_layer.lslices, gap_xy_scaled, SUPPORT_SURFACES_OFFSET_PARAMETERS));
}
if (! m_slicing_params.soluble_interface && m_object_config->thick_bridges) {
// Collect all bottom surfaces, which will be extruded with a bridging flow.
for (; i < object.layers().size(); ++ i) {
const Layer &object_layer = *object.layers()[i];
bool some_region_overlaps = false;
for (LayerRegion *region : object_layer.regions()) {
coordf_t bridging_height = region->region().bridging_height_avg(*m_print_config);
if (object_layer.print_z - bridging_height > support_layer.print_z + gap_extra_above - EPSILON)
break;
some_region_overlaps = true;
polygons_append(polygons_trimming,
offset(region->fill_surfaces.filter_by_type(stBottomBridge), gap_xy_scaled, SUPPORT_SURFACES_OFFSET_PARAMETERS));
if (region->region().config().overhangs.value)
// Add bridging perimeters.
SupportMaterialInternal::collect_bridging_perimeter_areas(region->perimeters, gap_xy_scaled, polygons_trimming);
}
if (! some_region_overlaps)
break;
}
}
// $layer->slices contains the full shape of layer, thus including
// perimeter's width. $support contains the full shape of support
// material, thus including the width of its foremost extrusion.
// We leave a gap equal to a full extrusion width.
support_layer.polygons = diff(support_layer.polygons, polygons_trimming);
}
});
BOOST_LOG_TRIVIAL(debug) << "PrintObjectSupportMaterial::trim_support_layers_by_object() in parallel - end";
}
PrintObjectSupportMaterial::MyLayersPtr PrintObjectSupportMaterial::generate_raft_base(
const PrintObject &object,
const MyLayersPtr &top_contacts,
const MyLayersPtr &interface_layers,
const MyLayersPtr &base_interface_layers,
const MyLayersPtr &base_layers,
MyLayerStorage &layer_storage) const
{
// If there is brim to be generated, calculate the trimming regions.
Polygons brim;
if (object.has_brim()) {
// Calculate the area covered by the brim.
const BrimType brim_type = object.config().brim_type;
const bool brim_outer = brim_type == btOuterOnly || brim_type == btOuterAndInner;
const bool brim_inner = brim_type == btInnerOnly || brim_type == btOuterAndInner;
const auto brim_separation = scaled<float>(object.config().brim_separation.value + object.config().brim_width.value);
for (const ExPolygon &ex : object.layers().front()->lslices) {
if (brim_outer && brim_inner)
polygons_append(brim, offset(ex, brim_separation));
else {
if (brim_outer)
polygons_append(brim, offset(ex.contour, brim_separation, ClipperLib::jtRound, float(scale_(0.1))));
else
brim.emplace_back(ex.contour);
if (brim_inner) {
Polygons holes = ex.holes;
polygons_reverse(holes);
holes = shrink(holes, brim_separation, ClipperLib::jtRound, float(scale_(0.1)));
polygons_reverse(holes);
polygons_append(brim, std::move(holes));
} else
polygons_append(brim, ex.holes);
}
}
brim = union_(brim);
}
// How much to inflate the support columns to be stable. This also applies to the 1st layer, if no raft layers are to be printed.
const float inflate_factor_fine = float(scale_((m_slicing_params.raft_layers() > 1) ? 0.5 : EPSILON));
const float inflate_factor_1st_layer = std::max(0.f, float(scale_(object.config().raft_first_layer_expansion)) - inflate_factor_fine);
MyLayer *contacts = top_contacts .empty() ? nullptr : top_contacts .front();
MyLayer *interfaces = interface_layers .empty() ? nullptr : interface_layers .front();
MyLayer *base_interfaces = base_interface_layers.empty() ? nullptr : base_interface_layers.front();
MyLayer *columns_base = base_layers .empty() ? nullptr : base_layers .front();
if (contacts != nullptr && contacts->print_z > std::max(m_slicing_params.first_print_layer_height, m_slicing_params.raft_contact_top_z) + EPSILON)
// This is not the raft contact layer.
contacts = nullptr;
if (interfaces != nullptr && interfaces->bottom_print_z() > m_slicing_params.raft_interface_top_z + EPSILON)
// This is not the raft column base layer.
interfaces = nullptr;
if (base_interfaces != nullptr && base_interfaces->bottom_print_z() > m_slicing_params.raft_interface_top_z + EPSILON)
// This is not the raft column base layer.
base_interfaces = nullptr;
if (columns_base != nullptr && columns_base->bottom_print_z() > m_slicing_params.raft_interface_top_z + EPSILON)
// This is not the raft interface layer.
columns_base = nullptr;
Polygons interface_polygons;
if (contacts != nullptr && ! contacts->polygons.empty())
polygons_append(interface_polygons, expand(contacts->polygons, inflate_factor_fine, SUPPORT_SURFACES_OFFSET_PARAMETERS));
if (interfaces != nullptr && ! interfaces->polygons.empty())
polygons_append(interface_polygons, expand(interfaces->polygons, inflate_factor_fine, SUPPORT_SURFACES_OFFSET_PARAMETERS));
if (base_interfaces != nullptr && ! base_interfaces->polygons.empty())
polygons_append(interface_polygons, expand(base_interfaces->polygons, inflate_factor_fine, SUPPORT_SURFACES_OFFSET_PARAMETERS));
// Output vector.
MyLayersPtr raft_layers;
if (m_slicing_params.raft_layers() > 1) {
Polygons base;
Polygons columns;
if (columns_base != nullptr) {
base = columns_base->polygons;
columns = base;
if (! interface_polygons.empty())
// Trim the 1st layer columns with the inflated interface polygons.
columns = diff(columns, interface_polygons);
}
if (! interface_polygons.empty()) {
// Merge the untrimmed columns base with the expanded raft interface, to be used for the support base and interface.
base = union_(base, interface_polygons);
}
// Do not add the raft contact layer, only add the raft layers below the contact layer.
// Insert the 1st layer.
{
MyLayer &new_layer = layer_allocate(layer_storage, (m_slicing_params.base_raft_layers > 0) ? sltRaftBase : sltRaftInterface);
raft_layers.push_back(&new_layer);
new_layer.print_z = m_slicing_params.first_print_layer_height;
new_layer.height = m_slicing_params.first_print_layer_height;
new_layer.bottom_z = 0.;
new_layer.polygons = inflate_factor_1st_layer > 0 ? expand(base, inflate_factor_1st_layer) : base;
}
// Insert the base layers.
for (size_t i = 1; i < m_slicing_params.base_raft_layers; ++ i) {
coordf_t print_z = raft_layers.back()->print_z;
MyLayer &new_layer = layer_allocate(layer_storage, sltRaftBase);
raft_layers.push_back(&new_layer);
new_layer.print_z = print_z + m_slicing_params.base_raft_layer_height;
new_layer.height = m_slicing_params.base_raft_layer_height;
new_layer.bottom_z = print_z;
new_layer.polygons = base;
}
// Insert the interface layers.
for (size_t i = 1; i < m_slicing_params.interface_raft_layers; ++ i) {
coordf_t print_z = raft_layers.back()->print_z;
MyLayer &new_layer = layer_allocate(layer_storage, sltRaftInterface);
raft_layers.push_back(&new_layer);
new_layer.print_z = print_z + m_slicing_params.interface_raft_layer_height;
new_layer.height = m_slicing_params.interface_raft_layer_height;
new_layer.bottom_z = print_z;
new_layer.polygons = interface_polygons;
//FIXME misusing contact_polygons for support columns.
new_layer.contact_polygons = std::make_unique<Polygons>(columns);
}
} else {
if (columns_base != nullptr) {
// Expand the bases of the support columns in the 1st layer.
Polygons &raft = columns_base->polygons;
Polygons trimming = offset(m_object->layers().front()->lslices, (float)scale_(m_support_params.gap_xy), SUPPORT_SURFACES_OFFSET_PARAMETERS);
if (inflate_factor_1st_layer > SCALED_EPSILON) {
// Inflate in multiple steps to avoid leaking of the support 1st layer through object walls.
auto nsteps = std::max(5, int(ceil(inflate_factor_1st_layer / m_support_params.first_layer_flow.scaled_width())));
float step = inflate_factor_1st_layer / nsteps;
for (int i = 0; i < nsteps; ++ i)
raft = diff(expand(raft, step), trimming);
} else
raft = diff(raft, trimming);
if (! interface_polygons.empty())
columns_base->polygons = diff(columns_base->polygons, interface_polygons);
}
if (! brim.empty()) {
if (columns_base)
columns_base->polygons = diff(columns_base->polygons, brim);
if (contacts)
contacts->polygons = diff(contacts->polygons, brim);
if (interfaces)
interfaces->polygons = diff(interfaces->polygons, brim);
if (base_interfaces)
base_interfaces->polygons = diff(base_interfaces->polygons, brim);
}
}
return raft_layers;
}
// Convert some of the intermediate layers into top/bottom interface layers as well as base interface layers.
std::pair<PrintObjectSupportMaterial::MyLayersPtr, PrintObjectSupportMaterial::MyLayersPtr> PrintObjectSupportMaterial::generate_interface_layers(
const MyLayersPtr &bottom_contacts,
const MyLayersPtr &top_contacts,
MyLayersPtr &intermediate_layers,
MyLayerStorage &layer_storage) const
{
// my $area_threshold = $self->interface_flow->scaled_spacing ** 2;
std::pair<MyLayersPtr, MyLayersPtr> base_and_interface_layers;
MyLayersPtr &interface_layers = base_and_interface_layers.first;
MyLayersPtr &base_interface_layers = base_and_interface_layers.second;
// distinguish between interface and base interface layers
// Contact layer is considered an interface layer, therefore run the following block only if support_material_interface_layers > 1.
// Contact layer needs a base_interface layer, therefore run the following block if support_material_interface_layers > 0, has soluble support and extruders are different.
bool soluble_interface_non_soluble_base =
// Zero z-gap between the overhangs and the support interface.
m_slicing_params.soluble_interface &&
// Interface extruder soluble.
m_object_config->support_material_interface_extruder.value > 0 && m_print_config->filament_soluble.get_at(m_object_config->support_material_interface_extruder.value - 1) &&
// Base extruder: Either "print with active extruder" not soluble.
(m_object_config->support_material_extruder.value == 0 || ! m_print_config->filament_soluble.get_at(m_object_config->support_material_extruder.value - 1));
bool snug_supports = m_object_config->support_material_style.value == smsSnug;
int num_interface_layers_top = m_object_config->support_material_interface_layers;
int num_interface_layers_bottom = m_object_config->support_material_bottom_interface_layers;
if (num_interface_layers_bottom < 0)
num_interface_layers_bottom = num_interface_layers_top;
int num_base_interface_layers_top = soluble_interface_non_soluble_base ? std::min(num_interface_layers_top / 2, 2) : 0;
int num_base_interface_layers_bottom = soluble_interface_non_soluble_base ? std::min(num_interface_layers_bottom / 2, 2) : 0;
if (! intermediate_layers.empty() && (num_interface_layers_top > 1 || num_interface_layers_bottom > 1)) {
// For all intermediate layers, collect top contact surfaces, which are not further than support_material_interface_layers.
BOOST_LOG_TRIVIAL(debug) << "PrintObjectSupportMaterial::generate_interface_layers() in parallel - start";
// Since the intermediate layer index starts at zero the number of interface layer needs to be reduced by 1.
-- num_interface_layers_top;
-- num_interface_layers_bottom;
int num_interface_layers_only_top = num_interface_layers_top - num_base_interface_layers_top;
int num_interface_layers_only_bottom = num_interface_layers_bottom - num_base_interface_layers_bottom;
interface_layers.assign(intermediate_layers.size(), nullptr);
if (num_base_interface_layers_top || num_base_interface_layers_bottom)
base_interface_layers.assign(intermediate_layers.size(), nullptr);
auto smoothing_distance = m_support_params.support_material_interface_flow.scaled_spacing() * 1.5;
auto minimum_island_radius = m_support_params.support_material_interface_flow.scaled_spacing() / m_support_params.interface_density;
auto closing_distance = smoothing_distance; // scaled<float>(m_object_config->support_material_closing_radius.value);
tbb::spin_mutex layer_storage_mutex;
// Insert a new layer into base_interface_layers, if intersection with base exists.
auto insert_layer = [&layer_storage, &layer_storage_mutex, snug_supports, closing_distance, smoothing_distance, minimum_island_radius](
MyLayer &intermediate_layer, Polygons &bottom, Polygons &&top, const Polygons *subtract, SupporLayerType type) -> MyLayer* {
assert(! bottom.empty() || ! top.empty());
// Merge top into bottom, unite them with a safety offset.
append(bottom, std::move(top));
// Merge top / bottom interfaces. For snug supports, merge using closing distance and regularize (close concave corners).
bottom = intersection(
snug_supports ?
smooth_outward(closing(std::move(bottom), closing_distance + minimum_island_radius, closing_distance, SUPPORT_SURFACES_OFFSET_PARAMETERS), smoothing_distance) :
union_safety_offset(std::move(bottom)),
intermediate_layer.polygons);
if (! bottom.empty()) {
//FIXME Remove non-printable tiny islands, let them be printed using the base support.
//bottom = opening(std::move(bottom), minimum_island_radius);
if (! bottom.empty()) {
MyLayer &layer_new = layer_allocate(layer_storage, layer_storage_mutex, type);
layer_new.polygons = std::move(bottom);
layer_new.print_z = intermediate_layer.print_z;
layer_new.bottom_z = intermediate_layer.bottom_z;
layer_new.height = intermediate_layer.height;
layer_new.bridging = intermediate_layer.bridging;
// Subtract the interface from the base regions.
intermediate_layer.polygons = diff(intermediate_layer.polygons, layer_new.polygons);
if (subtract)
// Trim the base interface layer with the interface layer.
layer_new.polygons = diff(std::move(layer_new.polygons), *subtract);
//FIXME filter layer_new.polygons islands by a minimum area?
// $interface_area = [ grep abs($_->area) >= $area_threshold, @$interface_area ];
return &layer_new;
}
}
return nullptr;
};
tbb::parallel_for(tbb::blocked_range<int>(0, int(intermediate_layers.size())),
[&bottom_contacts, &top_contacts, &intermediate_layers, &insert_layer,
num_interface_layers_top, num_interface_layers_bottom, num_base_interface_layers_top, num_base_interface_layers_bottom, num_interface_layers_only_top, num_interface_layers_only_bottom,
snug_supports, &interface_layers, &base_interface_layers](const tbb::blocked_range<int>& range) {
// Gather the top / bottom contact layers intersecting with num_interface_layers resp. num_interface_layers_only intermediate layers above / below
// this intermediate layer.
// Index of the first top contact layer intersecting the current intermediate layer.
auto idx_top_contact_first = -1;
// Index of the first bottom contact layer intersecting the current intermediate layer.
auto idx_bottom_contact_first = -1;
auto num_intermediate = int(intermediate_layers.size());
for (int idx_intermediate_layer = range.begin(); idx_intermediate_layer < range.end(); ++ idx_intermediate_layer) {
MyLayer &intermediate_layer = *intermediate_layers[idx_intermediate_layer];
Polygons polygons_top_contact_projected_interface;
Polygons polygons_top_contact_projected_base;
Polygons polygons_bottom_contact_projected_interface;
Polygons polygons_bottom_contact_projected_base;
if (num_interface_layers_top > 0) {
// Top Z coordinate of a slab, over which we are collecting the top / bottom contact surfaces
coordf_t top_z = intermediate_layers[std::min(num_intermediate - 1, idx_intermediate_layer + num_interface_layers_top - 1)]->print_z;
coordf_t top_inteface_z = std::numeric_limits<coordf_t>::max();
if (num_base_interface_layers_top > 0)
// Some top base interface layers will be generated.
top_inteface_z = num_interface_layers_only_top == 0 ?
// Only base interface layers to generate.
- std::numeric_limits<coordf_t>::max() :
intermediate_layers[std::min(num_intermediate - 1, idx_intermediate_layer + num_interface_layers_only_top - 1)]->print_z;
// Move idx_top_contact_first up until above the current print_z.
idx_top_contact_first = idx_higher_or_equal(top_contacts, idx_top_contact_first, [&intermediate_layer](const MyLayer *layer){ return layer->print_z >= intermediate_layer.print_z; }); // - EPSILON
// Collect the top contact areas above this intermediate layer, below top_z.
for (int idx_top_contact = idx_top_contact_first; idx_top_contact < int(top_contacts.size()); ++ idx_top_contact) {
const MyLayer &top_contact_layer = *top_contacts[idx_top_contact];
//FIXME maybe this adds one interface layer in excess?
if (top_contact_layer.bottom_z - EPSILON > top_z)
break;
polygons_append(top_contact_layer.bottom_z - EPSILON > top_inteface_z ? polygons_top_contact_projected_base : polygons_top_contact_projected_interface,
// For snug supports, project the overhang polygons covering the whole overhang, so that they will merge without a gap with support polygons of the other layers.
// For grid supports, merging of support regions will be performed by the projection into grid.
snug_supports ? *top_contact_layer.overhang_polygons : top_contact_layer.polygons);
}
}
if (num_interface_layers_bottom > 0) {
// Bottom Z coordinate of a slab, over which we are collecting the top / bottom contact surfaces
coordf_t bottom_z = intermediate_layers[std::max(0, idx_intermediate_layer - num_interface_layers_bottom + 1)]->bottom_z;
coordf_t bottom_interface_z = - std::numeric_limits<coordf_t>::max();
if (num_base_interface_layers_bottom > 0)
// Some bottom base interface layers will be generated.
bottom_interface_z = num_interface_layers_only_bottom == 0 ?
// Only base interface layers to generate.
std::numeric_limits<coordf_t>::max() :
intermediate_layers[std::max(0, idx_intermediate_layer - num_interface_layers_only_bottom)]->bottom_z;
// Move idx_bottom_contact_first up until touching bottom_z.
idx_bottom_contact_first = idx_higher_or_equal(bottom_contacts, idx_bottom_contact_first, [bottom_z](const MyLayer *layer){ return layer->print_z >= bottom_z - EPSILON; });
// Collect the top contact areas above this intermediate layer, below top_z.
for (int idx_bottom_contact = idx_bottom_contact_first; idx_bottom_contact < int(bottom_contacts.size()); ++ idx_bottom_contact) {
const MyLayer &bottom_contact_layer = *bottom_contacts[idx_bottom_contact];
if (bottom_contact_layer.print_z - EPSILON > intermediate_layer.bottom_z)
break;
polygons_append(bottom_contact_layer.print_z - EPSILON > bottom_interface_z ? polygons_bottom_contact_projected_interface : polygons_bottom_contact_projected_base, bottom_contact_layer.polygons);
}
}
MyLayer *interface_layer = nullptr;
if (! polygons_bottom_contact_projected_interface.empty() || ! polygons_top_contact_projected_interface.empty()) {
interface_layer = insert_layer(
intermediate_layer, polygons_bottom_contact_projected_interface, std::move(polygons_top_contact_projected_interface), nullptr,
polygons_top_contact_projected_interface.empty() ? sltBottomInterface : sltTopInterface);
interface_layers[idx_intermediate_layer] = interface_layer;
}
if (! polygons_bottom_contact_projected_base.empty() || ! polygons_top_contact_projected_base.empty())
base_interface_layers[idx_intermediate_layer] = insert_layer(
intermediate_layer, polygons_bottom_contact_projected_base, std::move(polygons_top_contact_projected_base),
interface_layer ? &interface_layer->polygons : nullptr, sltBase);
}
});
// Compress contact_out, remove the nullptr items.
remove_nulls(interface_layers);
remove_nulls(base_interface_layers);
BOOST_LOG_TRIVIAL(debug) << "PrintObjectSupportMaterial::generate_interface_layers() in parallel - end";
}
return base_and_interface_layers;
}
static inline void fill_expolygon_generate_paths(
ExtrusionEntitiesPtr &dst,
ExPolygon &&expolygon,
Fill *filler,
const FillParams &fill_params,
float density,
ExtrusionRole role,
const Flow &flow)
{
Surface surface(stInternal, std::move(expolygon));
Polylines polylines;
try {
polylines = filler->fill_surface(&surface, fill_params);
} catch (InfillFailedException &) {
}
extrusion_entities_append_paths(
dst,
std::move(polylines),
role,
flow.mm3_per_mm(), flow.width(), flow.height());
}
static inline void fill_expolygons_generate_paths(
ExtrusionEntitiesPtr &dst,
ExPolygons &&expolygons,
Fill *filler,
const FillParams &fill_params,
float density,
ExtrusionRole role,
const Flow &flow)
{
for (ExPolygon &expoly : expolygons)
fill_expolygon_generate_paths(dst, std::move(expoly), filler, fill_params, density, role, flow);
}
static inline void fill_expolygons_generate_paths(
ExtrusionEntitiesPtr &dst,
ExPolygons &&expolygons,
Fill *filler,
float density,
ExtrusionRole role,
const Flow &flow)
{
FillParams fill_params;
fill_params.density = density;
fill_params.dont_adjust = true;
fill_expolygons_generate_paths(dst, std::move(expolygons), filler, fill_params, density, role, flow);
}
static inline void fill_expolygons_with_sheath_generate_paths(
ExtrusionEntitiesPtr &dst,
const Polygons &polygons,
Fill *filler,
float density,
ExtrusionRole role,
const Flow &flow,
bool with_sheath,
bool no_sort)
{
if (polygons.empty())
return;
if (! with_sheath) {
fill_expolygons_generate_paths(dst, closing_ex(polygons, float(SCALED_EPSILON)), filler, density, role, flow);
return;
}
FillParams fill_params;
fill_params.density = density;
fill_params.dont_adjust = true;
double spacing = flow.scaled_spacing();
// Clip the sheath path to avoid the extruder to get exactly on the first point of the loop.
double clip_length = spacing * 0.15;
for (ExPolygon &expoly : closing_ex(polygons, float(SCALED_EPSILON), float(SCALED_EPSILON + 0.5*flow.scaled_width()))) {
// Don't reorder the skirt and its infills.
std::unique_ptr<ExtrusionEntityCollection> eec;
if (no_sort) {
eec = std::make_unique<ExtrusionEntityCollection>();
eec->no_sort = true;
}
ExtrusionEntitiesPtr &out = no_sort ? eec->entities : dst;
// Draw the perimeters.
Polylines polylines;
polylines.reserve(expoly.holes.size() + 1);
for (size_t i = 0; i <= expoly.holes.size(); ++ i) {
Polyline pl(i == 0 ? expoly.contour.points : expoly.holes[i - 1].points);
pl.points.emplace_back(pl.points.front());
pl.clip_end(clip_length);
polylines.emplace_back(std::move(pl));
}
extrusion_entities_append_paths(out, polylines, erSupportMaterial, flow.mm3_per_mm(), flow.width(), flow.height());
// Fill in the rest.
fill_expolygons_generate_paths(out, offset_ex(expoly, float(-0.4 * spacing)), filler, fill_params, density, role, flow);
if (no_sort && ! eec->empty())
dst.emplace_back(eec.release());
}
}
// Support layers, partially processed.
struct MyLayerExtruded
{
MyLayerExtruded& operator=(MyLayerExtruded &&rhs) {
this->layer = rhs.layer;
this->extrusions = std::move(rhs.extrusions);
m_polygons_to_extrude = std::move(rhs.m_polygons_to_extrude);
rhs.layer = nullptr;
return *this;
}
bool empty() const {
return layer == nullptr || layer->polygons.empty();
}
void set_polygons_to_extrude(Polygons &&polygons) {
if (m_polygons_to_extrude == nullptr)
m_polygons_to_extrude = std::make_unique<Polygons>(std::move(polygons));
else
*m_polygons_to_extrude = std::move(polygons);
}
Polygons& polygons_to_extrude() { return (m_polygons_to_extrude == nullptr) ? layer->polygons : *m_polygons_to_extrude; }
const Polygons& polygons_to_extrude() const { return (m_polygons_to_extrude == nullptr) ? layer->polygons : *m_polygons_to_extrude; }
bool could_merge(const MyLayerExtruded &other) const {
return ! this->empty() && ! other.empty() &&
std::abs(this->layer->height - other.layer->height) < EPSILON &&
this->layer->bridging == other.layer->bridging;
}
// Merge regions, perform boolean union over the merged polygons.
void merge(MyLayerExtruded &&other) {
assert(this->could_merge(other));
// 1) Merge the rest polygons to extrude, if there are any.
if (other.m_polygons_to_extrude != nullptr) {
if (m_polygons_to_extrude == nullptr) {
// This layer has no extrusions generated yet, if it has no m_polygons_to_extrude (its area to extrude was not reduced yet).
assert(this->extrusions.empty());
m_polygons_to_extrude = std::make_unique<Polygons>(this->layer->polygons);
}
Slic3r::polygons_append(*m_polygons_to_extrude, std::move(*other.m_polygons_to_extrude));
*m_polygons_to_extrude = union_safety_offset(*m_polygons_to_extrude);
other.m_polygons_to_extrude.reset();
} else if (m_polygons_to_extrude != nullptr) {
assert(other.m_polygons_to_extrude == nullptr);
// The other layer has no extrusions generated yet, if it has no m_polygons_to_extrude (its area to extrude was not reduced yet).
assert(other.extrusions.empty());
Slic3r::polygons_append(*m_polygons_to_extrude, other.layer->polygons);
*m_polygons_to_extrude = union_safety_offset(*m_polygons_to_extrude);
}
// 2) Merge the extrusions.
this->extrusions.insert(this->extrusions.end(), other.extrusions.begin(), other.extrusions.end());
other.extrusions.clear();
// 3) Merge the infill polygons.
Slic3r::polygons_append(this->layer->polygons, std::move(other.layer->polygons));
this->layer->polygons = union_safety_offset(this->layer->polygons);
other.layer->polygons.clear();
}
void polygons_append(Polygons &dst) const {
if (layer != NULL && ! layer->polygons.empty())
Slic3r::polygons_append(dst, layer->polygons);
}
// The source layer. It carries the height and extrusion type (bridging / non bridging, extrusion height).
PrintObjectSupportMaterial::MyLayer *layer { nullptr };
// Collect extrusions. They will be exported sorted by the bottom height.
ExtrusionEntitiesPtr extrusions;
private:
// In case the extrusions are non-empty, m_polygons_to_extrude may contain the rest areas yet to be filled by additional support.
// This is useful mainly for the loop interfaces, which are generated before the zig-zag infills.
std::unique_ptr<Polygons> m_polygons_to_extrude;
};
typedef std::vector<MyLayerExtruded*> MyLayerExtrudedPtrs;
struct LoopInterfaceProcessor
{
LoopInterfaceProcessor(coordf_t circle_r) :
n_contact_loops(0),
circle_radius(circle_r),
circle_distance(circle_r * 3.)
{
// Shape of the top contact area.
circle.points.reserve(6);
for (size_t i = 0; i < 6; ++ i) {
double angle = double(i) * M_PI / 3.;
circle.points.push_back(Point(circle_radius * cos(angle), circle_radius * sin(angle)));
}
}
// Generate loop contacts at the top_contact_layer,
// trim the top_contact_layer->polygons with the areas covered by the loops.
void generate(MyLayerExtruded &top_contact_layer, const Flow &interface_flow_src) const;
int n_contact_loops;
coordf_t circle_radius;
coordf_t circle_distance;
Polygon circle;
};
void LoopInterfaceProcessor::generate(MyLayerExtruded &top_contact_layer, const Flow &interface_flow_src) const
{
if (n_contact_loops == 0 || top_contact_layer.empty())
return;
Flow flow = interface_flow_src.with_height(top_contact_layer.layer->height);
Polygons overhang_polygons;
if (top_contact_layer.layer->overhang_polygons != nullptr)
overhang_polygons = std::move(*top_contact_layer.layer->overhang_polygons);
// Generate the outermost loop.
// Find centerline of the external loop (or any other kind of extrusions should the loop be skipped)
ExPolygons top_contact_expolygons = offset_ex(union_ex(top_contact_layer.layer->polygons), - 0.5f * flow.scaled_width());
// Grid size and bit shifts for quick and exact to/from grid coordinates manipulation.
coord_t circle_grid_resolution = 1;
coord_t circle_grid_powerof2 = 0;
{
// epsilon to account for rounding errors
coord_t circle_grid_resolution_non_powerof2 = coord_t(2. * circle_distance + 3.);
while (circle_grid_resolution < circle_grid_resolution_non_powerof2) {
circle_grid_resolution <<= 1;
++ circle_grid_powerof2;
}
}
struct PointAccessor {
const Point* operator()(const Point &pt) const { return &pt; }
};
typedef ClosestPointInRadiusLookup<Point, PointAccessor> ClosestPointLookupType;
Polygons loops0;
{
// find centerline of the external loop of the contours
// Only consider the loops facing the overhang.
Polygons external_loops;
// Holes in the external loops.
Polygons circles;
Polygons overhang_with_margin = offset(union_ex(overhang_polygons), 0.5f * flow.scaled_width());
for (ExPolygons::iterator it_contact_expoly = top_contact_expolygons.begin(); it_contact_expoly != top_contact_expolygons.end(); ++ it_contact_expoly) {
// Store the circle centers placed for an expolygon into a regular grid, hashed by the circle centers.
ClosestPointLookupType circle_centers_lookup(coord_t(circle_distance - SCALED_EPSILON));
Points circle_centers;
Point center_last;
// For each contour of the expolygon, start with the outer contour, continue with the holes.
for (size_t i_contour = 0; i_contour <= it_contact_expoly->holes.size(); ++ i_contour) {
Polygon &contour = (i_contour == 0) ? it_contact_expoly->contour : it_contact_expoly->holes[i_contour - 1];
const Point *seg_current_pt = nullptr;
coordf_t seg_current_t = 0.;
if (! intersection_pl(contour.split_at_first_point(), overhang_with_margin).empty()) {
// The contour is below the overhang at least to some extent.
//FIXME ideally one would place the circles below the overhang only.
// Walk around the contour and place circles so their centers are not closer than circle_distance from each other.
if (circle_centers.empty()) {
// Place the first circle.
seg_current_pt = &contour.points.front();
seg_current_t = 0.;
center_last = *seg_current_pt;
circle_centers_lookup.insert(center_last);
circle_centers.push_back(center_last);
}
for (Points::const_iterator it = contour.points.begin() + 1; it != contour.points.end(); ++it) {
// Is it possible to place a circle on this segment? Is it not too close to any of the circles already placed on this contour?
const Point &p1 = *(it-1);
const Point &p2 = *it;
// Intersection of a ray (p1, p2) with a circle placed at center_last, with radius of circle_distance.
const Vec2d v_seg(coordf_t(p2(0)) - coordf_t(p1(0)), coordf_t(p2(1)) - coordf_t(p1(1)));
const Vec2d v_cntr(coordf_t(p1(0) - center_last(0)), coordf_t(p1(1) - center_last(1)));
coordf_t a = v_seg.squaredNorm();
coordf_t b = 2. * v_seg.dot(v_cntr);
coordf_t c = v_cntr.squaredNorm() - circle_distance * circle_distance;
coordf_t disc = b * b - 4. * a * c;
if (disc > 0.) {
// The circle intersects a ray. Avoid the parts of the segment inside the circle.
coordf_t t1 = (-b - sqrt(disc)) / (2. * a);
coordf_t t2 = (-b + sqrt(disc)) / (2. * a);
coordf_t t0 = (seg_current_pt == &p1) ? seg_current_t : 0.;
// Take the lowest t in <t0, 1.>, excluding <t1, t2>.
coordf_t t;
if (t0 <= t1)
t = t0;
else if (t2 <= 1.)
t = t2;
else {
// Try the following segment.
seg_current_pt = nullptr;
continue;
}
seg_current_pt = &p1;
seg_current_t = t;
center_last = Point(p1(0) + coord_t(v_seg(0) * t), p1(1) + coord_t(v_seg(1) * t));
// It has been verified that the new point is far enough from center_last.
// Ensure, that it is far enough from all the centers.
std::pair<const Point*, coordf_t> circle_closest = circle_centers_lookup.find(center_last);
if (circle_closest.first != nullptr) {
-- it;
continue;
}
} else {
// All of the segment is outside the circle. Take the first point.
seg_current_pt = &p1;
seg_current_t = 0.;
center_last = p1;
}
// Place the first circle.
circle_centers_lookup.insert(center_last);
circle_centers.push_back(center_last);
}
external_loops.push_back(std::move(contour));
for (const Point &center : circle_centers) {
circles.push_back(circle);
circles.back().translate(center);
}
}
}
}
// Apply a pattern to the external loops.
loops0 = diff(external_loops, circles);
}
Polylines loop_lines;
{
// make more loops
Polygons loop_polygons = loops0;
for (int i = 1; i < n_contact_loops; ++ i)
polygons_append(loop_polygons,
opening(
loops0,
i * flow.scaled_spacing() + 0.5f * flow.scaled_spacing(),
0.5f * flow.scaled_spacing()));
// Clip such loops to the side oriented towards the object.
// Collect split points, so they will be recognized after the clipping.
// At the split points the clipped pieces will be stitched back together.
loop_lines.reserve(loop_polygons.size());
std::unordered_map<Point, int, PointHash> map_split_points;
for (Polygons::const_iterator it = loop_polygons.begin(); it != loop_polygons.end(); ++ it) {
assert(map_split_points.find(it->first_point()) == map_split_points.end());
map_split_points[it->first_point()] = -1;
loop_lines.push_back(it->split_at_first_point());
}
loop_lines = intersection_pl(loop_lines, expand(overhang_polygons, scale_(SUPPORT_MATERIAL_MARGIN)));
// Because a closed loop has been split to a line, loop_lines may contain continuous segments split to 2 pieces.
// Try to connect them.
for (int i_line = 0; i_line < int(loop_lines.size()); ++ i_line) {
Polyline &polyline = loop_lines[i_line];
auto it = map_split_points.find(polyline.first_point());
if (it != map_split_points.end()) {
// This is a stitching point.
// If this assert triggers, multiple source polygons likely intersected at this point.
assert(it->second != -2);
if (it->second < 0) {
// First occurence.
it->second = i_line;
} else {
// Second occurence. Join the lines.
Polyline &polyline_1st = loop_lines[it->second];
assert(polyline_1st.first_point() == it->first || polyline_1st.last_point() == it->first);
if (polyline_1st.first_point() == it->first)
polyline_1st.reverse();
polyline_1st.append(std::move(polyline));
it->second = -2;
}
continue;
}
it = map_split_points.find(polyline.last_point());
if (it != map_split_points.end()) {
// This is a stitching point.
// If this assert triggers, multiple source polygons likely intersected at this point.
assert(it->second != -2);
if (it->second < 0) {
// First occurence.
it->second = i_line;
} else {
// Second occurence. Join the lines.
Polyline &polyline_1st = loop_lines[it->second];
assert(polyline_1st.first_point() == it->first || polyline_1st.last_point() == it->first);
if (polyline_1st.first_point() == it->first)
polyline_1st.reverse();
polyline.reverse();
polyline_1st.append(std::move(polyline));
it->second = -2;
}
}
}
// Remove empty lines.
remove_degenerate(loop_lines);
}
// add the contact infill area to the interface area
// note that growing loops by $circle_radius ensures no tiny
// extrusions are left inside the circles; however it creates
// a very large gap between loops and contact_infill_polygons, so maybe another
// solution should be found to achieve both goals
// Store the trimmed polygons into a separate polygon set, so the original infill area remains intact for
// "modulate by layer thickness".
top_contact_layer.set_polygons_to_extrude(diff(top_contact_layer.layer->polygons, offset(loop_lines, float(circle_radius * 1.1))));
// Transform loops into ExtrusionPath objects.
extrusion_entities_append_paths(
top_contact_layer.extrusions,
std::move(loop_lines),
erSupportMaterialInterface, flow.mm3_per_mm(), flow.width(), flow.height());
}
#ifdef SLIC3R_DEBUG
static std::string dbg_index_to_color(int idx)
{
if (idx < 0)
return "yellow";
idx = idx % 3;
switch (idx) {
case 0: return "red";
case 1: return "green";
default: return "blue";
}
}
#endif /* SLIC3R_DEBUG */
// When extruding a bottom interface layer over an object, the bottom interface layer is extruded in a thin air, therefore
// it is being extruded with a bridging flow to not shrink excessively (the die swell effect).
// Tiny extrusions are better avoided and it is always better to anchor the thread to an existing support structure if possible.
// Therefore the bottom interface spots are expanded a bit. The expanded regions may overlap with another bottom interface layers,
// leading to over extrusion, where they overlap. The over extrusion is better avoided as it often makes the interface layers
// to stick too firmly to the object.
//
// Modulate thickness (increase bottom_z) of extrusions_in_out generated for this_layer
// if they overlap with overlapping_layers, whose print_z is above this_layer.bottom_z() and below this_layer.print_z.
void modulate_extrusion_by_overlapping_layers(
// Extrusions generated for this_layer.
ExtrusionEntitiesPtr &extrusions_in_out,
const PrintObjectSupportMaterial::MyLayer &this_layer,
// Multiple layers overlapping with this_layer, sorted bottom up.
const PrintObjectSupportMaterial::MyLayersPtr &overlapping_layers)
{
size_t n_overlapping_layers = overlapping_layers.size();
if (n_overlapping_layers == 0 || extrusions_in_out.empty())
// The extrusions do not overlap with any other extrusion.
return;
// Get the initial extrusion parameters.
ExtrusionPath *extrusion_path_template = dynamic_cast<ExtrusionPath*>(extrusions_in_out.front());
assert(extrusion_path_template != nullptr);
ExtrusionRole extrusion_role = extrusion_path_template->role();
float extrusion_width = extrusion_path_template->width;
struct ExtrusionPathFragment
{
ExtrusionPathFragment() : mm3_per_mm(-1), width(-1), height(-1) {};
ExtrusionPathFragment(double mm3_per_mm, float width, float height) : mm3_per_mm(mm3_per_mm), width(width), height(height) {};
Polylines polylines;
double mm3_per_mm;
float width;
float height;
};
// Split the extrusions by the overlapping layers, reduce their extrusion rate.
// The last path_fragment is from this_layer.
std::vector<ExtrusionPathFragment> path_fragments(
n_overlapping_layers + 1,
ExtrusionPathFragment(extrusion_path_template->mm3_per_mm, extrusion_path_template->width, extrusion_path_template->height));
// Don't use it, it will be released.
extrusion_path_template = nullptr;
#ifdef SLIC3R_DEBUG
static int iRun = 0;
++ iRun;
BoundingBox bbox;
for (size_t i_overlapping_layer = 0; i_overlapping_layer < n_overlapping_layers; ++ i_overlapping_layer) {
const PrintObjectSupportMaterial::MyLayer &overlapping_layer = *overlapping_layers[i_overlapping_layer];
bbox.merge(get_extents(overlapping_layer.polygons));
}
for (ExtrusionEntitiesPtr::const_iterator it = extrusions_in_out.begin(); it != extrusions_in_out.end(); ++ it) {
ExtrusionPath *path = dynamic_cast<ExtrusionPath*>(*it);
assert(path != nullptr);
bbox.merge(get_extents(path->polyline));
}
SVG svg(debug_out_path("support-fragments-%d-%lf.svg", iRun, this_layer.print_z).c_str(), bbox);
const float transparency = 0.5f;
// Filled polygons for the overlapping regions.
svg.draw(union_ex(this_layer.polygons), dbg_index_to_color(-1), transparency);
for (size_t i_overlapping_layer = 0; i_overlapping_layer < n_overlapping_layers; ++ i_overlapping_layer) {
const PrintObjectSupportMaterial::MyLayer &overlapping_layer = *overlapping_layers[i_overlapping_layer];
svg.draw(union_ex(overlapping_layer.polygons), dbg_index_to_color(int(i_overlapping_layer)), transparency);
}
// Contours of the overlapping regions.
svg.draw(to_polylines(this_layer.polygons), dbg_index_to_color(-1), scale_(0.2));
for (size_t i_overlapping_layer = 0; i_overlapping_layer < n_overlapping_layers; ++ i_overlapping_layer) {
const PrintObjectSupportMaterial::MyLayer &overlapping_layer = *overlapping_layers[i_overlapping_layer];
svg.draw(to_polylines(overlapping_layer.polygons), dbg_index_to_color(int(i_overlapping_layer)), scale_(0.1));
}
// Fill extrusion, the source.
for (ExtrusionEntitiesPtr::const_iterator it = extrusions_in_out.begin(); it != extrusions_in_out.end(); ++ it) {
ExtrusionPath *path = dynamic_cast<ExtrusionPath*>(*it);
std::string color_name;
switch ((it - extrusions_in_out.begin()) % 9) {
case 0: color_name = "magenta"; break;
case 1: color_name = "deepskyblue"; break;
case 2: color_name = "coral"; break;
case 3: color_name = "goldenrod"; break;
case 4: color_name = "orange"; break;
case 5: color_name = "olivedrab"; break;
case 6: color_name = "blueviolet"; break;
case 7: color_name = "brown"; break;
default: color_name = "orchid"; break;
}
svg.draw(path->polyline, color_name, scale_(0.2));
}
#endif /* SLIC3R_DEBUG */
// End points of the original paths.
std::vector<std::pair<Point, Point>> path_ends;
// Collect the paths of this_layer.
{
Polylines &polylines = path_fragments.back().polylines;
for (ExtrusionEntity *ee : extrusions_in_out) {
ExtrusionPath *path = dynamic_cast<ExtrusionPath*>(ee);
assert(path != nullptr);
polylines.emplace_back(Polyline(std::move(path->polyline)));
path_ends.emplace_back(std::pair<Point, Point>(polylines.back().points.front(), polylines.back().points.back()));
delete path;
}
}
// Destroy the original extrusion paths, their polylines were moved to path_fragments already.
// This will be the destination for the new paths.
extrusions_in_out.clear();
// Fragment the path segments by overlapping layers. The overlapping layers are sorted by an increasing print_z.
// Trim by the highest overlapping layer first.
for (int i_overlapping_layer = int(n_overlapping_layers) - 1; i_overlapping_layer >= 0; -- i_overlapping_layer) {
const PrintObjectSupportMaterial::MyLayer &overlapping_layer = *overlapping_layers[i_overlapping_layer];
ExtrusionPathFragment &frag = path_fragments[i_overlapping_layer];
Polygons polygons_trimming = offset(union_ex(overlapping_layer.polygons), float(scale_(0.5*extrusion_width)));
frag.polylines = intersection_pl(path_fragments.back().polylines, polygons_trimming);
path_fragments.back().polylines = diff_pl(path_fragments.back().polylines, polygons_trimming);
// Adjust the extrusion parameters for a reduced layer height and a non-bridging flow (nozzle_dmr = -1, does not matter).
assert(this_layer.print_z > overlapping_layer.print_z);
frag.height = float(this_layer.print_z - overlapping_layer.print_z);
frag.mm3_per_mm = Flow(frag.width, frag.height, -1.f).mm3_per_mm();
#ifdef SLIC3R_DEBUG
svg.draw(frag.polylines, dbg_index_to_color(i_overlapping_layer), scale_(0.1));
#endif /* SLIC3R_DEBUG */
}
#ifdef SLIC3R_DEBUG
svg.draw(path_fragments.back().polylines, dbg_index_to_color(-1), scale_(0.1));
svg.Close();
#endif /* SLIC3R_DEBUG */
// Now chain the split segments using hashing and a nearly exact match, maintaining the order of segments.
// Create a single ExtrusionPath or ExtrusionEntityCollection per source ExtrusionPath.
// Map of fragment start/end points to a pair of <i_overlapping_layer, i_polyline_in_layer>
// Because a non-exact matching is used for the end points, a multi-map is used.
// As the clipper library may reverse the order of some clipped paths, store both ends into the map.
struct ExtrusionPathFragmentEnd
{
ExtrusionPathFragmentEnd(size_t alayer_idx, size_t apolyline_idx, bool ais_start) :
layer_idx(alayer_idx), polyline_idx(apolyline_idx), is_start(ais_start) {}
size_t layer_idx;
size_t polyline_idx;
bool is_start;
};
class ExtrusionPathFragmentEndPointAccessor {
public:
ExtrusionPathFragmentEndPointAccessor(const std::vector<ExtrusionPathFragment> &path_fragments) : m_path_fragments(path_fragments) {}
// Return an end point of a fragment, or nullptr if the fragment has been consumed already.
const Point* operator()(const ExtrusionPathFragmentEnd &fragment_end) const {
const Polyline &polyline = m_path_fragments[fragment_end.layer_idx].polylines[fragment_end.polyline_idx];
return polyline.points.empty() ? nullptr :
(fragment_end.is_start ? &polyline.points.front() : &polyline.points.back());
}
private:
ExtrusionPathFragmentEndPointAccessor& operator=(const ExtrusionPathFragmentEndPointAccessor&) {
return *this;
}
const std::vector<ExtrusionPathFragment> &m_path_fragments;
};
const coord_t search_radius = 7;
ClosestPointInRadiusLookup<ExtrusionPathFragmentEnd, ExtrusionPathFragmentEndPointAccessor> map_fragment_starts(
search_radius, ExtrusionPathFragmentEndPointAccessor(path_fragments));
for (size_t i_overlapping_layer = 0; i_overlapping_layer <= n_overlapping_layers; ++ i_overlapping_layer) {
const Polylines &polylines = path_fragments[i_overlapping_layer].polylines;
for (size_t i_polyline = 0; i_polyline < polylines.size(); ++ i_polyline) {
// Map a starting point of a polyline to a pair of <layer, polyline>
if (polylines[i_polyline].points.size() >= 2) {
map_fragment_starts.insert(ExtrusionPathFragmentEnd(i_overlapping_layer, i_polyline, true));
map_fragment_starts.insert(ExtrusionPathFragmentEnd(i_overlapping_layer, i_polyline, false));
}
}
}
// For each source path:
for (size_t i_path = 0; i_path < path_ends.size(); ++ i_path) {
const Point &pt_start = path_ends[i_path].first;
const Point &pt_end = path_ends[i_path].second;
Point pt_current = pt_start;
// Find a chain of fragments with the original / reduced print height.
ExtrusionMultiPath multipath;
for (;;) {
// Find a closest end point to pt_current.
std::pair<const ExtrusionPathFragmentEnd*, coordf_t> end_and_dist2 = map_fragment_starts.find(pt_current);
// There may be a bug in Clipper flipping the order of two last points in a fragment?
// assert(end_and_dist2.first != nullptr);
assert(end_and_dist2.first == nullptr || end_and_dist2.second < search_radius * search_radius);
if (end_and_dist2.first == nullptr) {
// New fragment connecting to pt_current was not found.
// Verify that the last point found is close to the original end point of the unfragmented path.
//const double d2 = (pt_end - pt_current).cast<double>.squaredNorm();
//assert(d2 < coordf_t(search_radius * search_radius));
// End of the path.
break;
}
const ExtrusionPathFragmentEnd &fragment_end_min = *end_and_dist2.first;
// Fragment to consume.
ExtrusionPathFragment &frag = path_fragments[fragment_end_min.layer_idx];
Polyline &frag_polyline = frag.polylines[fragment_end_min.polyline_idx];
// Path to append the fragment to.
ExtrusionPath *path = multipath.paths.empty() ? nullptr : &multipath.paths.back();
if (path != nullptr) {
// Verify whether the path is compatible with the current fragment.
assert(this_layer.layer_type == PrintObjectSupportMaterial::sltBottomContact || path->height != frag.height || path->mm3_per_mm != frag.mm3_per_mm);
if (path->height != frag.height || path->mm3_per_mm != frag.mm3_per_mm) {
path = nullptr;
}
// Merging with the previous path. This can only happen if the current layer was reduced by a base layer, which was split into a base and interface layer.
}
if (path == nullptr) {
// Allocate a new path.
multipath.paths.push_back(ExtrusionPath(extrusion_role, frag.mm3_per_mm, frag.width, frag.height));
path = &multipath.paths.back();
}
// The Clipper library may flip the order of the clipped polylines arbitrarily.
// Reverse the source polyline, if connecting to the end.
if (! fragment_end_min.is_start)
frag_polyline.reverse();
// Enforce exact overlap of the end points of successive fragments.
assert(frag_polyline.points.front() == pt_current);
frag_polyline.points.front() = pt_current;
// Don't repeat the first point.
if (! path->polyline.points.empty())
path->polyline.points.pop_back();
// Consume the fragment's polyline, remove it from the input fragments, so it will be ignored the next time.
path->polyline.append(std::move(frag_polyline));
frag_polyline.points.clear();
pt_current = path->polyline.points.back();
if (pt_current == pt_end) {
// End of the path.
break;
}
}
if (!multipath.paths.empty()) {
if (multipath.paths.size() == 1) {
// This path was not fragmented.
extrusions_in_out.push_back(new ExtrusionPath(std::move(multipath.paths.front())));
} else {
// This path was fragmented. Copy the collection as a whole object, so the order inside the collection will not be changed
// during the chaining of extrusions_in_out.
extrusions_in_out.push_back(new ExtrusionMultiPath(std::move(multipath)));
}
}
}
// If there are any non-consumed fragments, add them separately.
//FIXME this shall not happen, if the Clipper works as expected and all paths split to fragments could be re-connected.
for (auto it_fragment = path_fragments.begin(); it_fragment != path_fragments.end(); ++ it_fragment)
extrusion_entities_append_paths(extrusions_in_out, std::move(it_fragment->polylines), extrusion_role, it_fragment->mm3_per_mm, it_fragment->width, it_fragment->height);
}
void PrintObjectSupportMaterial::generate_toolpaths(
SupportLayerPtrs &support_layers,
const MyLayersPtr &raft_layers,
const MyLayersPtr &bottom_contacts,
const MyLayersPtr &top_contacts,
const MyLayersPtr &intermediate_layers,
const MyLayersPtr &interface_layers,
const MyLayersPtr &base_interface_layers) const
{
// loop_interface_processor with a given circle radius.
LoopInterfaceProcessor loop_interface_processor(1.5 * m_support_params.support_material_interface_flow.scaled_width());
loop_interface_processor.n_contact_loops = this->has_contact_loops() ? 1 : 0;
std::vector<float> angles { m_support_params.base_angle };
if (m_object_config->support_material_pattern == smpRectilinearGrid)
angles.push_back(m_support_params.interface_angle);
BoundingBox bbox_object(Point(-scale_(1.), -scale_(1.0)), Point(scale_(1.), scale_(1.)));
// const coordf_t link_max_length_factor = 3.;
const coordf_t link_max_length_factor = 0.;
float raft_angle_1st_layer = 0.f;
float raft_angle_base = 0.f;
float raft_angle_interface = 0.f;
if (m_slicing_params.base_raft_layers > 1) {
// There are all raft layer types (1st layer, base, interface & contact layers) available.
raft_angle_1st_layer = m_support_params.interface_angle;
raft_angle_base = m_support_params.base_angle;
raft_angle_interface = m_support_params.interface_angle;
} else if (m_slicing_params.base_raft_layers == 1 || m_slicing_params.interface_raft_layers > 1) {
// 1st layer, interface & contact layers available.
raft_angle_1st_layer = m_support_params.base_angle;
if (this->has_support())
// Print 1st layer at 45 degrees from both the interface and base angles as both can land on the 1st layer.
raft_angle_1st_layer += 0.7854f;
raft_angle_interface = m_support_params.interface_angle;
} else if (m_slicing_params.interface_raft_layers == 1) {
// Only the contact raft layer is non-empty, which will be printed as the 1st layer.
assert(m_slicing_params.base_raft_layers == 0);
assert(m_slicing_params.interface_raft_layers == 1);
assert(m_slicing_params.raft_layers() == 1 && raft_layers.size() == 0);
} else {
// No raft.
assert(m_slicing_params.base_raft_layers == 0);
assert(m_slicing_params.interface_raft_layers == 0);
assert(m_slicing_params.raft_layers() == 0 && raft_layers.size() == 0);
}
// Insert the raft base layers.
size_t n_raft_layers = size_t(std::max(0, int(m_slicing_params.raft_layers()) - 1));
tbb::parallel_for(tbb::blocked_range<size_t>(0, n_raft_layers),
[this, &support_layers, &raft_layers,
&bbox_object, raft_angle_1st_layer, raft_angle_base, raft_angle_interface, link_max_length_factor]
(const tbb::blocked_range<size_t>& range) {
for (size_t support_layer_id = range.begin(); support_layer_id < range.end(); ++ support_layer_id)
{
assert(support_layer_id < raft_layers.size());
SupportLayer &support_layer = *support_layers[support_layer_id];
assert(support_layer.support_fills.entities.empty());
MyLayer &raft_layer = *raft_layers[support_layer_id];
std::unique_ptr<Fill> filler_interface = std::unique_ptr<Fill>(Fill::new_from_type(m_support_params.interface_fill_pattern));
std::unique_ptr<Fill> filler_support = std::unique_ptr<Fill>(Fill::new_from_type(m_support_params.base_fill_pattern));
filler_interface->set_bounding_box(bbox_object);
filler_support->set_bounding_box(bbox_object);
// Print the support base below the support columns, or the support base for the support columns plus the contacts.
if (support_layer_id > 0) {
const Polygons &to_infill_polygons = (support_layer_id < m_slicing_params.base_raft_layers) ?
raft_layer.polygons :
//FIXME misusing contact_polygons for support columns.
((raft_layer.contact_polygons == nullptr) ? Polygons() : *raft_layer.contact_polygons);
if (! to_infill_polygons.empty()) {
assert(! raft_layer.bridging);
Flow flow(float(m_support_params.support_material_flow.width()), float(raft_layer.height), m_support_params.support_material_flow.nozzle_diameter());
Fill * filler = filler_support.get();
filler->angle = raft_angle_base;
filler->spacing = m_support_params.support_material_flow.spacing();
filler->link_max_length = coord_t(scale_(filler->spacing * link_max_length_factor / m_support_params.support_density));
fill_expolygons_with_sheath_generate_paths(
// Destination
support_layer.support_fills.entities,
// Regions to fill
to_infill_polygons,
// Filler and its parameters
filler, float(m_support_params.support_density),
// Extrusion parameters
erSupportMaterial, flow,
m_support_params.with_sheath, false);
}
}
Fill *filler = filler_interface.get();
Flow flow = m_support_params.first_layer_flow;
float density = 0.f;
if (support_layer_id == 0) {
// Base flange.
filler->angle = raft_angle_1st_layer;
filler->spacing = m_support_params.first_layer_flow.spacing();
density = float(m_object_config->raft_first_layer_density.value * 0.01);
} else if (support_layer_id >= m_slicing_params.base_raft_layers) {
filler->angle = raft_angle_interface;
// We don't use $base_flow->spacing because we need a constant spacing
// value that guarantees that all layers are correctly aligned.
filler->spacing = m_support_params.support_material_flow.spacing();
assert(! raft_layer.bridging);
flow = Flow(float(m_support_params.support_material_interface_flow.width()), float(raft_layer.height), m_support_params.support_material_flow.nozzle_diameter());
density = float(m_support_params.interface_density);
} else
continue;
filler->link_max_length = coord_t(scale_(filler->spacing * link_max_length_factor / density));
fill_expolygons_with_sheath_generate_paths(
// Destination
support_layer.support_fills.entities,
// Regions to fill
raft_layer.polygons,
// Filler and its parameters
filler, density,
// Extrusion parameters
(support_layer_id < m_slicing_params.base_raft_layers) ? erSupportMaterial : erSupportMaterialInterface, flow,
// sheath at first layer
support_layer_id == 0, support_layer_id == 0);
}
});
struct LayerCacheItem {
LayerCacheItem(MyLayerExtruded *layer_extruded = nullptr) : layer_extruded(layer_extruded) {}
MyLayerExtruded *layer_extruded;
std::vector<MyLayer*> overlapping;
};
struct LayerCache {
MyLayerExtruded bottom_contact_layer;
MyLayerExtruded top_contact_layer;
MyLayerExtruded base_layer;
MyLayerExtruded interface_layer;
MyLayerExtruded base_interface_layer;
boost::container::static_vector<LayerCacheItem, 5> nonempty;
void add_nonempty_and_sort() {
for (MyLayerExtruded *item : { &bottom_contact_layer, &top_contact_layer, &interface_layer, &base_interface_layer, &base_layer })
if (! item->empty())
this->nonempty.emplace_back(item);
// Sort the layers with the same print_z coordinate by their heights, thickest first.
std::stable_sort(this->nonempty.begin(), this->nonempty.end(), [](const LayerCacheItem &lc1, const LayerCacheItem &lc2) { return lc1.layer_extruded->layer->height > lc2.layer_extruded->layer->height; });
}
};
std::vector<LayerCache> layer_caches(support_layers.size());
tbb::parallel_for(tbb::blocked_range<size_t>(n_raft_layers, support_layers.size()),
[this, &support_layers, &bottom_contacts, &top_contacts, &intermediate_layers, &interface_layers, &base_interface_layers, &layer_caches, &loop_interface_processor,
&bbox_object, &angles, link_max_length_factor]
(const tbb::blocked_range<size_t>& range) {
// Indices of the 1st layer in their respective container at the support layer height.
size_t idx_layer_bottom_contact = size_t(-1);
size_t idx_layer_top_contact = size_t(-1);
size_t idx_layer_intermediate = size_t(-1);
size_t idx_layer_interface = size_t(-1);
size_t idx_layer_base_interface = size_t(-1);
const auto fill_type_first_layer = ipRectilinear;
auto filler_interface = std::unique_ptr<Fill>(Fill::new_from_type(m_support_params.contact_fill_pattern));
// Filler for the 1st layer interface, if different from filler_interface.
auto filler_first_layer_ptr = std::unique_ptr<Fill>(range.begin() == 0 && m_support_params.contact_fill_pattern != fill_type_first_layer ? Fill::new_from_type(fill_type_first_layer) : nullptr);
// Pointer to the 1st layer interface filler.
auto filler_first_layer = filler_first_layer_ptr ? filler_first_layer_ptr.get() : filler_interface.get();
// Filler for the base interface (to be used for soluble interface / non soluble base, to produce non soluble interface layer below soluble interface layer).
auto filler_base_interface = std::unique_ptr<Fill>(base_interface_layers.empty() ? nullptr :
Fill::new_from_type(m_support_params.interface_density > 0.95 || m_support_params.with_sheath ? ipRectilinear : ipSupportBase));
auto filler_support = std::unique_ptr<Fill>(Fill::new_from_type(m_support_params.base_fill_pattern));
filler_interface->set_bounding_box(bbox_object);
if (filler_first_layer_ptr)
filler_first_layer_ptr->set_bounding_box(bbox_object);
if (filler_base_interface)
filler_base_interface->set_bounding_box(bbox_object);
filler_support->set_bounding_box(bbox_object);
for (size_t support_layer_id = range.begin(); support_layer_id < range.end(); ++ support_layer_id)
{
SupportLayer &support_layer = *support_layers[support_layer_id];
LayerCache &layer_cache = layer_caches[support_layer_id];
float interface_angle_delta = m_object_config->support_material_style.value == smsSnug ?
(support_layer.interface_id() & 1) ? float(- M_PI / 4.) : float(+ M_PI / 4.) :
0;
// Find polygons with the same print_z.
MyLayerExtruded &bottom_contact_layer = layer_cache.bottom_contact_layer;
MyLayerExtruded &top_contact_layer = layer_cache.top_contact_layer;
MyLayerExtruded &base_layer = layer_cache.base_layer;
MyLayerExtruded &interface_layer = layer_cache.interface_layer;
MyLayerExtruded &base_interface_layer = layer_cache.base_interface_layer;
// Increment the layer indices to find a layer at support_layer.print_z.
{
auto fun = [&support_layer](const MyLayer *l){ return l->print_z >= support_layer.print_z - EPSILON; };
idx_layer_bottom_contact = idx_higher_or_equal(bottom_contacts, idx_layer_bottom_contact, fun);
idx_layer_top_contact = idx_higher_or_equal(top_contacts, idx_layer_top_contact, fun);
idx_layer_intermediate = idx_higher_or_equal(intermediate_layers, idx_layer_intermediate, fun);
idx_layer_interface = idx_higher_or_equal(interface_layers, idx_layer_interface, fun);
idx_layer_base_interface = idx_higher_or_equal(base_interface_layers, idx_layer_base_interface,fun);
}
// Copy polygons from the layers.
if (idx_layer_bottom_contact < bottom_contacts.size() && bottom_contacts[idx_layer_bottom_contact]->print_z < support_layer.print_z + EPSILON)
bottom_contact_layer.layer = bottom_contacts[idx_layer_bottom_contact];
if (idx_layer_top_contact < top_contacts.size() && top_contacts[idx_layer_top_contact]->print_z < support_layer.print_z + EPSILON)
top_contact_layer.layer = top_contacts[idx_layer_top_contact];
if (idx_layer_interface < interface_layers.size() && interface_layers[idx_layer_interface]->print_z < support_layer.print_z + EPSILON)
interface_layer.layer = interface_layers[idx_layer_interface];
if (idx_layer_base_interface < base_interface_layers.size() && base_interface_layers[idx_layer_base_interface]->print_z < support_layer.print_z + EPSILON)
base_interface_layer.layer = base_interface_layers[idx_layer_base_interface];
if (idx_layer_intermediate < intermediate_layers.size() && intermediate_layers[idx_layer_intermediate]->print_z < support_layer.print_z + EPSILON)
base_layer.layer = intermediate_layers[idx_layer_intermediate];
if (m_object_config->support_material_interface_layers == 0) {
// If no top interface layers were requested, we treat the contact layer exactly as a generic base layer.
if (m_support_params.can_merge_support_regions) {
if (base_layer.could_merge(top_contact_layer))
base_layer.merge(std::move(top_contact_layer));
else if (base_layer.empty())
base_layer = std::move(top_contact_layer);
}
} else {
loop_interface_processor.generate(top_contact_layer, m_support_params.support_material_interface_flow);
// If no loops are allowed, we treat the contact layer exactly as a generic interface layer.
// Merge interface_layer into top_contact_layer, as the top_contact_layer is not synchronized and therefore it will be used
// to trim other layers.
if (top_contact_layer.could_merge(interface_layer))
top_contact_layer.merge(std::move(interface_layer));
}
if ((m_object_config->support_material_interface_layers == 0 || m_object_config->support_material_bottom_interface_layers == 0) && m_support_params.can_merge_support_regions) {
if (base_layer.could_merge(bottom_contact_layer))
base_layer.merge(std::move(bottom_contact_layer));
else if (base_layer.empty() && ! bottom_contact_layer.empty() && ! bottom_contact_layer.layer->bridging)
base_layer = std::move(bottom_contact_layer);
} else if (bottom_contact_layer.could_merge(top_contact_layer))
top_contact_layer.merge(std::move(bottom_contact_layer));
else if (bottom_contact_layer.could_merge(interface_layer))
bottom_contact_layer.merge(std::move(interface_layer));
#if 0
if ( ! interface_layer.empty() && ! base_layer.empty()) {
// turn base support into interface when it's contained in our holes
// (this way we get wider interface anchoring)
//FIXME The intention of the code below is unclear. One likely wanted to just merge small islands of base layers filling in the holes
// inside interface layers, but the code below fills just too much, see GH #4570
Polygons islands = top_level_islands(interface_layer.layer->polygons);
polygons_append(interface_layer.layer->polygons, intersection(base_layer.layer->polygons, islands));
base_layer.layer->polygons = diff(base_layer.layer->polygons, islands);
}
#endif
// Top and bottom contacts, interface layers.
for (size_t i = 0; i < 3; ++ i) {
MyLayerExtruded &layer_ex = (i == 0) ? top_contact_layer : (i == 1 ? bottom_contact_layer : interface_layer);
if (layer_ex.empty() || layer_ex.polygons_to_extrude().empty())
continue;
bool interface_as_base = m_object_config->support_material_interface_layers.value == 0 ||
(m_object_config->support_material_bottom_interface_layers == 0 && &layer_ex == &bottom_contact_layer);
//FIXME Bottom interfaces are extruded with the briding flow. Some bridging layers have its height slightly reduced, therefore
// the bridging flow does not quite apply. Reduce the flow to area of an ellipse? (A = pi * a * b)
auto interface_flow = layer_ex.layer->bridging ?
Flow::bridging_flow(layer_ex.layer->height, m_support_params.support_material_bottom_interface_flow.nozzle_diameter()) :
(interface_as_base ? &m_support_params.support_material_flow : &m_support_params.support_material_interface_flow)->with_height(float(layer_ex.layer->height));
filler_interface->angle = interface_as_base ?
// If zero interface layers are configured, use the same angle as for the base layers.
angles[support_layer_id % angles.size()] :
// Use interface angle for the interface layers.
m_support_params.interface_angle + interface_angle_delta;
double density = interface_as_base ? m_support_params.support_density : m_support_params.interface_density;
filler_interface->spacing = interface_as_base ? m_support_params.support_material_flow.spacing() : m_support_params.support_material_interface_flow.spacing();
filler_interface->link_max_length = coord_t(scale_(filler_interface->spacing * link_max_length_factor / density));
fill_expolygons_generate_paths(
// Destination
layer_ex.extrusions,
// Regions to fill
union_safety_offset_ex(layer_ex.polygons_to_extrude()),
// Filler and its parameters
filler_interface.get(), float(density),
// Extrusion parameters
erSupportMaterialInterface, interface_flow);
}
// Base interface layers under soluble interfaces
if ( ! base_interface_layer.empty() && ! base_interface_layer.polygons_to_extrude().empty()) {
Fill *filler = filler_base_interface.get();
//FIXME Bottom interfaces are extruded with the briding flow. Some bridging layers have its height slightly reduced, therefore
// the bridging flow does not quite apply. Reduce the flow to area of an ellipse? (A = pi * a * b)
assert(! base_interface_layer.layer->bridging);
Flow interface_flow = m_support_params.support_material_flow.with_height(float(base_interface_layer.layer->height));
filler->angle = m_support_params.interface_angle + interface_angle_delta;
filler->spacing = m_support_params.support_material_interface_flow.spacing();
filler->link_max_length = coord_t(scale_(filler->spacing * link_max_length_factor / m_support_params.interface_density));
fill_expolygons_generate_paths(
// Destination
base_interface_layer.extrusions,
//base_layer_interface.extrusions,
// Regions to fill
union_safety_offset_ex(base_interface_layer.polygons_to_extrude()),
// Filler and its parameters
filler, float(m_support_params.interface_density),
// Extrusion parameters
erSupportMaterial, interface_flow);
}
// Base support or flange.
if (! base_layer.empty() && ! base_layer.polygons_to_extrude().empty()) {
Fill *filler = filler_support.get();
filler->angle = angles[support_layer_id % angles.size()];
// We don't use $base_flow->spacing because we need a constant spacing
// value that guarantees that all layers are correctly aligned.
assert(! base_layer.layer->bridging);
auto flow = m_support_params.support_material_flow.with_height(float(base_layer.layer->height));
filler->spacing = m_support_params.support_material_flow.spacing();
filler->link_max_length = coord_t(scale_(filler->spacing * link_max_length_factor / m_support_params.support_density));
float density = float(m_support_params.support_density);
bool sheath = m_support_params.with_sheath;
bool no_sort = false;
if (base_layer.layer->bottom_z < EPSILON) {
// Base flange (the 1st layer).
filler = filler_first_layer;
filler->angle = Geometry::deg2rad(float(m_object_config->support_material_angle.value + 90.));
density = float(m_object_config->raft_first_layer_density.value * 0.01);
flow = m_support_params.first_layer_flow;
// use the proper spacing for first layer as we don't need to align
// its pattern to the other layers
//FIXME When paralellizing, each thread shall have its own copy of the fillers.
filler->spacing = flow.spacing();
filler->link_max_length = coord_t(scale_(filler->spacing * link_max_length_factor / density));
sheath = true;
no_sort = true;
}
fill_expolygons_with_sheath_generate_paths(
// Destination
base_layer.extrusions,
// Regions to fill
base_layer.polygons_to_extrude(),
// Filler and its parameters
filler, density,
// Extrusion parameters
erSupportMaterial, flow,
sheath, no_sort);
}
// Merge base_interface_layers to base_layers to avoid unneccessary retractions
if (! base_layer.empty() && ! base_interface_layer.empty() && ! base_layer.polygons_to_extrude().empty() && ! base_interface_layer.polygons_to_extrude().empty() &&
base_layer.could_merge(base_interface_layer))
base_layer.merge(std::move(base_interface_layer));
layer_cache.add_nonempty_and_sort();
// Collect the support areas with this print_z into islands, as there is no need
// for retraction over these islands.
Polygons polys;
// Collect the extrusions, sorted by the bottom extrusion height.
for (LayerCacheItem &layer_cache_item : layer_cache.nonempty) {
// Collect islands to polys.
layer_cache_item.layer_extruded->polygons_append(polys);
// The print_z of the top contact surfaces and bottom_z of the bottom contact surfaces are "free"
// in a sense that they are not synchronized with other support layers. As the top and bottom contact surfaces
// are inflated to achieve a better anchoring, it may happen, that these surfaces will at least partially
// overlap in Z with another support layers, leading to over-extrusion.
// Mitigate the over-extrusion by modulating the extrusion rate over these regions.
// The print head will follow the same print_z, but the layer thickness will be reduced
// where it overlaps with another support layer.
//FIXME When printing a briging path, what is an equivalent height of the squished extrudate of the same width?
// Collect overlapping top/bottom surfaces.
layer_cache_item.overlapping.reserve(20);
coordf_t bottom_z = layer_cache_item.layer_extruded->layer->bottom_print_z() + EPSILON;
auto add_overlapping = [&layer_cache_item, bottom_z](const MyLayersPtr &layers, size_t idx_top) {
for (int i = int(idx_top) - 1; i >= 0 && layers[i]->print_z > bottom_z; -- i)
layer_cache_item.overlapping.push_back(layers[i]);
};
add_overlapping(top_contacts, idx_layer_top_contact);
if (layer_cache_item.layer_extruded->layer->layer_type == sltBottomContact) {
// Bottom contact layer may overlap with a base layer, which may be changed to interface layer.
add_overlapping(intermediate_layers, idx_layer_intermediate);
add_overlapping(interface_layers, idx_layer_interface);
add_overlapping(base_interface_layers, idx_layer_base_interface);
}
// Order the layers by lexicographically by an increasing print_z and a decreasing layer height.
std::stable_sort(layer_cache_item.overlapping.begin(), layer_cache_item.overlapping.end(), [](auto *l1, auto *l2) { return *l1 < *l2; });
}
if (! polys.empty())
expolygons_append(support_layer.support_islands.expolygons, union_ex(polys));
} // for each support_layer_id
});
// Now modulate the support layer height in parallel.
tbb::parallel_for(tbb::blocked_range<size_t>(n_raft_layers, support_layers.size()),
[&support_layers, &layer_caches]
(const tbb::blocked_range<size_t>& range) {
for (size_t support_layer_id = range.begin(); support_layer_id < range.end(); ++ support_layer_id) {
SupportLayer &support_layer = *support_layers[support_layer_id];
LayerCache &layer_cache = layer_caches[support_layer_id];
// For all extrusion types at this print_z, ordered by decreasing layer height:
for (LayerCacheItem &layer_cache_item : layer_cache.nonempty) {
// Trim the extrusion height from the bottom by the overlapping layers.
modulate_extrusion_by_overlapping_layers(layer_cache_item.layer_extruded->extrusions, *layer_cache_item.layer_extruded->layer, layer_cache_item.overlapping);
support_layer.support_fills.append(std::move(layer_cache_item.layer_extruded->extrusions));
}
}
});
#ifndef NDEBUG
struct Test {
static bool verify_nonempty(const ExtrusionEntityCollection *collection) {
for (const ExtrusionEntity *ee : collection->entities) {
if (const ExtrusionPath *path = dynamic_cast<const ExtrusionPath*>(ee))
assert(! path->empty());
else if (const ExtrusionMultiPath *multipath = dynamic_cast<const ExtrusionMultiPath*>(ee))
assert(! multipath->empty());
else if (const ExtrusionEntityCollection *eecol = dynamic_cast<const ExtrusionEntityCollection*>(ee)) {
assert(! eecol->empty());
return verify_nonempty(eecol);
} else
assert(false);
}
return true;
}
};
for (const SupportLayer *support_layer : support_layers)
assert(Test::verify_nonempty(&support_layer->support_fills));
#endif // NDEBUG
}
/*
void PrintObjectSupportMaterial::clip_by_pillars(
const PrintObject &object,
LayersPtr &bottom_contacts,
LayersPtr &top_contacts,
LayersPtr &intermediate_contacts);
{
// this prevents supplying an empty point set to BoundingBox constructor
if (top_contacts.empty())
return;
coord_t pillar_size = scale_(PILLAR_SIZE);
coord_t pillar_spacing = scale_(PILLAR_SPACING);
// A regular grid of pillars, filling the 2D bounding box.
Polygons grid;
{
// Rectangle with a side of 2.5x2.5mm.
Polygon pillar;
pillar.points.push_back(Point(0, 0));
pillar.points.push_back(Point(pillar_size, 0));
pillar.points.push_back(Point(pillar_size, pillar_size));
pillar.points.push_back(Point(0, pillar_size));
// 2D bounding box of the projection of all contact polygons.
BoundingBox bbox;
for (LayersPtr::const_iterator it = top_contacts.begin(); it != top_contacts.end(); ++ it)
bbox.merge(get_extents((*it)->polygons));
grid.reserve(size_t(ceil(bb.size()(0) / pillar_spacing)) * size_t(ceil(bb.size()(1) / pillar_spacing)));
for (coord_t x = bb.min(0); x <= bb.max(0) - pillar_size; x += pillar_spacing) {
for (coord_t y = bb.min(1); y <= bb.max(1) - pillar_size; y += pillar_spacing) {
grid.push_back(pillar);
for (size_t i = 0; i < pillar.points.size(); ++ i)
grid.back().points[i].translate(Point(x, y));
}
}
}
// add pillars to every layer
for my $i (0..n_support_z) {
$shape->[$i] = [ @$grid ];
}
// build capitals
for my $i (0..n_support_z) {
my $z = $support_z->[$i];
my $capitals = intersection(
$grid,
$contact->{$z} // [],
);
// work on one pillar at time (if any) to prevent the capitals from being merged
// but store the contact area supported by the capital because we need to make
// sure nothing is left
my $contact_supported_by_capitals = [];
foreach my $capital (@$capitals) {
// enlarge capital tops
$capital = offset([$capital], +($pillar_spacing - $pillar_size)/2);
push @$contact_supported_by_capitals, @$capital;
for (my $j = $i-1; $j >= 0; $j--) {
my $jz = $support_z->[$j];
$capital = offset($capital, -$self->interface_flow->scaled_width/2);
last if !@$capitals;
push @{ $shape->[$j] }, @$capital;
}
}
// Capitals will not generally cover the whole contact area because there will be
// remainders. For now we handle this situation by projecting such unsupported
// areas to the ground, just like we would do with a normal support.
my $contact_not_supported_by_capitals = diff(
$contact->{$z} // [],
$contact_supported_by_capitals,
);
if (@$contact_not_supported_by_capitals) {
for (my $j = $i-1; $j >= 0; $j--) {
push @{ $shape->[$j] }, @$contact_not_supported_by_capitals;
}
}
}
}
sub clip_with_shape {
my ($self, $support, $shape) = @_;
foreach my $i (keys %$support) {
// don't clip bottom layer with shape so that we
// can generate a continuous base flange
// also don't clip raft layers
next if $i == 0;
next if $i < $self->object_config->raft_layers;
$support->{$i} = intersection(
$support->{$i},
$shape->[$i],
);
}
}
*/
} // namespace Slic3r