PrusaSlicer-NonPlainar/xs/src/slic3r/GUI/GLCanvas3D.cpp
2018-08-24 11:17:53 +02:00

5374 lines
170 KiB
C++

#include "GLCanvas3D.hpp"
#include "../../libslic3r/libslic3r.h"
#include "../../slic3r/GUI/3DScene.hpp"
#include "../../slic3r/GUI/GLShader.hpp"
#include "../../slic3r/GUI/GUI.hpp"
#include "../../slic3r/GUI/PresetBundle.hpp"
#include "../../slic3r/GUI/GLGizmo.hpp"
#include "../../libslic3r/ClipperUtils.hpp"
#include "../../libslic3r/PrintConfig.hpp"
#include "../../libslic3r/Print.hpp"
#include "../../libslic3r/GCode/PreviewData.hpp"
#include <GL/glew.h>
#include <wx/glcanvas.h>
#include <wx/timer.h>
#include <wx/bitmap.h>
#include <wx/dcmemory.h>
#include <wx/image.h>
#include <wx/settings.h>
#include <tbb/parallel_for.h>
#include <tbb/spin_mutex.h>
#include <boost/log/trivial.hpp>
#include <boost/algorithm/string/predicate.hpp>
#include <iostream>
#include <float.h>
#include <algorithm>
static const float TRACKBALLSIZE = 0.8f;
static const float GIMBALL_LOCK_THETA_MAX = 180.0f;
static const float GROUND_Z = -0.02f;
// phi / theta angles to orient the camera.
static const float VIEW_DEFAULT[2] = { 45.0f, 45.0f };
static const float VIEW_LEFT[2] = { 90.0f, 90.0f };
static const float VIEW_RIGHT[2] = { -90.0f, 90.0f };
static const float VIEW_TOP[2] = { 0.0f, 0.0f };
static const float VIEW_BOTTOM[2] = { 0.0f, 180.0f };
static const float VIEW_FRONT[2] = { 0.0f, 90.0f };
static const float VIEW_REAR[2] = { 180.0f, 90.0f };
static const float VARIABLE_LAYER_THICKNESS_BAR_WIDTH = 70.0f;
static const float VARIABLE_LAYER_THICKNESS_RESET_BUTTON_HEIGHT = 22.0f;
static const float UNIT_MATRIX[] = { 1.0f, 0.0f, 0.0f, 0.0f,
0.0f, 1.0f, 0.0f, 0.0f,
0.0f, 0.0f, 1.0f, 0.0f,
0.0f, 0.0f, 0.0f, 1.0f };
static const float DEFAULT_BG_COLOR[3] = { 10.0f / 255.0f, 98.0f / 255.0f, 144.0f / 255.0f };
static const float ERROR_BG_COLOR[3] = { 144.0f / 255.0f, 49.0f / 255.0f, 10.0f / 255.0f };
namespace Slic3r {
namespace GUI {
bool GeometryBuffer::set_from_triangles(const Polygons& triangles, float z, bool generate_tex_coords)
{
m_vertices.clear();
m_tex_coords.clear();
unsigned int v_size = 9 * (unsigned int)triangles.size();
unsigned int t_size = 6 * (unsigned int)triangles.size();
if (v_size == 0)
return false;
m_vertices = std::vector<float>(v_size, 0.0f);
if (generate_tex_coords)
m_tex_coords = std::vector<float>(t_size, 0.0f);
float min_x = unscale<float>(triangles[0].points[0](0));
float min_y = unscale<float>(triangles[0].points[0](1));
float max_x = min_x;
float max_y = min_y;
unsigned int v_coord = 0;
unsigned int t_coord = 0;
for (const Polygon& t : triangles)
{
for (unsigned int v = 0; v < 3; ++v)
{
const Point& p = t.points[v];
float x = unscale<float>(p(0));
float y = unscale<float>(p(1));
m_vertices[v_coord++] = x;
m_vertices[v_coord++] = y;
m_vertices[v_coord++] = z;
if (generate_tex_coords)
{
m_tex_coords[t_coord++] = x;
m_tex_coords[t_coord++] = y;
min_x = std::min(min_x, x);
max_x = std::max(max_x, x);
min_y = std::min(min_y, y);
max_y = std::max(max_y, y);
}
}
}
if (generate_tex_coords)
{
float size_x = max_x - min_x;
float size_y = max_y - min_y;
if ((size_x != 0.0f) && (size_y != 0.0f))
{
float inv_size_x = 1.0f / size_x;
float inv_size_y = -1.0f / size_y;
for (unsigned int i = 0; i < m_tex_coords.size(); i += 2)
{
m_tex_coords[i] *= inv_size_x;
m_tex_coords[i + 1] *= inv_size_y;
}
}
}
return true;
}
bool GeometryBuffer::set_from_lines(const Lines& lines, float z)
{
m_vertices.clear();
m_tex_coords.clear();
unsigned int size = 6 * (unsigned int)lines.size();
if (size == 0)
return false;
m_vertices = std::vector<float>(size, 0.0f);
unsigned int coord = 0;
for (const Line& l : lines)
{
m_vertices[coord++] = unscale<float>(l.a(0));
m_vertices[coord++] = unscale<float>(l.a(1));
m_vertices[coord++] = z;
m_vertices[coord++] = unscale<float>(l.b(0));
m_vertices[coord++] = unscale<float>(l.b(1));
m_vertices[coord++] = z;
}
return true;
}
const float* GeometryBuffer::get_vertices() const
{
return m_vertices.data();
}
const float* GeometryBuffer::get_tex_coords() const
{
return m_tex_coords.data();
}
unsigned int GeometryBuffer::get_vertices_count() const
{
return (unsigned int)m_vertices.size() / 3;
}
Size::Size()
: m_width(0)
, m_height(0)
{
}
Size::Size(int width, int height)
: m_width(width)
, m_height(height)
{
}
int Size::get_width() const
{
return m_width;
}
void Size::set_width(int width)
{
m_width = width;
}
int Size::get_height() const
{
return m_height;
}
void Size::set_height(int height)
{
m_height = height;
}
Rect::Rect()
: m_left(0.0f)
, m_top(0.0f)
, m_right(0.0f)
, m_bottom(0.0f)
{
}
Rect::Rect(float left, float top, float right, float bottom)
: m_left(left)
, m_top(top)
, m_right(right)
, m_bottom(bottom)
{
}
float Rect::get_left() const
{
return m_left;
}
void Rect::set_left(float left)
{
m_left = left;
}
float Rect::get_top() const
{
return m_top;
}
void Rect::set_top(float top)
{
m_top = top;
}
float Rect::get_right() const
{
return m_right;
}
void Rect::set_right(float right)
{
m_right = right;
}
float Rect::get_bottom() const
{
return m_bottom;
}
void Rect::set_bottom(float bottom)
{
m_bottom = bottom;
}
GLCanvas3D::Camera::Camera()
: type(Ortho)
, zoom(1.0f)
, phi(45.0f)
// , distance(0.0f)
, target(0.0, 0.0, 0.0)
, m_theta(45.0f)
{
}
std::string GLCanvas3D::Camera::get_type_as_string() const
{
switch (type)
{
default:
case Unknown:
return "unknown";
// case Perspective:
// return "perspective";
case Ortho:
return "ortho";
};
}
float GLCanvas3D::Camera::get_theta() const
{
return m_theta;
}
void GLCanvas3D::Camera::set_theta(float theta)
{
m_theta = clamp(0.0f, GIMBALL_LOCK_THETA_MAX, theta);
}
GLCanvas3D::Bed::Bed()
: m_type(Custom)
{
}
bool GLCanvas3D::Bed::is_prusa() const
{
return (m_type == MK2) || (m_type == MK3);
}
bool GLCanvas3D::Bed::is_custom() const
{
return m_type == Custom;
}
const Pointfs& GLCanvas3D::Bed::get_shape() const
{
return m_shape;
}
bool GLCanvas3D::Bed::set_shape(const Pointfs& shape)
{
EType new_type = _detect_type();
if (m_shape == shape && m_type == new_type)
// No change, no need to update the UI.
return false;
m_shape = shape;
m_type = new_type;
_calc_bounding_box();
ExPolygon poly;
for (const Vec2d& p : m_shape)
{
poly.contour.append(Point(scale_(p(0)), scale_(p(1))));
}
_calc_triangles(poly);
const BoundingBox& bed_bbox = poly.contour.bounding_box();
_calc_gridlines(poly, bed_bbox);
m_polygon = offset_ex(poly.contour, (float)bed_bbox.radius() * 1.7f, jtRound, scale_(0.5))[0].contour;
// Let the calee to update the UI.
return true;
}
const BoundingBoxf3& GLCanvas3D::Bed::get_bounding_box() const
{
return m_bounding_box;
}
bool GLCanvas3D::Bed::contains(const Point& point) const
{
return m_polygon.contains(point);
}
Point GLCanvas3D::Bed::point_projection(const Point& point) const
{
return m_polygon.point_projection(point);
}
void GLCanvas3D::Bed::render(float theta) const
{
switch (m_type)
{
case MK2:
{
_render_mk2(theta);
break;
}
case MK3:
{
_render_mk3(theta);
break;
}
default:
case Custom:
{
_render_custom();
break;
}
}
}
void GLCanvas3D::Bed::_calc_bounding_box()
{
m_bounding_box = BoundingBoxf3();
for (const Vec2d& p : m_shape)
{
m_bounding_box.merge(Vec3d(p(0), p(1), 0.0));
}
}
void GLCanvas3D::Bed::_calc_triangles(const ExPolygon& poly)
{
Polygons triangles;
poly.triangulate(&triangles);
if (!m_triangles.set_from_triangles(triangles, GROUND_Z, m_type != Custom))
printf("Unable to create bed triangles\n");
}
void GLCanvas3D::Bed::_calc_gridlines(const ExPolygon& poly, const BoundingBox& bed_bbox)
{
Polylines axes_lines;
for (coord_t x = bed_bbox.min(0); x <= bed_bbox.max(0); x += scale_(10.0))
{
Polyline line;
line.append(Point(x, bed_bbox.min(1)));
line.append(Point(x, bed_bbox.max(1)));
axes_lines.push_back(line);
}
for (coord_t y = bed_bbox.min(1); y <= bed_bbox.max(1); y += scale_(10.0))
{
Polyline line;
line.append(Point(bed_bbox.min(0), y));
line.append(Point(bed_bbox.max(0), y));
axes_lines.push_back(line);
}
// clip with a slightly grown expolygon because our lines lay on the contours and may get erroneously clipped
Lines gridlines = to_lines(intersection_pl(axes_lines, offset(poly, SCALED_EPSILON)));
// append bed contours
Lines contour_lines = to_lines(poly);
std::copy(contour_lines.begin(), contour_lines.end(), std::back_inserter(gridlines));
if (!m_gridlines.set_from_lines(gridlines, GROUND_Z))
printf("Unable to create bed grid lines\n");
}
GLCanvas3D::Bed::EType GLCanvas3D::Bed::_detect_type() const
{
EType type = Custom;
const PresetBundle* bundle = get_preset_bundle();
if (bundle != nullptr)
{
const Preset* curr = &bundle->printers.get_selected_preset();
while (curr != nullptr)
{
if (curr->config.has("bed_shape") && _are_equal(m_shape, dynamic_cast<const ConfigOptionPoints*>(curr->config.option("bed_shape"))->values))
{
if ((curr->vendor != nullptr) && (curr->vendor->name == "Prusa Research"))
{
if (boost::contains(curr->name, "MK2"))
{
type = MK2;
break;
}
else if (boost::contains(curr->name, "MK3"))
{
type = MK3;
break;
}
}
}
curr = bundle->printers.get_preset_parent(*curr);
}
}
return type;
}
void GLCanvas3D::Bed::_render_mk2(float theta) const
{
std::string filename = resources_dir() + "/icons/bed/mk2_top.png";
if ((m_top_texture.get_id() == 0) || (m_top_texture.get_source() != filename))
{
if (!m_top_texture.load_from_file(filename, true))
{
_render_custom();
return;
}
}
filename = resources_dir() + "/icons/bed/mk2_bottom.png";
if ((m_bottom_texture.get_id() == 0) || (m_bottom_texture.get_source() != filename))
{
if (!m_bottom_texture.load_from_file(filename, true))
{
_render_custom();
return;
}
}
_render_prusa(theta);
}
void GLCanvas3D::Bed::_render_mk3(float theta) const
{
std::string filename = resources_dir() + "/icons/bed/mk3_top.png";
if ((m_top_texture.get_id() == 0) || (m_top_texture.get_source() != filename))
{
if (!m_top_texture.load_from_file(filename, true))
{
_render_custom();
return;
}
}
filename = resources_dir() + "/icons/bed/mk3_bottom.png";
if ((m_bottom_texture.get_id() == 0) || (m_bottom_texture.get_source() != filename))
{
if (!m_bottom_texture.load_from_file(filename, true))
{
_render_custom();
return;
}
}
_render_prusa(theta);
}
void GLCanvas3D::Bed::_render_prusa(float theta) const
{
unsigned int triangles_vcount = m_triangles.get_vertices_count();
if (triangles_vcount > 0)
{
::glEnable(GL_DEPTH_TEST);
::glEnable(GL_BLEND);
::glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
::glEnable(GL_TEXTURE_2D);
::glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
::glEnableClientState(GL_VERTEX_ARRAY);
::glEnableClientState(GL_TEXTURE_COORD_ARRAY);
if (theta > 90.0f)
::glFrontFace(GL_CW);
::glBindTexture(GL_TEXTURE_2D, (theta <= 90.0f) ? (GLuint)m_top_texture.get_id() : (GLuint)m_bottom_texture.get_id());
::glVertexPointer(3, GL_FLOAT, 0, (GLvoid*)m_triangles.get_vertices());
::glTexCoordPointer(2, GL_FLOAT, 0, (GLvoid*)m_triangles.get_tex_coords());
::glDrawArrays(GL_TRIANGLES, 0, (GLsizei)triangles_vcount);
if (theta > 90.0f)
::glFrontFace(GL_CCW);
::glBindTexture(GL_TEXTURE_2D, 0);
::glDisableClientState(GL_TEXTURE_COORD_ARRAY);
::glDisableClientState(GL_VERTEX_ARRAY);
::glDisable(GL_TEXTURE_2D);
::glDisable(GL_BLEND);
}
}
void GLCanvas3D::Bed::_render_custom() const
{
m_top_texture.reset();
m_bottom_texture.reset();
unsigned int triangles_vcount = m_triangles.get_vertices_count();
if (triangles_vcount > 0)
{
::glEnable(GL_LIGHTING);
::glDisable(GL_DEPTH_TEST);
::glEnable(GL_BLEND);
::glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
::glEnableClientState(GL_VERTEX_ARRAY);
::glColor4f(0.8f, 0.6f, 0.5f, 0.4f);
::glNormal3d(0.0f, 0.0f, 1.0f);
::glVertexPointer(3, GL_FLOAT, 0, (GLvoid*)m_triangles.get_vertices());
::glDrawArrays(GL_TRIANGLES, 0, (GLsizei)triangles_vcount);
// draw grid
unsigned int gridlines_vcount = m_gridlines.get_vertices_count();
// we need depth test for grid, otherwise it would disappear when looking the object from below
::glEnable(GL_DEPTH_TEST);
::glLineWidth(3.0f);
::glColor4f(0.2f, 0.2f, 0.2f, 0.4f);
::glVertexPointer(3, GL_FLOAT, 0, (GLvoid*)m_gridlines.get_vertices());
::glDrawArrays(GL_LINES, 0, (GLsizei)gridlines_vcount);
::glDisableClientState(GL_VERTEX_ARRAY);
::glDisable(GL_BLEND);
::glDisable(GL_LIGHTING);
}
}
bool GLCanvas3D::Bed::_are_equal(const Pointfs& bed_1, const Pointfs& bed_2)
{
if (bed_1.size() != bed_2.size())
return false;
for (unsigned int i = 0; i < (unsigned int)bed_1.size(); ++i)
{
if (bed_1[i] != bed_2[i])
return false;
}
return true;
}
GLCanvas3D::Axes::Axes()
: origin(0, 0, 0), length(0.0f)
{
}
void GLCanvas3D::Axes::render(bool depth_test) const
{
if (depth_test)
::glEnable(GL_DEPTH_TEST);
else
::glDisable(GL_DEPTH_TEST);
::glLineWidth(2.0f);
::glBegin(GL_LINES);
// draw line for x axis
::glColor3f(1.0f, 0.0f, 0.0f);
::glVertex3f((GLfloat)origin(0), (GLfloat)origin(1), (GLfloat)origin(2));
::glVertex3f((GLfloat)origin(0) + length, (GLfloat)origin(1), (GLfloat)origin(2));
// draw line for y axis
::glColor3f(0.0f, 1.0f, 0.0f);
::glVertex3f((GLfloat)origin(0), (GLfloat)origin(1), (GLfloat)origin(2));
::glVertex3f((GLfloat)origin(0), (GLfloat)origin(1) + length, (GLfloat)origin(2));
::glEnd();
// draw line for Z axis
// (re-enable depth test so that axis is correctly shown when objects are behind it)
if (!depth_test)
::glEnable(GL_DEPTH_TEST);
::glBegin(GL_LINES);
::glColor3f(0.0f, 0.0f, 1.0f);
::glVertex3f((GLfloat)origin(0), (GLfloat)origin(1), (GLfloat)origin(2));
::glVertex3f((GLfloat)origin(0), (GLfloat)origin(1), (GLfloat)origin(2) + length);
::glEnd();
}
GLCanvas3D::CuttingPlane::CuttingPlane()
: m_z(-1.0f)
{
}
bool GLCanvas3D::CuttingPlane::set(float z, const ExPolygons& polygons)
{
m_z = z;
// grow slices in order to display them better
ExPolygons expolygons = offset_ex(polygons, scale_(0.1));
Lines lines = to_lines(expolygons);
return m_lines.set_from_lines(lines, m_z);
}
void GLCanvas3D::CuttingPlane::render(const BoundingBoxf3& bb) const
{
_render_plane(bb);
_render_contour();
}
void GLCanvas3D::CuttingPlane::_render_plane(const BoundingBoxf3& bb) const
{
if (m_z >= 0.0f)
{
::glDisable(GL_CULL_FACE);
::glEnable(GL_BLEND);
::glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
float margin = 20.0f;
float min_x = bb.min(0) - margin;
float max_x = bb.max(0) + margin;
float min_y = bb.min(1) - margin;
float max_y = bb.max(1) + margin;
::glBegin(GL_QUADS);
::glColor4f(0.8f, 0.8f, 0.8f, 0.5f);
::glVertex3f(min_x, min_y, m_z);
::glVertex3f(max_x, min_y, m_z);
::glVertex3f(max_x, max_y, m_z);
::glVertex3f(min_x, max_y, m_z);
::glEnd();
::glEnable(GL_CULL_FACE);
::glDisable(GL_BLEND);
}
}
void GLCanvas3D::CuttingPlane::_render_contour() const
{
::glEnableClientState(GL_VERTEX_ARRAY);
if (m_z >= 0.0f)
{
unsigned int lines_vcount = m_lines.get_vertices_count();
::glLineWidth(2.0f);
::glColor3f(0.0f, 0.0f, 0.0f);
::glVertexPointer(3, GL_FLOAT, 0, (GLvoid*)m_lines.get_vertices());
::glDrawArrays(GL_LINES, 0, (GLsizei)lines_vcount);
}
::glDisableClientState(GL_VERTEX_ARRAY);
}
GLCanvas3D::Shader::Shader()
: m_shader(nullptr)
{
}
GLCanvas3D::Shader::~Shader()
{
_reset();
}
bool GLCanvas3D::Shader::init(const std::string& vertex_shader_filename, const std::string& fragment_shader_filename)
{
if (is_initialized())
return true;
m_shader = new GLShader();
if (m_shader != nullptr)
{
if (!m_shader->load_from_file(fragment_shader_filename.c_str(), vertex_shader_filename.c_str()))
{
std::cout << "Compilaton of shader failed:" << std::endl;
std::cout << m_shader->last_error << std::endl;
_reset();
return false;
}
}
return true;
}
bool GLCanvas3D::Shader::is_initialized() const
{
return (m_shader != nullptr);
}
bool GLCanvas3D::Shader::start_using() const
{
if (is_initialized())
{
m_shader->enable();
return true;
}
else
return false;
}
void GLCanvas3D::Shader::stop_using() const
{
if (m_shader != nullptr)
m_shader->disable();
}
void GLCanvas3D::Shader::set_uniform(const std::string& name, float value) const
{
if (m_shader != nullptr)
m_shader->set_uniform(name.c_str(), value);
}
void GLCanvas3D::Shader::set_uniform(const std::string& name, const float* matrix) const
{
if (m_shader != nullptr)
m_shader->set_uniform(name.c_str(), matrix);
}
const GLShader* GLCanvas3D::Shader::get_shader() const
{
return m_shader;
}
void GLCanvas3D::Shader::_reset()
{
if (m_shader != nullptr)
{
m_shader->release();
delete m_shader;
m_shader = nullptr;
}
}
GLCanvas3D::LayersEditing::LayersEditing()
: m_use_legacy_opengl(false)
, m_enabled(false)
, m_z_texture_id(0)
, state(Unknown)
, band_width(2.0f)
, strength(0.005f)
, last_object_id(-1)
, last_z(0.0f)
, last_action(0)
{
}
GLCanvas3D::LayersEditing::~LayersEditing()
{
if (m_z_texture_id != 0)
{
::glDeleteTextures(1, &m_z_texture_id);
m_z_texture_id = 0;
}
}
bool GLCanvas3D::LayersEditing::init(const std::string& vertex_shader_filename, const std::string& fragment_shader_filename)
{
if (!m_shader.init(vertex_shader_filename, fragment_shader_filename))
return false;
::glGenTextures(1, (GLuint*)&m_z_texture_id);
::glBindTexture(GL_TEXTURE_2D, m_z_texture_id);
::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP);
::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP);
::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_NEAREST);
::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 1);
::glBindTexture(GL_TEXTURE_2D, 0);
return true;
}
bool GLCanvas3D::LayersEditing::is_allowed() const
{
return !m_use_legacy_opengl && m_shader.is_initialized();
}
void GLCanvas3D::LayersEditing::set_use_legacy_opengl(bool use_legacy_opengl)
{
m_use_legacy_opengl = use_legacy_opengl;
}
bool GLCanvas3D::LayersEditing::is_enabled() const
{
return m_enabled;
}
void GLCanvas3D::LayersEditing::set_enabled(bool enabled)
{
m_enabled = is_allowed() && enabled;
}
unsigned int GLCanvas3D::LayersEditing::get_z_texture_id() const
{
return m_z_texture_id;
}
void GLCanvas3D::LayersEditing::render(const GLCanvas3D& canvas, const PrintObject& print_object, const GLVolume& volume) const
{
if (!m_enabled)
return;
const Rect& bar_rect = get_bar_rect_viewport(canvas);
const Rect& reset_rect = get_reset_rect_viewport(canvas);
::glDisable(GL_DEPTH_TEST);
// The viewport and camera are set to complete view and glOrtho(-$x / 2, $x / 2, -$y / 2, $y / 2, -$depth, $depth),
// where x, y is the window size divided by $self->_zoom.
::glPushMatrix();
::glLoadIdentity();
_render_tooltip_texture(canvas, bar_rect, reset_rect);
_render_reset_texture(reset_rect);
_render_active_object_annotations(canvas, volume, print_object, bar_rect);
_render_profile(print_object, bar_rect);
// Revert the matrices.
::glPopMatrix();
::glEnable(GL_DEPTH_TEST);
}
int GLCanvas3D::LayersEditing::get_shader_program_id() const
{
const GLShader* shader = m_shader.get_shader();
return (shader != nullptr) ? shader->shader_program_id : -1;
}
float GLCanvas3D::LayersEditing::get_cursor_z_relative(const GLCanvas3D& canvas)
{
const Point& mouse_pos = canvas.get_local_mouse_position();
const Rect& rect = get_bar_rect_screen(canvas);
float x = (float)mouse_pos(0);
float y = (float)mouse_pos(1);
float t = rect.get_top();
float b = rect.get_bottom();
return ((rect.get_left() <= x) && (x <= rect.get_right()) && (t <= y) && (y <= b)) ?
// Inside the bar.
(b - y - 1.0f) / (b - t - 1.0f) :
// Outside the bar.
-1000.0f;
}
bool GLCanvas3D::LayersEditing::bar_rect_contains(const GLCanvas3D& canvas, float x, float y)
{
const Rect& rect = get_bar_rect_screen(canvas);
return (rect.get_left() <= x) && (x <= rect.get_right()) && (rect.get_top() <= y) && (y <= rect.get_bottom());
}
bool GLCanvas3D::LayersEditing::reset_rect_contains(const GLCanvas3D& canvas, float x, float y)
{
const Rect& rect = get_reset_rect_screen(canvas);
return (rect.get_left() <= x) && (x <= rect.get_right()) && (rect.get_top() <= y) && (y <= rect.get_bottom());
}
Rect GLCanvas3D::LayersEditing::get_bar_rect_screen(const GLCanvas3D& canvas)
{
const Size& cnv_size = canvas.get_canvas_size();
float w = (float)cnv_size.get_width();
float h = (float)cnv_size.get_height();
return Rect(w - VARIABLE_LAYER_THICKNESS_BAR_WIDTH, 0.0f, w, h - VARIABLE_LAYER_THICKNESS_RESET_BUTTON_HEIGHT);
}
Rect GLCanvas3D::LayersEditing::get_reset_rect_screen(const GLCanvas3D& canvas)
{
const Size& cnv_size = canvas.get_canvas_size();
float w = (float)cnv_size.get_width();
float h = (float)cnv_size.get_height();
return Rect(w - VARIABLE_LAYER_THICKNESS_BAR_WIDTH, h - VARIABLE_LAYER_THICKNESS_RESET_BUTTON_HEIGHT, w, h);
}
Rect GLCanvas3D::LayersEditing::get_bar_rect_viewport(const GLCanvas3D& canvas)
{
const Size& cnv_size = canvas.get_canvas_size();
float half_w = 0.5f * (float)cnv_size.get_width();
float half_h = 0.5f * (float)cnv_size.get_height();
float zoom = canvas.get_camera_zoom();
float inv_zoom = (zoom != 0.0f) ? 1.0f / zoom : 0.0f;
return Rect((half_w - VARIABLE_LAYER_THICKNESS_BAR_WIDTH) * inv_zoom, half_h * inv_zoom, half_w * inv_zoom, (-half_h + VARIABLE_LAYER_THICKNESS_RESET_BUTTON_HEIGHT) * inv_zoom);
}
Rect GLCanvas3D::LayersEditing::get_reset_rect_viewport(const GLCanvas3D& canvas)
{
const Size& cnv_size = canvas.get_canvas_size();
float half_w = 0.5f * (float)cnv_size.get_width();
float half_h = 0.5f * (float)cnv_size.get_height();
float zoom = canvas.get_camera_zoom();
float inv_zoom = (zoom != 0.0f) ? 1.0f / zoom : 0.0f;
return Rect((half_w - VARIABLE_LAYER_THICKNESS_BAR_WIDTH) * inv_zoom, (-half_h + VARIABLE_LAYER_THICKNESS_RESET_BUTTON_HEIGHT) * inv_zoom, half_w * inv_zoom, -half_h * inv_zoom);
}
bool GLCanvas3D::LayersEditing::_is_initialized() const
{
return m_shader.is_initialized();
}
void GLCanvas3D::LayersEditing::_render_tooltip_texture(const GLCanvas3D& canvas, const Rect& bar_rect, const Rect& reset_rect) const
{
if (m_tooltip_texture.get_id() == 0)
{
std::string filename = resources_dir() + "/icons/variable_layer_height_tooltip.png";
if (!m_tooltip_texture.load_from_file(filename, false))
return;
}
float zoom = canvas.get_camera_zoom();
float inv_zoom = (zoom != 0.0f) ? 1.0f / zoom : 0.0f;
float gap = 10.0f * inv_zoom;
float bar_left = bar_rect.get_left();
float reset_bottom = reset_rect.get_bottom();
float l = bar_left - (float)m_tooltip_texture.get_width() * inv_zoom - gap;
float r = bar_left - gap;
float t = reset_bottom + (float)m_tooltip_texture.get_height() * inv_zoom + gap;
float b = reset_bottom + gap;
GLTexture::render_texture(m_tooltip_texture.get_id(), l, r, b, t);
}
void GLCanvas3D::LayersEditing::_render_reset_texture(const Rect& reset_rect) const
{
if (m_reset_texture.get_id() == 0)
{
std::string filename = resources_dir() + "/icons/variable_layer_height_reset.png";
if (!m_reset_texture.load_from_file(filename, false))
return;
}
GLTexture::render_texture(m_reset_texture.get_id(), reset_rect.get_left(), reset_rect.get_right(), reset_rect.get_bottom(), reset_rect.get_top());
}
void GLCanvas3D::LayersEditing::_render_active_object_annotations(const GLCanvas3D& canvas, const GLVolume& volume, const PrintObject& print_object, const Rect& bar_rect) const
{
float max_z = print_object.model_object()->bounding_box().max(2);
m_shader.start_using();
m_shader.set_uniform("z_to_texture_row", (float)volume.layer_height_texture_z_to_row_id());
m_shader.set_uniform("z_texture_row_to_normalized", 1.0f / (float)volume.layer_height_texture_height());
m_shader.set_uniform("z_cursor", max_z * get_cursor_z_relative(canvas));
m_shader.set_uniform("z_cursor_band_width", band_width);
// The shader requires the original model coordinates when rendering to the texture, so we pass it the unit matrix
m_shader.set_uniform("volume_world_matrix", UNIT_MATRIX);
GLsizei w = (GLsizei)volume.layer_height_texture_width();
GLsizei h = (GLsizei)volume.layer_height_texture_height();
GLsizei half_w = w / 2;
GLsizei half_h = h / 2;
::glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
::glBindTexture(GL_TEXTURE_2D, m_z_texture_id);
::glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, w, h, 0, GL_RGBA, GL_UNSIGNED_BYTE, 0);
::glTexImage2D(GL_TEXTURE_2D, 1, GL_RGBA, half_w, half_h, 0, GL_RGBA, GL_UNSIGNED_BYTE, 0);
::glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, w, h, GL_RGBA, GL_UNSIGNED_BYTE, volume.layer_height_texture_data_ptr_level0());
::glTexSubImage2D(GL_TEXTURE_2D, 1, 0, 0, half_w, half_h, GL_RGBA, GL_UNSIGNED_BYTE, volume.layer_height_texture_data_ptr_level1());
// Render the color bar
float l = bar_rect.get_left();
float r = bar_rect.get_right();
float t = bar_rect.get_top();
float b = bar_rect.get_bottom();
::glBegin(GL_QUADS);
::glVertex3f(l, b, 0.0f);
::glVertex3f(r, b, 0.0f);
::glVertex3f(r, t, max_z);
::glVertex3f(l, t, max_z);
::glEnd();
::glBindTexture(GL_TEXTURE_2D, 0);
m_shader.stop_using();
}
void GLCanvas3D::LayersEditing::_render_profile(const PrintObject& print_object, const Rect& bar_rect) const
{
// FIXME show some kind of legend.
// Get a maximum layer height value.
// FIXME This is a duplicate code of Slicing.cpp.
double layer_height_max = DBL_MAX;
const PrintConfig& print_config = print_object.print()->config;
const std::vector<double>& nozzle_diameters = dynamic_cast<const ConfigOptionFloats*>(print_config.option("nozzle_diameter"))->values;
const std::vector<double>& layer_heights_min = dynamic_cast<const ConfigOptionFloats*>(print_config.option("min_layer_height"))->values;
const std::vector<double>& layer_heights_max = dynamic_cast<const ConfigOptionFloats*>(print_config.option("max_layer_height"))->values;
for (unsigned int i = 0; i < (unsigned int)nozzle_diameters.size(); ++i)
{
double lh_min = (layer_heights_min[i] == 0.0) ? 0.07 : std::max(0.01, layer_heights_min[i]);
double lh_max = (layer_heights_max[i] == 0.0) ? (0.75 * nozzle_diameters[i]) : layer_heights_max[i];
layer_height_max = std::min(layer_height_max, std::max(lh_min, lh_max));
}
// Make the vertical bar a bit wider so the layer height curve does not touch the edge of the bar region.
layer_height_max *= 1.12;
double max_z = unscale<double>(print_object.size(2));
double layer_height = dynamic_cast<const ConfigOptionFloat*>(print_object.config.option("layer_height"))->value;
float l = bar_rect.get_left();
float w = bar_rect.get_right() - l;
float b = bar_rect.get_bottom();
float t = bar_rect.get_top();
float h = t - b;
float scale_x = w / (float)layer_height_max;
float scale_y = h / (float)max_z;
float x = l + (float)layer_height * scale_x;
// Baseline
::glColor3f(0.0f, 0.0f, 0.0f);
::glBegin(GL_LINE_STRIP);
::glVertex2f(x, b);
::glVertex2f(x, t);
::glEnd();
// Curve
const ModelObject* model_object = print_object.model_object();
if (model_object->layer_height_profile_valid)
{
const std::vector<double>& profile = model_object->layer_height_profile;
::glColor3f(0.0f, 0.0f, 1.0f);
::glBegin(GL_LINE_STRIP);
for (unsigned int i = 0; i < profile.size(); i += 2)
{
::glVertex2f(l + (float)profile[i + 1] * scale_x, b + (float)profile[i] * scale_y);
}
::glEnd();
}
}
const Point GLCanvas3D::Mouse::Drag::Invalid_2D_Point(INT_MAX, INT_MAX);
const Vec3d GLCanvas3D::Mouse::Drag::Invalid_3D_Point(DBL_MAX, DBL_MAX, DBL_MAX);
GLCanvas3D::Mouse::Drag::Drag()
: start_position_2D(Invalid_2D_Point)
, start_position_3D(Invalid_3D_Point)
, volume_center_offset(0, 0, 0)
, move_with_shift(false)
, move_volume_idx(-1)
, gizmo_volume_idx(-1)
{
}
GLCanvas3D::Mouse::Mouse()
: dragging(false)
, position(DBL_MAX, DBL_MAX)
{
}
void GLCanvas3D::Mouse::set_start_position_2D_as_invalid()
{
drag.start_position_2D = Drag::Invalid_2D_Point;
}
void GLCanvas3D::Mouse::set_start_position_3D_as_invalid()
{
drag.start_position_3D = Drag::Invalid_3D_Point;
}
bool GLCanvas3D::Mouse::is_start_position_2D_defined() const
{
return (drag.start_position_2D != Drag::Invalid_2D_Point);
}
bool GLCanvas3D::Mouse::is_start_position_3D_defined() const
{
return (drag.start_position_3D != Drag::Invalid_3D_Point);
}
const float GLCanvas3D::Gizmos::OverlayTexturesScale = 0.75f;
const float GLCanvas3D::Gizmos::OverlayOffsetX = 10.0f * OverlayTexturesScale;
const float GLCanvas3D::Gizmos::OverlayGapY = 5.0f * OverlayTexturesScale;
GLCanvas3D::Gizmos::Gizmos()
: m_enabled(false)
, m_current(Undefined)
, m_dragging(false)
{
}
GLCanvas3D::Gizmos::~Gizmos()
{
_reset();
}
bool GLCanvas3D::Gizmos::init()
{
#if ENABLE_GIZMOS_3D
GLGizmoBase* gizmo = new GLGizmoScale3D;
#else
GLGizmoBase* gizmo = new GLGizmoScale;
#endif // ENABLE_GIZMOS_3D
if (gizmo == nullptr)
return false;
if (!gizmo->init())
return false;
m_gizmos.insert(GizmosMap::value_type(Scale, gizmo));
#if ENABLE_GIZMOS_3D
gizmo = new GLGizmoRotate3D;
#else
gizmo = new GLGizmoRotate(GLGizmoRotate::Z);
#endif // ENABLE_GIZMOS_3D
if (gizmo == nullptr)
{
_reset();
return false;
}
if (!gizmo->init())
{
_reset();
return false;
}
m_gizmos.insert(GizmosMap::value_type(Rotate, gizmo));
return true;
}
bool GLCanvas3D::Gizmos::is_enabled() const
{
return m_enabled;
}
void GLCanvas3D::Gizmos::set_enabled(bool enable)
{
m_enabled = enable;
}
void GLCanvas3D::Gizmos::update_hover_state(const GLCanvas3D& canvas, const Vec2d& mouse_pos)
{
if (!m_enabled)
return;
float cnv_h = (float)canvas.get_canvas_size().get_height();
float height = _get_total_overlay_height();
float top_y = 0.5f * (cnv_h - height);
for (GizmosMap::const_iterator it = m_gizmos.begin(); it != m_gizmos.end(); ++it)
{
if (it->second == nullptr)
continue;
float tex_size = (float)it->second->get_textures_size() * OverlayTexturesScale;
float half_tex_size = 0.5f * tex_size;
// we currently use circular icons for gizmo, so we check the radius
if (it->second->get_state() != GLGizmoBase::On)
{
bool inside = (mouse_pos - Vec2d(OverlayOffsetX + half_tex_size, top_y + half_tex_size)).norm() < half_tex_size;
it->second->set_state(inside ? GLGizmoBase::Hover : GLGizmoBase::Off);
}
top_y += (tex_size + OverlayGapY);
}
}
void GLCanvas3D::Gizmos::update_on_off_state(const GLCanvas3D& canvas, const Vec2d& mouse_pos)
{
if (!m_enabled)
return;
float cnv_h = (float)canvas.get_canvas_size().get_height();
float height = _get_total_overlay_height();
float top_y = 0.5f * (cnv_h - height);
for (GizmosMap::const_iterator it = m_gizmos.begin(); it != m_gizmos.end(); ++it)
{
if (it->second == nullptr)
continue;
float tex_size = (float)it->second->get_textures_size() * OverlayTexturesScale;
float half_tex_size = 0.5f * tex_size;
// we currently use circular icons for gizmo, so we check the radius
if ((mouse_pos - Vec2d(OverlayOffsetX + half_tex_size, top_y + half_tex_size)).norm() < half_tex_size)
{
if ((it->second->get_state() == GLGizmoBase::On))
{
it->second->set_state(GLGizmoBase::Off);
m_current = Undefined;
}
else
{
it->second->set_state(GLGizmoBase::On);
m_current = it->first;
}
}
else
it->second->set_state(GLGizmoBase::Off);
top_y += (tex_size + OverlayGapY);
}
}
void GLCanvas3D::Gizmos::reset_all_states()
{
if (!m_enabled)
return;
for (GizmosMap::const_iterator it = m_gizmos.begin(); it != m_gizmos.end(); ++it)
{
if (it->second != nullptr)
{
it->second->set_state(GLGizmoBase::Off);
it->second->set_hover_id(-1);
}
}
m_current = Undefined;
}
void GLCanvas3D::Gizmos::set_hover_id(int id)
{
if (!m_enabled)
return;
for (GizmosMap::const_iterator it = m_gizmos.begin(); it != m_gizmos.end(); ++it)
{
if ((it->second != nullptr) && (it->second->get_state() == GLGizmoBase::On))
it->second->set_hover_id(id);
}
}
bool GLCanvas3D::Gizmos::overlay_contains_mouse(const GLCanvas3D& canvas, const Vec2d& mouse_pos) const
{
if (!m_enabled)
return false;
float cnv_h = (float)canvas.get_canvas_size().get_height();
float height = _get_total_overlay_height();
float top_y = 0.5f * (cnv_h - height);
for (GizmosMap::const_iterator it = m_gizmos.begin(); it != m_gizmos.end(); ++it)
{
if (it->second == nullptr)
continue;
float tex_size = (float)it->second->get_textures_size() * OverlayTexturesScale;
float half_tex_size = 0.5f * tex_size;
// we currently use circular icons for gizmo, so we check the radius
if ((mouse_pos - Vec2d(OverlayOffsetX + half_tex_size, top_y + half_tex_size)).norm() < half_tex_size)
return true;
top_y += (tex_size + OverlayGapY);
}
return false;
}
bool GLCanvas3D::Gizmos::grabber_contains_mouse() const
{
if (!m_enabled)
return false;
GLGizmoBase* curr = _get_current();
return (curr != nullptr) ? (curr->get_hover_id() != -1) : false;
}
void GLCanvas3D::Gizmos::update(const Linef3& mouse_ray)
{
if (!m_enabled)
return;
GLGizmoBase* curr = _get_current();
if (curr != nullptr)
curr->update(mouse_ray);
}
void GLCanvas3D::Gizmos::refresh()
{
if (!m_enabled)
return;
GLGizmoBase* curr = _get_current();
if (curr != nullptr)
curr->refresh();
}
GLCanvas3D::Gizmos::EType GLCanvas3D::Gizmos::get_current_type() const
{
return m_current;
}
bool GLCanvas3D::Gizmos::is_running() const
{
if (!m_enabled)
return false;
GLGizmoBase* curr = _get_current();
return (curr != nullptr) ? (curr->get_state() == GLGizmoBase::On) : false;
}
bool GLCanvas3D::Gizmos::is_dragging() const
{
return m_dragging;
}
void GLCanvas3D::Gizmos::start_dragging()
{
m_dragging = true;
GLGizmoBase* curr = _get_current();
if (curr != nullptr)
curr->start_dragging();
}
void GLCanvas3D::Gizmos::stop_dragging()
{
m_dragging = false;
GLGizmoBase* curr = _get_current();
if (curr != nullptr)
curr->stop_dragging();
}
float GLCanvas3D::Gizmos::get_scale() const
{
if (!m_enabled)
return 1.0f;
GizmosMap::const_iterator it = m_gizmos.find(Scale);
#if ENABLE_GIZMOS_3D
return (it != m_gizmos.end()) ? reinterpret_cast<GLGizmoScale3D*>(it->second)->get_scale_x() : 1.0f;
#else
return (it != m_gizmos.end()) ? reinterpret_cast<GLGizmoScale*>(it->second)->get_scale() : 1.0f;
#endif // ENABLE_GIZMOS_3D
}
void GLCanvas3D::Gizmos::set_scale(float scale)
{
if (!m_enabled)
return;
GizmosMap::const_iterator it = m_gizmos.find(Scale);
if (it != m_gizmos.end())
#if ENABLE_GIZMOS_3D
reinterpret_cast<GLGizmoScale3D*>(it->second)->set_scale(scale);
#else
reinterpret_cast<GLGizmoScale*>(it->second)->set_scale(scale);
#endif // ENABLE_GIZMOS_3D
}
float GLCanvas3D::Gizmos::get_angle_z() const
{
if (!m_enabled)
return 0.0f;
GizmosMap::const_iterator it = m_gizmos.find(Rotate);
#if ENABLE_GIZMOS_3D
return (it != m_gizmos.end()) ? reinterpret_cast<GLGizmoRotate3D*>(it->second)->get_angle_z() : 0.0f;
#else
return (it != m_gizmos.end()) ? reinterpret_cast<GLGizmoRotate*>(it->second)->get_angle() : 0.0f;
#endif // ENABLE_GIZMOS_3D
}
void GLCanvas3D::Gizmos::set_angle_z(float angle_z)
{
if (!m_enabled)
return;
GizmosMap::const_iterator it = m_gizmos.find(Rotate);
if (it != m_gizmos.end())
#if ENABLE_GIZMOS_3D
reinterpret_cast<GLGizmoRotate3D*>(it->second)->set_angle_z(angle_z);
#else
reinterpret_cast<GLGizmoRotate*>(it->second)->set_angle(angle_z);
#endif // ENABLE_GIZMOS_3D
}
void GLCanvas3D::Gizmos::render_current_gizmo(const BoundingBoxf3& box) const
{
if (!m_enabled)
return;
if (box.radius() > 0.0)
_render_current_gizmo(box);
}
void GLCanvas3D::Gizmos::render_current_gizmo_for_picking_pass(const BoundingBoxf3& box) const
{
if (!m_enabled)
return;
GLGizmoBase* curr = _get_current();
if (curr != nullptr)
curr->render_for_picking(box);
}
void GLCanvas3D::Gizmos::render_overlay(const GLCanvas3D& canvas) const
{
if (!m_enabled)
return;
::glDisable(GL_DEPTH_TEST);
::glPushMatrix();
::glLoadIdentity();
_render_overlay(canvas);
::glPopMatrix();
}
void GLCanvas3D::Gizmos::_reset()
{
for (GizmosMap::value_type& gizmo : m_gizmos)
{
delete gizmo.second;
gizmo.second = nullptr;
}
m_gizmos.clear();
}
void GLCanvas3D::Gizmos::_render_overlay(const GLCanvas3D& canvas) const
{
if (m_gizmos.empty())
return;
float cnv_w = (float)canvas.get_canvas_size().get_width();
float zoom = canvas.get_camera_zoom();
float inv_zoom = (zoom != 0.0f) ? 1.0f / zoom : 0.0f;
float height = _get_total_overlay_height();
float top_x = (OverlayOffsetX - 0.5f * cnv_w) * inv_zoom;
float top_y = 0.5f * height * inv_zoom;
float scaled_gap_y = OverlayGapY * inv_zoom;
for (GizmosMap::const_iterator it = m_gizmos.begin(); it != m_gizmos.end(); ++it)
{
float tex_size = (float)it->second->get_textures_size() * OverlayTexturesScale * inv_zoom;
GLTexture::render_texture(it->second->get_texture_id(), top_x, top_x + tex_size, top_y - tex_size, top_y);
top_y -= (tex_size + scaled_gap_y);
}
}
void GLCanvas3D::Gizmos::_render_current_gizmo(const BoundingBoxf3& box) const
{
GLGizmoBase* curr = _get_current();
if (curr != nullptr)
curr->render(box);
}
float GLCanvas3D::Gizmos::_get_total_overlay_height() const
{
float height = 0.0f;
for (GizmosMap::const_iterator it = m_gizmos.begin(); it != m_gizmos.end(); ++it)
{
height += (float)it->second->get_textures_size();
if (std::distance(it, m_gizmos.end()) > 1)
height += OverlayGapY;
}
return height;
}
const unsigned char GLCanvas3D::WarningTexture::Background_Color[3] = { 9, 91, 134 };
const unsigned char GLCanvas3D::WarningTexture::Opacity = 255;
GLCanvas3D::WarningTexture::WarningTexture()
: GUI::GLTexture()
, m_original_width(0)
, m_original_height(0)
{
}
bool GLCanvas3D::WarningTexture::generate(const std::string& msg)
{
reset();
if (msg.empty())
return false;
wxMemoryDC memDC;
// select default font
wxFont font = wxSystemSettings::GetFont(wxSYS_DEFAULT_GUI_FONT);
font.MakeLarger();
font.MakeBold();
memDC.SetFont(font);
// calculates texture size
wxCoord w, h;
memDC.GetTextExtent(msg, &w, &h);
int pow_of_two_size = next_highest_power_of_2((int)std::max(w, h));
m_original_width = (int)w;
m_original_height = (int)h;
m_width = pow_of_two_size;
m_height = pow_of_two_size;
// generates bitmap
wxBitmap bitmap(m_width, m_height);
#if defined(__APPLE__) || defined(_MSC_VER)
bitmap.UseAlpha();
#endif
memDC.SelectObject(bitmap);
memDC.SetBackground(wxBrush(wxColour(Background_Color[0], Background_Color[1], Background_Color[2])));
memDC.Clear();
memDC.SetTextForeground(*wxWHITE);
// draw message
memDC.DrawText(msg, 0, 0);
memDC.SelectObject(wxNullBitmap);
// Convert the bitmap into a linear data ready to be loaded into the GPU.
wxImage image = bitmap.ConvertToImage();
image.SetMaskColour(Background_Color[0], Background_Color[1], Background_Color[2]);
// prepare buffer
std::vector<unsigned char> data(4 * m_width * m_height, 0);
for (int h = 0; h < m_height; ++h)
{
int hh = h * m_width;
unsigned char* px_ptr = data.data() + 4 * hh;
for (int w = 0; w < m_width; ++w)
{
*px_ptr++ = image.GetRed(w, h);
*px_ptr++ = image.GetGreen(w, h);
*px_ptr++ = image.GetBlue(w, h);
*px_ptr++ = image.IsTransparent(w, h) ? 0 : Opacity;
}
}
// sends buffer to gpu
::glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
::glGenTextures(1, &m_id);
::glBindTexture(GL_TEXTURE_2D, (GLuint)m_id);
::glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, (GLsizei)m_width, (GLsizei)m_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, (const void*)data.data());
::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 1);
::glBindTexture(GL_TEXTURE_2D, 0);
return true;
}
void GLCanvas3D::WarningTexture::render(const GLCanvas3D& canvas) const
{
if ((m_id > 0) && (m_original_width > 0) && (m_original_height > 0) && (m_width > 0) && (m_height > 0))
{
::glDisable(GL_DEPTH_TEST);
::glPushMatrix();
::glLoadIdentity();
const Size& cnv_size = canvas.get_canvas_size();
float zoom = canvas.get_camera_zoom();
float inv_zoom = (zoom != 0.0f) ? 1.0f / zoom : 0.0f;
float left = (-0.5f * (float)m_original_width) * inv_zoom;
float top = (-0.5f * (float)cnv_size.get_height() + (float)m_original_height + 2.0f) * inv_zoom;
float right = left + (float)m_original_width * inv_zoom;
float bottom = top - (float)m_original_height * inv_zoom;
float uv_left = 0.0f;
float uv_top = 0.0f;
float uv_right = (float)m_original_width / (float)m_width;
float uv_bottom = (float)m_original_height / (float)m_height;
GLTexture::Quad_UVs uvs;
uvs.left_top = { uv_left, uv_top };
uvs.left_bottom = { uv_left, uv_bottom };
uvs.right_bottom = { uv_right, uv_bottom };
uvs.right_top = { uv_right, uv_top };
GLTexture::render_sub_texture(m_id, left, right, bottom, top, uvs);
::glPopMatrix();
::glEnable(GL_DEPTH_TEST);
}
}
const unsigned char GLCanvas3D::LegendTexture::Squares_Border_Color[3] = { 64, 64, 64 };
const unsigned char GLCanvas3D::LegendTexture::Background_Color[3] = { 9, 91, 134 };
const unsigned char GLCanvas3D::LegendTexture::Opacity = 255;
GLCanvas3D::LegendTexture::LegendTexture()
: GUI::GLTexture()
, m_original_width(0)
, m_original_height(0)
{
}
bool GLCanvas3D::LegendTexture::generate(const GCodePreviewData& preview_data, const std::vector<float>& tool_colors)
{
reset();
// collects items to render
auto title = _(preview_data.get_legend_title());
const GCodePreviewData::LegendItemsList& items = preview_data.get_legend_items(tool_colors);
unsigned int items_count = (unsigned int)items.size();
if (items_count == 0)
// nothing to render, return
return false;
wxMemoryDC memDC;
// select default font
memDC.SetFont(wxSystemSettings::GetFont(wxSYS_DEFAULT_GUI_FONT));
// calculates texture size
wxCoord w, h;
memDC.GetTextExtent(title, &w, &h);
int title_width = (int)w;
int title_height = (int)h;
int max_text_width = 0;
int max_text_height = 0;
for (const GCodePreviewData::LegendItem& item : items)
{
memDC.GetTextExtent(GUI::from_u8(item.text), &w, &h);
max_text_width = std::max(max_text_width, (int)w);
max_text_height = std::max(max_text_height, (int)h);
}
m_original_width = std::max(2 * Px_Border + title_width, 2 * (Px_Border + Px_Square_Contour) + Px_Square + Px_Text_Offset + max_text_width);
m_original_height = 2 * (Px_Border + Px_Square_Contour) + title_height + Px_Title_Offset + items_count * Px_Square;
if (items_count > 1)
m_original_height += (items_count - 1) * Px_Square_Contour;
int pow_of_two_size = next_highest_power_of_2(std::max(m_original_width, m_original_height));
m_width = pow_of_two_size;
m_height = pow_of_two_size;
// generates bitmap
wxBitmap bitmap(m_width, m_height);
#if defined(__APPLE__) || defined(_MSC_VER)
bitmap.UseAlpha();
#endif
memDC.SelectObject(bitmap);
memDC.SetBackground(wxBrush(wxColour(Background_Color[0], Background_Color[1], Background_Color[2])));
memDC.Clear();
memDC.SetTextForeground(*wxWHITE);
// draw title
int title_x = Px_Border;
int title_y = Px_Border;
memDC.DrawText(title, title_x, title_y);
// draw icons contours as background
int squares_contour_x = Px_Border;
int squares_contour_y = Px_Border + title_height + Px_Title_Offset;
int squares_contour_width = Px_Square + 2 * Px_Square_Contour;
int squares_contour_height = items_count * Px_Square + 2 * Px_Square_Contour;
if (items_count > 1)
squares_contour_height += (items_count - 1) * Px_Square_Contour;
wxColour color(Squares_Border_Color[0], Squares_Border_Color[1], Squares_Border_Color[2]);
wxPen pen(color);
wxBrush brush(color);
memDC.SetPen(pen);
memDC.SetBrush(brush);
memDC.DrawRectangle(wxRect(squares_contour_x, squares_contour_y, squares_contour_width, squares_contour_height));
// draw items (colored icon + text)
int icon_x = squares_contour_x + Px_Square_Contour;
int icon_x_inner = icon_x + 1;
int icon_y = squares_contour_y + Px_Square_Contour;
int icon_y_step = Px_Square + Px_Square_Contour;
int text_x = icon_x + Px_Square + Px_Text_Offset;
int text_y_offset = (Px_Square - max_text_height) / 2;
int px_inner_square = Px_Square - 2;
for (const GCodePreviewData::LegendItem& item : items)
{
// draw darker icon perimeter
const std::vector<unsigned char>& item_color_bytes = item.color.as_bytes();
wxImage::HSVValue dark_hsv = wxImage::RGBtoHSV(wxImage::RGBValue(item_color_bytes[0], item_color_bytes[1], item_color_bytes[2]));
dark_hsv.value *= 0.75;
wxImage::RGBValue dark_rgb = wxImage::HSVtoRGB(dark_hsv);
color.Set(dark_rgb.red, dark_rgb.green, dark_rgb.blue, item_color_bytes[3]);
pen.SetColour(color);
brush.SetColour(color);
memDC.SetPen(pen);
memDC.SetBrush(brush);
memDC.DrawRectangle(wxRect(icon_x, icon_y, Px_Square, Px_Square));
// draw icon interior
color.Set(item_color_bytes[0], item_color_bytes[1], item_color_bytes[2], item_color_bytes[3]);
pen.SetColour(color);
brush.SetColour(color);
memDC.SetPen(pen);
memDC.SetBrush(brush);
memDC.DrawRectangle(wxRect(icon_x_inner, icon_y + 1, px_inner_square, px_inner_square));
// draw text
memDC.DrawText(GUI::from_u8(item.text), text_x, icon_y + text_y_offset);
// update y
icon_y += icon_y_step;
}
memDC.SelectObject(wxNullBitmap);
// Convert the bitmap into a linear data ready to be loaded into the GPU.
wxImage image = bitmap.ConvertToImage();
image.SetMaskColour(Background_Color[0], Background_Color[1], Background_Color[2]);
// prepare buffer
std::vector<unsigned char> data(4 * m_width * m_height, 0);
for (int h = 0; h < m_height; ++h)
{
int hh = h * m_width;
unsigned char* px_ptr = data.data() + 4 * hh;
for (int w = 0; w < m_width; ++w)
{
*px_ptr++ = image.GetRed(w, h);
*px_ptr++ = image.GetGreen(w, h);
*px_ptr++ = image.GetBlue(w, h);
*px_ptr++ = image.IsTransparent(w, h) ? 0 : Opacity;
}
}
// sends buffer to gpu
::glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
::glGenTextures(1, &m_id);
::glBindTexture(GL_TEXTURE_2D, (GLuint)m_id);
::glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, (GLsizei)m_width, (GLsizei)m_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, (const void*)data.data());
::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 1);
::glBindTexture(GL_TEXTURE_2D, 0);
return true;
}
void GLCanvas3D::LegendTexture::render(const GLCanvas3D& canvas) const
{
if ((m_id > 0) && (m_original_width > 0) && (m_original_height > 0) && (m_width > 0) && (m_height > 0))
{
::glDisable(GL_DEPTH_TEST);
::glPushMatrix();
::glLoadIdentity();
const Size& cnv_size = canvas.get_canvas_size();
float zoom = canvas.get_camera_zoom();
float inv_zoom = (zoom != 0.0f) ? 1.0f / zoom : 0.0f;
float left = (-0.5f * (float)cnv_size.get_width()) * inv_zoom;
float top = (0.5f * (float)cnv_size.get_height()) * inv_zoom;
float right = left + (float)m_original_width * inv_zoom;
float bottom = top - (float)m_original_height * inv_zoom;
float uv_left = 0.0f;
float uv_top = 0.0f;
float uv_right = (float)m_original_width / (float)m_width;
float uv_bottom = (float)m_original_height / (float)m_height;
GLTexture::Quad_UVs uvs;
uvs.left_top = { uv_left, uv_top };
uvs.left_bottom = { uv_left, uv_bottom };
uvs.right_bottom = { uv_right, uv_bottom };
uvs.right_top = { uv_right, uv_top };
GLTexture::render_sub_texture(m_id, left, right, bottom, top, uvs);
::glPopMatrix();
::glEnable(GL_DEPTH_TEST);
}
}
GLGizmoBase* GLCanvas3D::Gizmos::_get_current() const
{
GizmosMap::const_iterator it = m_gizmos.find(m_current);
return (it != m_gizmos.end()) ? it->second : nullptr;
}
GLCanvas3D::GLCanvas3D(wxGLCanvas* canvas)
: m_canvas(canvas)
, m_context(nullptr)
, m_timer(nullptr)
, m_toolbar(*this)
, m_config(nullptr)
, m_print(nullptr)
, m_model(nullptr)
, m_dirty(true)
, m_initialized(false)
, m_use_VBOs(false)
, m_force_zoom_to_bed_enabled(false)
, m_apply_zoom_to_volumes_filter(false)
, m_hover_volume_id(-1)
, m_toolbar_action_running(false)
, m_warning_texture_enabled(false)
, m_legend_texture_enabled(false)
, m_picking_enabled(false)
, m_moving_enabled(false)
, m_shader_enabled(false)
, m_dynamic_background_enabled(false)
, m_multisample_allowed(false)
, m_color_by("volume")
, m_select_by("object")
, m_drag_by("instance")
, m_reload_delayed(false)
{
if (m_canvas != nullptr)
{
m_context = new wxGLContext(m_canvas);
m_timer = new wxTimer(m_canvas);
}
}
GLCanvas3D::~GLCanvas3D()
{
reset_volumes();
if (m_timer != nullptr)
{
delete m_timer;
m_timer = nullptr;
}
if (m_context != nullptr)
{
delete m_context;
m_context = nullptr;
}
_deregister_callbacks();
}
bool GLCanvas3D::init(bool useVBOs, bool use_legacy_opengl)
{
if (m_initialized)
return true;
if ((m_canvas == nullptr) || (m_context == nullptr))
return false;
::glClearColor(1.0f, 1.0f, 1.0f, 1.0f);
::glClearDepth(1.0f);
::glDepthFunc(GL_LESS);
::glEnable(GL_DEPTH_TEST);
::glEnable(GL_CULL_FACE);
::glEnable(GL_BLEND);
::glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
// Set antialiasing / multisampling
::glDisable(GL_LINE_SMOOTH);
::glDisable(GL_POLYGON_SMOOTH);
// ambient lighting
GLfloat ambient[4] = { 0.3f, 0.3f, 0.3f, 1.0f };
::glLightModelfv(GL_LIGHT_MODEL_AMBIENT, ambient);
::glEnable(GL_LIGHT0);
::glEnable(GL_LIGHT1);
// light from camera
GLfloat specular_cam[4] = { 0.3f, 0.3f, 0.3f, 1.0f };
::glLightfv(GL_LIGHT1, GL_SPECULAR, specular_cam);
GLfloat diffuse_cam[4] = { 0.2f, 0.2f, 0.2f, 1.0f };
::glLightfv(GL_LIGHT1, GL_DIFFUSE, diffuse_cam);
// light from above
GLfloat specular_top[4] = { 0.2f, 0.2f, 0.2f, 1.0f };
::glLightfv(GL_LIGHT0, GL_SPECULAR, specular_top);
GLfloat diffuse_top[4] = { 0.5f, 0.5f, 0.5f, 1.0f };
::glLightfv(GL_LIGHT0, GL_DIFFUSE, diffuse_top);
// Enables Smooth Color Shading; try GL_FLAT for (lack of) fun.
::glShadeModel(GL_SMOOTH);
// A handy trick -- have surface material mirror the color.
::glColorMaterial(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE);
::glEnable(GL_COLOR_MATERIAL);
if (m_multisample_allowed)
::glEnable(GL_MULTISAMPLE);
if (useVBOs && !m_shader.init("gouraud.vs", "gouraud.fs"))
return false;
if (useVBOs && !m_layers_editing.init("variable_layer_height.vs", "variable_layer_height.fs"))
return false;
m_use_VBOs = useVBOs;
m_layers_editing.set_use_legacy_opengl(use_legacy_opengl);
// on linux the gl context is not valid until the canvas is not shown on screen
// we defer the geometry finalization of volumes until the first call to render()
if (!m_volumes.empty())
m_volumes.finalize_geometry(m_use_VBOs);
if (m_gizmos.is_enabled() && !m_gizmos.init())
return false;
if (!_init_toolbar())
return false;
m_initialized = true;
return true;
}
bool GLCanvas3D::set_current()
{
if ((m_canvas != nullptr) && (m_context != nullptr))
return m_canvas->SetCurrent(*m_context);
return false;
}
void GLCanvas3D::set_as_dirty()
{
m_dirty = true;
}
unsigned int GLCanvas3D::get_volumes_count() const
{
return (unsigned int)m_volumes.volumes.size();
}
void GLCanvas3D::reset_volumes()
{
if (!m_volumes.empty())
{
// ensures this canvas is current
if (!set_current())
return;
m_volumes.release_geometry();
m_volumes.clear();
m_dirty = true;
}
enable_warning_texture(false);
_reset_warning_texture();
}
void GLCanvas3D::deselect_volumes()
{
for (GLVolume* vol : m_volumes.volumes)
{
if (vol != nullptr)
vol->selected = false;
}
}
void GLCanvas3D::select_volume(unsigned int id)
{
if (id < (unsigned int)m_volumes.volumes.size())
{
GLVolume* vol = m_volumes.volumes[id];
if (vol != nullptr)
vol->selected = true;
}
}
void GLCanvas3D::update_volumes_selection(const std::vector<int>& selections)
{
if (m_model == nullptr)
return;
for (unsigned int obj_idx = 0; obj_idx < (unsigned int)m_model->objects.size(); ++obj_idx)
{
if ((selections[obj_idx] == 1) && (obj_idx < (unsigned int)m_objects_volumes_idxs.size()))
{
const std::vector<int>& volume_idxs = m_objects_volumes_idxs[obj_idx];
for (int v : volume_idxs)
{
select_volume(v);
}
}
}
}
int GLCanvas3D::check_volumes_outside_state(const DynamicPrintConfig* config) const
{
ModelInstance::EPrintVolumeState state;
m_volumes.check_outside_state(config, &state);
return (int)state;
}
bool GLCanvas3D::move_volume_up(unsigned int id)
{
if ((id > 0) && (id < (unsigned int)m_volumes.volumes.size()))
{
std::swap(m_volumes.volumes[id - 1], m_volumes.volumes[id]);
std::swap(m_volumes.volumes[id - 1]->composite_id, m_volumes.volumes[id]->composite_id);
std::swap(m_volumes.volumes[id - 1]->select_group_id, m_volumes.volumes[id]->select_group_id);
std::swap(m_volumes.volumes[id - 1]->drag_group_id, m_volumes.volumes[id]->drag_group_id);
return true;
}
return false;
}
bool GLCanvas3D::move_volume_down(unsigned int id)
{
if ((id >= 0) && (id + 1 < (unsigned int)m_volumes.volumes.size()))
{
std::swap(m_volumes.volumes[id + 1], m_volumes.volumes[id]);
std::swap(m_volumes.volumes[id + 1]->composite_id, m_volumes.volumes[id]->composite_id);
std::swap(m_volumes.volumes[id + 1]->select_group_id, m_volumes.volumes[id]->select_group_id);
std::swap(m_volumes.volumes[id + 1]->drag_group_id, m_volumes.volumes[id]->drag_group_id);
return true;
}
return false;
}
void GLCanvas3D::set_objects_selections(const std::vector<int>& selections)
{
m_objects_selections = selections;
}
void GLCanvas3D::set_config(DynamicPrintConfig* config)
{
m_config = config;
}
void GLCanvas3D::set_print(Print* print)
{
m_print = print;
}
void GLCanvas3D::set_model(Model* model)
{
m_model = model;
}
void GLCanvas3D::set_bed_shape(const Pointfs& shape)
{
bool new_shape = m_bed.set_shape(shape);
// Set the origin and size for painting of the coordinate system axes.
m_axes.origin = Vec3d(0.0, 0.0, (double)GROUND_Z);
set_axes_length(0.3f * (float)m_bed.get_bounding_box().max_size());
if (new_shape)
{
// forces the selection of the proper camera target
if (m_volumes.volumes.empty())
zoom_to_bed();
else
zoom_to_volumes();
}
m_dirty = true;
}
void GLCanvas3D::set_auto_bed_shape()
{
// draw a default square bed around object center
const BoundingBoxf3& bbox = volumes_bounding_box();
double max_size = bbox.max_size();
const Vec3d center = bbox.center();
Pointfs bed_shape;
bed_shape.reserve(4);
bed_shape.emplace_back(center(0) - max_size, center(1) - max_size);
bed_shape.emplace_back(center(0) + max_size, center(1) - max_size);
bed_shape.emplace_back(center(0) + max_size, center(1) + max_size);
bed_shape.emplace_back(center(0) - max_size, center(1) + max_size);
set_bed_shape(bed_shape);
// Set the origin for painting of the coordinate system axes.
m_axes.origin = Vec3d(center(0), center(1), (double)GROUND_Z);
}
void GLCanvas3D::set_axes_length(float length)
{
m_axes.length = length;
}
void GLCanvas3D::set_cutting_plane(float z, const ExPolygons& polygons)
{
m_cutting_plane.set(z, polygons);
}
void GLCanvas3D::set_color_by(const std::string& value)
{
m_color_by = value;
}
void GLCanvas3D::set_select_by(const std::string& value)
{
m_select_by = value;
}
void GLCanvas3D::set_drag_by(const std::string& value)
{
m_drag_by = value;
}
float GLCanvas3D::get_camera_zoom() const
{
return m_camera.zoom;
}
BoundingBoxf3 GLCanvas3D::volumes_bounding_box() const
{
BoundingBoxf3 bb;
for (const GLVolume* volume : m_volumes.volumes)
{
if (!m_apply_zoom_to_volumes_filter || ((volume != nullptr) && volume->zoom_to_volumes))
bb.merge(volume->transformed_bounding_box());
}
return bb;
}
bool GLCanvas3D::is_layers_editing_enabled() const
{
return m_layers_editing.is_enabled();
}
bool GLCanvas3D::is_layers_editing_allowed() const
{
return m_layers_editing.is_allowed();
}
bool GLCanvas3D::is_shader_enabled() const
{
return m_shader_enabled;
}
bool GLCanvas3D::is_reload_delayed() const
{
return m_reload_delayed;
}
void GLCanvas3D::enable_layers_editing(bool enable)
{
m_layers_editing.set_enabled(enable);
}
void GLCanvas3D::enable_warning_texture(bool enable)
{
m_warning_texture_enabled = enable;
}
void GLCanvas3D::enable_legend_texture(bool enable)
{
m_legend_texture_enabled = enable;
}
void GLCanvas3D::enable_picking(bool enable)
{
m_picking_enabled = enable;
}
void GLCanvas3D::enable_moving(bool enable)
{
m_moving_enabled = enable;
}
void GLCanvas3D::enable_gizmos(bool enable)
{
m_gizmos.set_enabled(enable);
}
void GLCanvas3D::enable_toolbar(bool enable)
{
m_toolbar.set_enabled(enable);
}
void GLCanvas3D::enable_shader(bool enable)
{
m_shader_enabled = enable;
}
void GLCanvas3D::enable_force_zoom_to_bed(bool enable)
{
m_force_zoom_to_bed_enabled = enable;
}
void GLCanvas3D::enable_dynamic_background(bool enable)
{
m_dynamic_background_enabled = enable;
}
void GLCanvas3D::allow_multisample(bool allow)
{
m_multisample_allowed = allow;
}
void GLCanvas3D::enable_toolbar_item(const std::string& name, bool enable)
{
if (enable)
m_toolbar.enable_item(name);
else
m_toolbar.disable_item(name);
}
bool GLCanvas3D::is_toolbar_item_pressed(const std::string& name) const
{
return m_toolbar.is_item_pressed(name);
}
void GLCanvas3D::zoom_to_bed()
{
_zoom_to_bounding_box(m_bed.get_bounding_box());
}
void GLCanvas3D::zoom_to_volumes()
{
m_apply_zoom_to_volumes_filter = true;
_zoom_to_bounding_box(volumes_bounding_box());
m_apply_zoom_to_volumes_filter = false;
}
void GLCanvas3D::select_view(const std::string& direction)
{
const float* dir_vec = nullptr;
if (direction == "iso")
dir_vec = VIEW_DEFAULT;
else if (direction == "left")
dir_vec = VIEW_LEFT;
else if (direction == "right")
dir_vec = VIEW_RIGHT;
else if (direction == "top")
dir_vec = VIEW_TOP;
else if (direction == "bottom")
dir_vec = VIEW_BOTTOM;
else if (direction == "front")
dir_vec = VIEW_FRONT;
else if (direction == "rear")
dir_vec = VIEW_REAR;
if ((dir_vec != nullptr) && !empty(volumes_bounding_box()))
{
m_camera.phi = dir_vec[0];
m_camera.set_theta(dir_vec[1]);
m_on_viewport_changed_callback.call();
if (m_canvas != nullptr)
m_canvas->Refresh();
}
}
void GLCanvas3D::set_viewport_from_scene(const GLCanvas3D& other)
{
m_camera.phi = other.m_camera.phi;
m_camera.set_theta(other.m_camera.get_theta());
m_camera.target = other.m_camera.target;
m_camera.zoom = other.m_camera.zoom;
m_dirty = true;
}
void GLCanvas3D::update_volumes_colors_by_extruder()
{
if (m_config != nullptr)
m_volumes.update_colors_by_extruder(m_config);
}
void GLCanvas3D::update_gizmos_data()
{
if (!m_gizmos.is_enabled())
return;
int id = _get_first_selected_object_id();
if ((id != -1) && (m_model != nullptr))
{
ModelObject* model_object = m_model->objects[id];
if (model_object != nullptr)
{
ModelInstance* model_instance = model_object->instances[0];
if (model_instance != nullptr)
{
m_gizmos.set_scale(model_instance->scaling_factor);
m_gizmos.set_angle_z(model_instance->rotation);
}
}
}
else
{
m_gizmos.set_scale(1.0f);
m_gizmos.set_angle_z(0.0f);
}
}
void GLCanvas3D::render()
{
if (m_canvas == nullptr)
return;
if (!_is_shown_on_screen())
return;
// ensures this canvas is current and initialized
if (!set_current() || !_3DScene::init(m_canvas))
return;
if (m_force_zoom_to_bed_enabled)
_force_zoom_to_bed();
_camera_tranform();
GLfloat position_cam[4] = { 1.0f, 0.0f, 1.0f, 0.0f };
::glLightfv(GL_LIGHT1, GL_POSITION, position_cam);
GLfloat position_top[4] = { -0.5f, -0.5f, 1.0f, 0.0f };
::glLightfv(GL_LIGHT0, GL_POSITION, position_top);
float theta = m_camera.get_theta();
bool is_custom_bed = m_bed.is_custom();
// picking pass
_picking_pass();
// draw scene
_render_background();
_render_current_gizmo();
if (is_custom_bed) // untextured bed needs to be rendered before objects
{
_render_bed(theta);
// disable depth testing so that axes are not covered by ground
_render_axes(false);
}
_render_objects();
if (!is_custom_bed) // textured bed needs to be rendered after objects
{
_render_axes(true);
_render_bed(theta);
}
_render_cutting_plane();
// draw overlays
_render_gizmos_overlay();
_render_warning_texture();
_render_legend_texture();
_render_toolbar();
_render_layer_editing_overlay();
m_canvas->SwapBuffers();
}
std::vector<double> GLCanvas3D::get_current_print_zs(bool active_only) const
{
return m_volumes.get_current_print_zs(active_only);
}
void GLCanvas3D::set_toolpaths_range(double low, double high)
{
m_volumes.set_range(low, high);
}
std::vector<int> GLCanvas3D::load_object(const ModelObject& model_object, int obj_idx, std::vector<int> instance_idxs)
{
if (instance_idxs.empty())
{
for (unsigned int i = 0; i < model_object.instances.size(); ++i)
{
instance_idxs.push_back(i);
}
}
return m_volumes.load_object(&model_object, obj_idx, instance_idxs, m_color_by, m_select_by, m_drag_by, m_use_VBOs && m_initialized);
}
std::vector<int> GLCanvas3D::load_object(const Model& model, int obj_idx)
{
if ((0 <= obj_idx) && (obj_idx < (int)model.objects.size()))
{
const ModelObject* model_object = model.objects[obj_idx];
if (model_object != nullptr)
return load_object(*model_object, obj_idx, std::vector<int>());
}
return std::vector<int>();
}
void GLCanvas3D::reload_scene(bool force)
{
if ((m_canvas == nullptr) || (m_config == nullptr) || (m_model == nullptr))
return;
reset_volumes();
// ensures this canvas is current
if (!set_current())
return;
set_bed_shape(dynamic_cast<const ConfigOptionPoints*>(m_config->option("bed_shape"))->values);
if (!m_canvas->IsShown() && !force)
{
m_reload_delayed = true;
return;
}
m_reload_delayed = false;
m_objects_volumes_idxs.clear();
for (unsigned int obj_idx = 0; obj_idx < (unsigned int)m_model->objects.size(); ++obj_idx)
{
m_objects_volumes_idxs.push_back(load_object(*m_model, obj_idx));
}
// 1st call to reset if no objects left
update_gizmos_data();
update_volumes_selection(m_objects_selections);
// 2nd call to restore if something selected
if (!m_objects_selections.empty())
update_gizmos_data();
if (m_config->has("nozzle_diameter"))
{
// Should the wipe tower be visualized ?
unsigned int extruders_count = (unsigned int)dynamic_cast<const ConfigOptionFloats*>(m_config->option("nozzle_diameter"))->values.size();
bool semm = dynamic_cast<const ConfigOptionBool*>(m_config->option("single_extruder_multi_material"))->value;
bool wt = dynamic_cast<const ConfigOptionBool*>(m_config->option("wipe_tower"))->value;
bool co = dynamic_cast<const ConfigOptionBool*>(m_config->option("complete_objects"))->value;
if ((extruders_count > 1) && semm && wt && !co)
{
// Height of a print (Show at least a slab)
double height = std::max(m_model->bounding_box().max(2), 10.0);
float x = dynamic_cast<const ConfigOptionFloat*>(m_config->option("wipe_tower_x"))->value;
float y = dynamic_cast<const ConfigOptionFloat*>(m_config->option("wipe_tower_y"))->value;
float w = dynamic_cast<const ConfigOptionFloat*>(m_config->option("wipe_tower_width"))->value;
float a = dynamic_cast<const ConfigOptionFloat*>(m_config->option("wipe_tower_rotation_angle"))->value;
float depth = m_print->get_wipe_tower_depth();
if (!m_print->state.is_done(psWipeTower))
depth = (900.f/w) * (float)(extruders_count - 1) ;
m_volumes.load_wipe_tower_preview(1000, x, y, w, depth, (float)height, a, m_use_VBOs && m_initialized, !m_print->state.is_done(psWipeTower),
m_print->config.nozzle_diameter.values[0] * 1.25f * 4.5f);
}
}
update_volumes_colors_by_extruder();
// checks for geometry outside the print volume to render it accordingly
if (!m_volumes.empty())
{
ModelInstance::EPrintVolumeState state;
bool contained = m_volumes.check_outside_state(m_config, &state);
if (!contained)
{
enable_warning_texture(true);
_generate_warning_texture(L("Detected object outside print volume"));
m_on_enable_action_buttons_callback.call(state == ModelInstance::PVS_Fully_Outside);
}
else
{
enable_warning_texture(false);
m_volumes.reset_outside_state();
_reset_warning_texture();
m_on_enable_action_buttons_callback.call(!m_model->objects.empty());
}
}
else
{
enable_warning_texture(false);
_reset_warning_texture();
m_on_enable_action_buttons_callback.call(false);
}
}
void GLCanvas3D::load_gcode_preview(const GCodePreviewData& preview_data, const std::vector<std::string>& str_tool_colors)
{
if ((m_canvas != nullptr) && (m_print != nullptr))
{
// ensures that this canvas is current
if (!set_current())
return;
if (m_volumes.empty())
{
std::vector<float> tool_colors = _parse_colors(str_tool_colors);
m_gcode_preview_volume_index.reset();
_load_gcode_extrusion_paths(preview_data, tool_colors);
_load_gcode_travel_paths(preview_data, tool_colors);
_load_gcode_retractions(preview_data);
_load_gcode_unretractions(preview_data);
if (m_volumes.empty())
reset_legend_texture();
else
{
_generate_legend_texture(preview_data, tool_colors);
// removes empty volumes
m_volumes.volumes.erase(std::remove_if(m_volumes.volumes.begin(), m_volumes.volumes.end(),
[](const GLVolume* volume) { return volume->print_zs.empty(); }), m_volumes.volumes.end());
_load_shells();
}
_update_toolpath_volumes_outside_state();
}
_update_gcode_volumes_visibility(preview_data);
_show_warning_texture_if_needed();
}
}
void GLCanvas3D::load_preview(const std::vector<std::string>& str_tool_colors)
{
if (m_print == nullptr)
return;
_load_print_toolpaths();
_load_wipe_tower_toolpaths(str_tool_colors);
for (const PrintObject* object : m_print->objects)
{
if (object != nullptr)
_load_print_object_toolpaths(*object, str_tool_colors);
}
for (GLVolume* volume : m_volumes.volumes)
{
volume->is_extrusion_path = true;
}
_update_toolpath_volumes_outside_state();
_show_warning_texture_if_needed();
reset_legend_texture();
}
void GLCanvas3D::register_on_viewport_changed_callback(void* callback)
{
if (callback != nullptr)
m_on_viewport_changed_callback.register_callback(callback);
}
void GLCanvas3D::register_on_double_click_callback(void* callback)
{
if (callback != nullptr)
m_on_double_click_callback.register_callback(callback);
}
void GLCanvas3D::register_on_right_click_callback(void* callback)
{
if (callback != nullptr)
m_on_right_click_callback.register_callback(callback);
}
void GLCanvas3D::register_on_select_object_callback(void* callback)
{
if (callback != nullptr)
m_on_select_object_callback.register_callback(callback);
}
void GLCanvas3D::register_on_model_update_callback(void* callback)
{
if (callback != nullptr)
m_on_model_update_callback.register_callback(callback);
}
void GLCanvas3D::register_on_remove_object_callback(void* callback)
{
if (callback != nullptr)
m_on_remove_object_callback.register_callback(callback);
}
void GLCanvas3D::register_on_arrange_callback(void* callback)
{
if (callback != nullptr)
m_on_arrange_callback.register_callback(callback);
}
void GLCanvas3D::register_on_rotate_object_left_callback(void* callback)
{
if (callback != nullptr)
m_on_rotate_object_left_callback.register_callback(callback);
}
void GLCanvas3D::register_on_rotate_object_right_callback(void* callback)
{
if (callback != nullptr)
m_on_rotate_object_right_callback.register_callback(callback);
}
void GLCanvas3D::register_on_scale_object_uniformly_callback(void* callback)
{
if (callback != nullptr)
m_on_scale_object_uniformly_callback.register_callback(callback);
}
void GLCanvas3D::register_on_increase_objects_callback(void* callback)
{
if (callback != nullptr)
m_on_increase_objects_callback.register_callback(callback);
}
void GLCanvas3D::register_on_decrease_objects_callback(void* callback)
{
if (callback != nullptr)
m_on_decrease_objects_callback.register_callback(callback);
}
void GLCanvas3D::register_on_instance_moved_callback(void* callback)
{
if (callback != nullptr)
m_on_instance_moved_callback.register_callback(callback);
}
void GLCanvas3D::register_on_wipe_tower_moved_callback(void* callback)
{
if (callback != nullptr)
m_on_wipe_tower_moved_callback.register_callback(callback);
}
void GLCanvas3D::register_on_enable_action_buttons_callback(void* callback)
{
if (callback != nullptr)
m_on_enable_action_buttons_callback.register_callback(callback);
}
void GLCanvas3D::register_on_gizmo_scale_uniformly_callback(void* callback)
{
if (callback != nullptr)
m_on_gizmo_scale_uniformly_callback.register_callback(callback);
}
void GLCanvas3D::register_on_gizmo_rotate_callback(void* callback)
{
if (callback != nullptr)
m_on_gizmo_rotate_callback.register_callback(callback);
}
void GLCanvas3D::register_on_update_geometry_info_callback(void* callback)
{
if (callback != nullptr)
m_on_update_geometry_info_callback.register_callback(callback);
}
void GLCanvas3D::register_action_add_callback(void* callback)
{
if (callback != nullptr)
m_action_add_callback.register_callback(callback);
}
void GLCanvas3D::register_action_delete_callback(void* callback)
{
if (callback != nullptr)
m_action_delete_callback.register_callback(callback);
}
void GLCanvas3D::register_action_deleteall_callback(void* callback)
{
if (callback != nullptr)
m_action_deleteall_callback.register_callback(callback);
}
void GLCanvas3D::register_action_arrange_callback(void* callback)
{
if (callback != nullptr)
m_action_arrange_callback.register_callback(callback);
}
void GLCanvas3D::register_action_more_callback(void* callback)
{
if (callback != nullptr)
m_action_more_callback.register_callback(callback);
}
void GLCanvas3D::register_action_fewer_callback(void* callback)
{
if (callback != nullptr)
m_action_fewer_callback.register_callback(callback);
}
void GLCanvas3D::register_action_ccw45_callback(void* callback)
{
if (callback != nullptr)
m_action_ccw45_callback.register_callback(callback);
}
void GLCanvas3D::register_action_cw45_callback(void* callback)
{
if (callback != nullptr)
m_action_cw45_callback.register_callback(callback);
}
void GLCanvas3D::register_action_scale_callback(void* callback)
{
if (callback != nullptr)
m_action_scale_callback.register_callback(callback);
}
void GLCanvas3D::register_action_split_callback(void* callback)
{
if (callback != nullptr)
m_action_split_callback.register_callback(callback);
}
void GLCanvas3D::register_action_cut_callback(void* callback)
{
if (callback != nullptr)
m_action_cut_callback.register_callback(callback);
}
void GLCanvas3D::register_action_settings_callback(void* callback)
{
if (callback != nullptr)
m_action_settings_callback.register_callback(callback);
}
void GLCanvas3D::register_action_layersediting_callback(void* callback)
{
if (callback != nullptr)
m_action_layersediting_callback.register_callback(callback);
}
void GLCanvas3D::bind_event_handlers()
{
if (m_canvas != nullptr)
{
m_canvas->Bind(wxEVT_SIZE, &GLCanvas3D::on_size, this);
m_canvas->Bind(wxEVT_IDLE, &GLCanvas3D::on_idle, this);
m_canvas->Bind(wxEVT_CHAR, &GLCanvas3D::on_char, this);
m_canvas->Bind(wxEVT_MOUSEWHEEL, &GLCanvas3D::on_mouse_wheel, this);
m_canvas->Bind(wxEVT_TIMER, &GLCanvas3D::on_timer, this);
m_canvas->Bind(wxEVT_LEFT_DOWN, &GLCanvas3D::on_mouse, this);
m_canvas->Bind(wxEVT_LEFT_UP, &GLCanvas3D::on_mouse, this);
m_canvas->Bind(wxEVT_MIDDLE_DOWN, &GLCanvas3D::on_mouse, this);
m_canvas->Bind(wxEVT_MIDDLE_UP, &GLCanvas3D::on_mouse, this);
m_canvas->Bind(wxEVT_RIGHT_DOWN, &GLCanvas3D::on_mouse, this);
m_canvas->Bind(wxEVT_RIGHT_UP, &GLCanvas3D::on_mouse, this);
m_canvas->Bind(wxEVT_MOTION, &GLCanvas3D::on_mouse, this);
m_canvas->Bind(wxEVT_ENTER_WINDOW, &GLCanvas3D::on_mouse, this);
m_canvas->Bind(wxEVT_LEAVE_WINDOW, &GLCanvas3D::on_mouse, this);
m_canvas->Bind(wxEVT_LEFT_DCLICK, &GLCanvas3D::on_mouse, this);
m_canvas->Bind(wxEVT_MIDDLE_DCLICK, &GLCanvas3D::on_mouse, this);
m_canvas->Bind(wxEVT_RIGHT_DCLICK, &GLCanvas3D::on_mouse, this);
m_canvas->Bind(wxEVT_PAINT, &GLCanvas3D::on_paint, this);
m_canvas->Bind(wxEVT_KEY_DOWN, &GLCanvas3D::on_key_down, this);
}
}
void GLCanvas3D::unbind_event_handlers()
{
if (m_canvas != nullptr)
{
m_canvas->Unbind(wxEVT_SIZE, &GLCanvas3D::on_size, this);
m_canvas->Unbind(wxEVT_IDLE, &GLCanvas3D::on_idle, this);
m_canvas->Unbind(wxEVT_CHAR, &GLCanvas3D::on_char, this);
m_canvas->Unbind(wxEVT_MOUSEWHEEL, &GLCanvas3D::on_mouse_wheel, this);
m_canvas->Unbind(wxEVT_TIMER, &GLCanvas3D::on_timer, this);
m_canvas->Unbind(wxEVT_LEFT_DOWN, &GLCanvas3D::on_mouse, this);
m_canvas->Unbind(wxEVT_LEFT_UP, &GLCanvas3D::on_mouse, this);
m_canvas->Unbind(wxEVT_MIDDLE_DOWN, &GLCanvas3D::on_mouse, this);
m_canvas->Unbind(wxEVT_MIDDLE_UP, &GLCanvas3D::on_mouse, this);
m_canvas->Unbind(wxEVT_RIGHT_DOWN, &GLCanvas3D::on_mouse, this);
m_canvas->Unbind(wxEVT_RIGHT_UP, &GLCanvas3D::on_mouse, this);
m_canvas->Unbind(wxEVT_MOTION, &GLCanvas3D::on_mouse, this);
m_canvas->Unbind(wxEVT_ENTER_WINDOW, &GLCanvas3D::on_mouse, this);
m_canvas->Unbind(wxEVT_LEAVE_WINDOW, &GLCanvas3D::on_mouse, this);
m_canvas->Unbind(wxEVT_LEFT_DCLICK, &GLCanvas3D::on_mouse, this);
m_canvas->Unbind(wxEVT_MIDDLE_DCLICK, &GLCanvas3D::on_mouse, this);
m_canvas->Unbind(wxEVT_RIGHT_DCLICK, &GLCanvas3D::on_mouse, this);
m_canvas->Unbind(wxEVT_PAINT, &GLCanvas3D::on_paint, this);
m_canvas->Unbind(wxEVT_KEY_DOWN, &GLCanvas3D::on_key_down, this);
}
}
void GLCanvas3D::on_size(wxSizeEvent& evt)
{
m_dirty = true;
}
void GLCanvas3D::on_idle(wxIdleEvent& evt)
{
if (!m_dirty)
return;
_refresh_if_shown_on_screen();
}
void GLCanvas3D::on_char(wxKeyEvent& evt)
{
if (evt.HasModifiers())
evt.Skip();
else
{
int keyCode = evt.GetKeyCode();
switch (keyCode - 48)
{
// numerical input
case 0: { select_view("iso"); break; }
case 1: { select_view("top"); break; }
case 2: { select_view("bottom"); break; }
case 3: { select_view("front"); break; }
case 4: { select_view("rear"); break; }
case 5: { select_view("left"); break; }
case 6: { select_view("right"); break; }
default:
{
// text input
switch (keyCode)
{
// key +
case 43: { m_on_increase_objects_callback.call(); break; }
// key -
case 45: { m_on_decrease_objects_callback.call(); break; }
// key A/a
case 65:
case 97: { m_on_arrange_callback.call(); break; }
// key B/b
case 66:
case 98: { zoom_to_bed(); break; }
// key L/l
case 76:
case 108: { m_on_rotate_object_left_callback.call(); break; }
// key R/r
case 82:
case 114: { m_on_rotate_object_right_callback.call(); break; }
// key S/s
case 83:
case 115: { m_on_scale_object_uniformly_callback.call(); break; }
// key Z/z
case 90:
case 122: { zoom_to_volumes(); break; }
default:
{
evt.Skip();
break;
}
}
}
}
}
}
void GLCanvas3D::on_mouse_wheel(wxMouseEvent& evt)
{
// Ignore the wheel events if the middle button is pressed.
if (evt.MiddleIsDown())
return;
// Performs layers editing updates, if enabled
if (is_layers_editing_enabled())
{
int object_idx_selected = _get_first_selected_object_id();
if (object_idx_selected != -1)
{
// A volume is selected. Test, whether hovering over a layer thickness bar.
if (m_layers_editing.bar_rect_contains(*this, (float)evt.GetX(), (float)evt.GetY()))
{
// Adjust the width of the selection.
m_layers_editing.band_width = std::max(std::min(m_layers_editing.band_width * (1.0f + 0.1f * (float)evt.GetWheelRotation() / (float)evt.GetWheelDelta()), 10.0f), 1.5f);
if (m_canvas != nullptr)
m_canvas->Refresh();
return;
}
}
}
// Calculate the zoom delta and apply it to the current zoom factor
float zoom = (float)evt.GetWheelRotation() / (float)evt.GetWheelDelta();
zoom = std::max(std::min(zoom, 4.0f), -4.0f) / 10.0f;
zoom = get_camera_zoom() / (1.0f - zoom);
// Don't allow to zoom too far outside the scene.
float zoom_min = _get_zoom_to_bounding_box_factor(_max_bounding_box());
if (zoom_min > 0.0f)
zoom = std::max(zoom, zoom_min * 0.8f);
m_camera.zoom = zoom;
m_on_viewport_changed_callback.call();
_refresh_if_shown_on_screen();
}
void GLCanvas3D::on_timer(wxTimerEvent& evt)
{
if (m_layers_editing.state != LayersEditing::Editing)
return;
_perform_layer_editing_action();
}
void GLCanvas3D::on_mouse(wxMouseEvent& evt)
{
Point pos(evt.GetX(), evt.GetY());
int selected_object_idx = _get_first_selected_object_id();
int layer_editing_object_idx = is_layers_editing_enabled() ? selected_object_idx : -1;
m_layers_editing.last_object_id = layer_editing_object_idx;
bool gizmos_overlay_contains_mouse = m_gizmos.overlay_contains_mouse(*this, m_mouse.position);
int toolbar_contains_mouse = m_toolbar.contains_mouse(m_mouse.position);
if (evt.Entering())
{
#if defined(__WXMSW__) || defined(__linux__)
// On Windows and Linux needs focus in order to catch key events
if (m_canvas != nullptr)
m_canvas->SetFocus();
m_mouse.set_start_position_2D_as_invalid();
#endif
}
else if (evt.Leaving())
{
// to remove hover on objects when the mouse goes out of this canvas
m_mouse.position = Vec2d(-1.0, -1.0);
m_dirty = true;
}
else if (evt.LeftDClick() && (m_hover_volume_id != -1))
m_on_double_click_callback.call();
else if (evt.LeftDClick() && (toolbar_contains_mouse != -1))
{
m_toolbar_action_running = true;
m_toolbar.do_action((unsigned int)toolbar_contains_mouse);
}
else if (evt.LeftDown() || evt.RightDown())
{
// If user pressed left or right button we first check whether this happened
// on a volume or not.
int volume_idx = m_hover_volume_id;
m_layers_editing.state = LayersEditing::Unknown;
if ((layer_editing_object_idx != -1) && m_layers_editing.bar_rect_contains(*this, pos(0), pos(1)))
{
// A volume is selected and the mouse is inside the layer thickness bar.
// Start editing the layer height.
m_layers_editing.state = LayersEditing::Editing;
_perform_layer_editing_action(&evt);
}
else if ((layer_editing_object_idx != -1) && m_layers_editing.reset_rect_contains(*this, pos(0), pos(1)))
{
if (evt.LeftDown())
{
// A volume is selected and the mouse is inside the reset button.
m_print->get_object(layer_editing_object_idx)->reset_layer_height_profile();
// Index 2 means no editing, just wait for mouse up event.
m_layers_editing.state = LayersEditing::Completed;
m_dirty = true;
}
}
else if ((selected_object_idx != -1) && gizmos_overlay_contains_mouse)
{
update_gizmos_data();
m_gizmos.update_on_off_state(*this, m_mouse.position);
m_dirty = true;
}
else if ((selected_object_idx != -1) && m_gizmos.grabber_contains_mouse())
{
update_gizmos_data();
m_gizmos.start_dragging();
m_mouse.drag.gizmo_volume_idx = _get_first_selected_volume_id(selected_object_idx);
m_dirty = true;
}
else if (toolbar_contains_mouse != -1)
{
m_toolbar_action_running = true;
m_toolbar.do_action((unsigned int)toolbar_contains_mouse);
}
else
{
// Select volume in this 3D canvas.
// Don't deselect a volume if layer editing is enabled. We want the object to stay selected
// during the scene manipulation.
if (m_picking_enabled && ((volume_idx != -1) || !is_layers_editing_enabled()))
{
if (volume_idx != -1)
{
deselect_volumes();
select_volume(volume_idx);
int group_id = m_volumes.volumes[volume_idx]->select_group_id;
if (group_id != -1)
{
for (GLVolume* vol : m_volumes.volumes)
{
if ((vol != nullptr) && (vol->select_group_id == group_id))
vol->selected = true;
}
}
update_gizmos_data();
m_gizmos.refresh();
m_dirty = true;
}
}
// propagate event through callback
if (m_picking_enabled && (volume_idx != -1))
_on_select(volume_idx);
if (volume_idx != -1)
{
if (evt.LeftDown() && m_moving_enabled)
{
// The mouse_to_3d gets the Z coordinate from the Z buffer at the screen coordinate pos x, y,
// an converts the screen space coordinate to unscaled object space.
Vec3d pos3d = (volume_idx == -1) ? Vec3d(DBL_MAX, DBL_MAX, DBL_MAX) : _mouse_to_3d(pos);
// Only accept the initial position, if it is inside the volume bounding box.
BoundingBoxf3 volume_bbox = m_volumes.volumes[volume_idx]->transformed_bounding_box();
volume_bbox.offset(1.0);
if (volume_bbox.contains(pos3d))
{
// The dragging operation is initiated.
m_mouse.drag.move_with_shift = evt.ShiftDown();
m_mouse.drag.move_volume_idx = volume_idx;
m_mouse.drag.start_position_3D = pos3d;
// Remember the shift to to the object center.The object center will later be used
// to limit the object placement close to the bed.
m_mouse.drag.volume_center_offset = volume_bbox.center() - pos3d;
}
}
else if (evt.RightDown())
{
// forces a frame render to ensure that m_hover_volume_id is updated even when the user right clicks while
// the context menu is already shown, ensuring it to disappear if the mouse is outside any volume
m_mouse.position = Vec2d((double)pos(0), (double)pos(1));
render();
if (m_hover_volume_id != -1)
{
// if right clicking on volume, propagate event through callback (shows context menu)
if (m_volumes.volumes[volume_idx]->hover)
m_on_right_click_callback.call(pos(0), pos(1));
}
}
}
}
}
else if (evt.Dragging() && evt.LeftIsDown() && !gizmos_overlay_contains_mouse && (m_layers_editing.state == LayersEditing::Unknown) && (m_mouse.drag.move_volume_idx != -1))
{
m_mouse.dragging = true;
// Get new position at the same Z of the initial click point.
float z0 = 0.0f;
float z1 = 1.0f;
Vec3d cur_pos = Linef3(_mouse_to_3d(pos, &z0), _mouse_to_3d(pos, &z1)).intersect_plane(m_mouse.drag.start_position_3D(2));
// Clip the new position, so the object center remains close to the bed.
cur_pos += m_mouse.drag.volume_center_offset;
Point cur_pos2(scale_(cur_pos(0)), scale_(cur_pos(1)));
if (!m_bed.contains(cur_pos2))
{
Point ip = m_bed.point_projection(cur_pos2);
cur_pos(0) = unscale<double>(ip(0));
cur_pos(1) = unscale<double>(ip(1));
}
cur_pos -= m_mouse.drag.volume_center_offset;
// Calculate the translation vector.
Vec3d vector = cur_pos - m_mouse.drag.start_position_3D;
// Get the volume being dragged.
GLVolume* volume = m_volumes.volumes[m_mouse.drag.move_volume_idx];
// Get all volumes belonging to the same group, if any.
std::vector<GLVolume*> volumes;
int group_id = m_mouse.drag.move_with_shift ? volume->select_group_id : volume->drag_group_id;
if (group_id == -1)
volumes.push_back(volume);
else
{
for (GLVolume* v : m_volumes.volumes)
{
if (v != nullptr)
{
if ((m_mouse.drag.move_with_shift && (v->select_group_id == group_id)) || (!m_mouse.drag.move_with_shift && (v->drag_group_id == group_id)))
volumes.push_back(v);
}
}
}
// Apply new temporary volume origin and ignore Z.
for (GLVolume* v : volumes)
v->set_origin(v->get_origin() + Vec3d(vector(0), vector(1), 0.0));
m_mouse.drag.start_position_3D = cur_pos;
m_gizmos.refresh();
m_dirty = true;
}
else if (evt.Dragging() && m_gizmos.is_dragging())
{
m_mouse.dragging = true;
m_gizmos.update(mouse_ray(pos));
std::vector<GLVolume*> volumes;
if (m_mouse.drag.gizmo_volume_idx != -1)
{
GLVolume* volume = m_volumes.volumes[m_mouse.drag.gizmo_volume_idx];
// Get all volumes belonging to the same group, if any.
if (volume->select_group_id == -1)
volumes.push_back(volume);
else
{
for (GLVolume* v : m_volumes.volumes)
{
if ((v != nullptr) && (v->select_group_id == volume->select_group_id))
volumes.push_back(v);
}
}
}
switch (m_gizmos.get_current_type())
{
case Gizmos::Scale:
{
// Apply new temporary scale factor
float scale_factor = m_gizmos.get_scale();
for (GLVolume* v : volumes)
{
v->set_scale_factor(scale_factor);
}
break;
}
case Gizmos::Rotate:
{
// Apply new temporary angle_z
float angle_z = m_gizmos.get_angle_z();
for (GLVolume* v : volumes)
{
v->set_angle_z(angle_z);
}
break;
}
default:
break;
}
if (!volumes.empty())
{
BoundingBoxf3 bb;
for (const GLVolume* volume : volumes)
{
bb.merge(volume->transformed_bounding_box());
}
const Vec3d& size = bb.size();
m_on_update_geometry_info_callback.call(size(0), size(1), size(2), m_gizmos.get_scale());
}
if ((m_gizmos.get_current_type() != Gizmos::Rotate) && (volumes.size() > 1))
m_gizmos.refresh();
m_dirty = true;
}
else if (evt.Dragging() && !gizmos_overlay_contains_mouse)
{
m_mouse.dragging = true;
if ((m_layers_editing.state != LayersEditing::Unknown) && (layer_editing_object_idx != -1))
{
if (m_layers_editing.state == LayersEditing::Editing)
_perform_layer_editing_action(&evt);
}
else if (evt.LeftIsDown())
{
// if dragging over blank area with left button, rotate
if (m_mouse.is_start_position_3D_defined())
{
const Vec3d& orig = m_mouse.drag.start_position_3D;
m_camera.phi += (((float)pos(0) - (float)orig(0)) * TRACKBALLSIZE);
m_camera.set_theta(m_camera.get_theta() - ((float)pos(1) - (float)orig(1)) * TRACKBALLSIZE);
m_on_viewport_changed_callback.call();
m_dirty = true;
}
m_mouse.drag.start_position_3D = Vec3d((double)pos(0), (double)pos(1), 0.0);
}
else if (evt.MiddleIsDown() || evt.RightIsDown())
{
// If dragging over blank area with right button, pan.
if (m_mouse.is_start_position_2D_defined())
{
// get point in model space at Z = 0
float z = 0.0f;
const Vec3d& cur_pos = _mouse_to_3d(pos, &z);
Vec3d orig = _mouse_to_3d(m_mouse.drag.start_position_2D, &z);
m_camera.target += orig - cur_pos;
m_on_viewport_changed_callback.call();
m_dirty = true;
}
m_mouse.drag.start_position_2D = pos;
}
}
else if (evt.LeftUp() || evt.MiddleUp() || evt.RightUp())
{
if (m_layers_editing.state != LayersEditing::Unknown)
{
m_layers_editing.state = LayersEditing::Unknown;
_stop_timer();
if (layer_editing_object_idx != -1)
m_on_model_update_callback.call();
}
else if ((m_mouse.drag.move_volume_idx != -1) && m_mouse.dragging)
{
// get all volumes belonging to the same group, if any
std::vector<int> volume_idxs;
int vol_id = m_mouse.drag.move_volume_idx;
int group_id = m_mouse.drag.move_with_shift ? m_volumes.volumes[vol_id]->select_group_id : m_volumes.volumes[vol_id]->drag_group_id;
if (group_id == -1)
volume_idxs.push_back(vol_id);
else
{
for (int i = 0; i < (int)m_volumes.volumes.size(); ++i)
{
if ((m_mouse.drag.move_with_shift && (m_volumes.volumes[i]->select_group_id == group_id)) || (m_volumes.volumes[i]->drag_group_id == group_id))
volume_idxs.push_back(i);
}
}
_on_move(volume_idxs);
// force re-selection of the wipe tower, if needed
if ((volume_idxs.size() == 1) && m_volumes.volumes[volume_idxs[0]]->is_wipe_tower)
select_volume(volume_idxs[0]);
}
else if (evt.LeftUp() && !m_mouse.dragging && (m_hover_volume_id == -1) && !gizmos_overlay_contains_mouse && !m_gizmos.is_dragging() && !is_layers_editing_enabled())
{
// deselect and propagate event through callback
if (m_picking_enabled && !m_toolbar_action_running)
{
deselect_volumes();
_on_select(-1);
update_gizmos_data();
}
}
else if (evt.LeftUp() && m_gizmos.is_dragging())
{
switch (m_gizmos.get_current_type())
{
case Gizmos::Scale:
{
m_on_gizmo_scale_uniformly_callback.call((double)m_gizmos.get_scale());
break;
}
case Gizmos::Rotate:
{
m_on_gizmo_rotate_callback.call((double)m_gizmos.get_angle_z());
break;
}
default:
break;
}
m_gizmos.stop_dragging();
}
m_mouse.drag.move_volume_idx = -1;
m_mouse.drag.gizmo_volume_idx = -1;
m_mouse.set_start_position_3D_as_invalid();
m_mouse.set_start_position_2D_as_invalid();
m_mouse.dragging = false;
m_toolbar_action_running = false;
m_dirty = true;
}
else if (evt.Moving())
{
m_mouse.position = Vec2d((double)pos(0), (double)pos(1));
// Only refresh if picking is enabled, in that case the objects may get highlighted if the mouse cursor hovers over.
if (m_picking_enabled)
m_dirty = true;
}
else
evt.Skip();
}
void GLCanvas3D::on_paint(wxPaintEvent& evt)
{
render();
}
void GLCanvas3D::on_key_down(wxKeyEvent& evt)
{
if (evt.HasModifiers())
evt.Skip();
else
{
int key = evt.GetKeyCode();
if (key == WXK_DELETE)
m_on_remove_object_callback.call();
else
{
#ifdef __WXOSX__
if (key == WXK_BACK)
m_on_remove_object_callback.call();
#endif
evt.Skip();
}
}
}
Size GLCanvas3D::get_canvas_size() const
{
int w = 0;
int h = 0;
if (m_canvas != nullptr)
m_canvas->GetSize(&w, &h);
return Size(w, h);
}
Point GLCanvas3D::get_local_mouse_position() const
{
if (m_canvas == nullptr)
return Point();
wxPoint mouse_pos = m_canvas->ScreenToClient(wxGetMousePosition());
return Point(mouse_pos.x, mouse_pos.y);
}
void GLCanvas3D::reset_legend_texture()
{
if (!set_current())
return;
m_legend_texture.reset();
}
void GLCanvas3D::set_tooltip(const std::string& tooltip)
{
if (m_canvas != nullptr)
m_canvas->SetToolTip(tooltip);
}
bool GLCanvas3D::_is_shown_on_screen() const
{
return (m_canvas != nullptr) ? m_canvas->IsShownOnScreen() : false;
}
void GLCanvas3D::_force_zoom_to_bed()
{
zoom_to_bed();
m_force_zoom_to_bed_enabled = false;
}
bool GLCanvas3D::_init_toolbar()
{
if (!m_toolbar.is_enabled())
return true;
if (!m_toolbar.init("toolbar.png", 36, 1, 1))
{
// unable to init the toolbar texture, disable it
m_toolbar.set_enabled(false);
return true;
}
// m_toolbar.set_layout_type(GLToolbar::Layout::Vertical);
m_toolbar.set_layout_type(GLToolbar::Layout::Horizontal);
m_toolbar.set_separator_size(5);
m_toolbar.set_gap_size(2);
GLToolbarItem::Data item;
item.name = "add";
item.tooltip = GUI::L_str("Add...");
item.sprite_id = 0;
item.is_toggable = false;
item.action_callback = &m_action_add_callback;
if (!m_toolbar.add_item(item))
return false;
item.name = "delete";
item.tooltip = GUI::L_str("Delete");
item.sprite_id = 1;
item.is_toggable = false;
item.action_callback = &m_action_delete_callback;
if (!m_toolbar.add_item(item))
return false;
item.name = "deleteall";
item.tooltip = GUI::L_str("Delete all");
item.sprite_id = 2;
item.is_toggable = false;
item.action_callback = &m_action_deleteall_callback;
if (!m_toolbar.add_item(item))
return false;
item.name = "arrange";
item.tooltip = GUI::L_str("Arrange");
item.sprite_id = 3;
item.is_toggable = false;
item.action_callback = &m_action_arrange_callback;
if (!m_toolbar.add_item(item))
return false;
if (!m_toolbar.add_separator())
return false;
item.name = "more";
item.tooltip = GUI::L_str("Add instance");
item.sprite_id = 4;
item.is_toggable = false;
item.action_callback = &m_action_more_callback;
if (!m_toolbar.add_item(item))
return false;
item.name = "fewer";
item.tooltip = GUI::L_str("Remove instance");
item.sprite_id = 5;
item.is_toggable = false;
item.action_callback = &m_action_fewer_callback;
if (!m_toolbar.add_item(item))
return false;
if (!m_toolbar.add_separator())
return false;
item.name = "ccw45";
item.tooltip = GUI::L_str("Rotate CCW 45 degrees");
item.sprite_id = 6;
item.is_toggable = false;
item.action_callback = &m_action_ccw45_callback;
if (!m_toolbar.add_item(item))
return false;
item.name = "cw45";
item.tooltip = GUI::L_str("Rotate CW 45 degrees");
item.sprite_id = 7;
item.is_toggable = false;
item.action_callback = &m_action_cw45_callback;
if (!m_toolbar.add_item(item))
return false;
item.name = "scale";
item.tooltip = GUI::L_str("Scale...");
item.sprite_id = 8;
item.is_toggable = false;
item.action_callback = &m_action_scale_callback;
if (!m_toolbar.add_item(item))
return false;
item.name = "split";
item.tooltip = GUI::L_str("Split");
item.sprite_id = 9;
item.is_toggable = false;
item.action_callback = &m_action_split_callback;
if (!m_toolbar.add_item(item))
return false;
item.name = "cut";
item.tooltip = GUI::L_str("Cut...");
item.sprite_id = 10;
item.is_toggable = false;
item.action_callback = &m_action_cut_callback;
if (!m_toolbar.add_item(item))
return false;
if (!m_toolbar.add_separator())
return false;
item.name = "settings";
item.tooltip = GUI::L_str("Settings...");
item.sprite_id = 11;
item.is_toggable = false;
item.action_callback = &m_action_settings_callback;
if (!m_toolbar.add_item(item))
return false;
item.name = "layersediting";
item.tooltip = GUI::L_str("Layers editing");
item.sprite_id = 12;
item.is_toggable = true;
item.action_callback = &m_action_layersediting_callback;
if (!m_toolbar.add_item(item))
return false;
enable_toolbar_item("add", true);
return true;
}
void GLCanvas3D::_resize(unsigned int w, unsigned int h)
{
if ((m_canvas == nullptr) && (m_context == nullptr))
return;
// ensures that this canvas is current
set_current();
::glViewport(0, 0, w, h);
::glMatrixMode(GL_PROJECTION);
::glLoadIdentity();
const BoundingBoxf3& bbox = _max_bounding_box();
switch (m_camera.type)
{
case Camera::Ortho:
{
float w2 = w;
float h2 = h;
float two_zoom = 2.0f * get_camera_zoom();
if (two_zoom != 0.0f)
{
float inv_two_zoom = 1.0f / two_zoom;
w2 *= inv_two_zoom;
h2 *= inv_two_zoom;
}
// FIXME: calculate a tighter value for depth will improve z-fighting
float depth = 5.0f * (float)bbox.max_size();
::glOrtho(-w2, w2, -h2, h2, -depth, depth);
break;
}
// case Camera::Perspective:
// {
// float bbox_r = (float)bbox.radius();
// float fov = PI * 45.0f / 180.0f;
// float fov_tan = tan(0.5f * fov);
// float cam_distance = 0.5f * bbox_r / fov_tan;
// m_camera.distance = cam_distance;
//
// float nr = cam_distance - bbox_r * 1.1f;
// float fr = cam_distance + bbox_r * 1.1f;
// if (nr < 1.0f)
// nr = 1.0f;
//
// if (fr < nr + 1.0f)
// fr = nr + 1.0f;
//
// float h2 = fov_tan * nr;
// float w2 = h2 * w / h;
// ::glFrustum(-w2, w2, -h2, h2, nr, fr);
//
// break;
// }
default:
{
throw std::runtime_error("Invalid camera type.");
break;
}
}
::glMatrixMode(GL_MODELVIEW);
m_dirty = false;
}
BoundingBoxf3 GLCanvas3D::_max_bounding_box() const
{
BoundingBoxf3 bb = m_bed.get_bounding_box();
bb.merge(volumes_bounding_box());
return bb;
}
BoundingBoxf3 GLCanvas3D::_selected_volumes_bounding_box() const
{
BoundingBoxf3 bb;
std::vector<const GLVolume*> selected_volumes;
for (const GLVolume* volume : m_volumes.volumes)
{
if ((volume != nullptr) && !volume->is_wipe_tower && volume->selected)
selected_volumes.push_back(volume);
}
bool use_drag_group_id = selected_volumes.size() > 1;
if (use_drag_group_id)
{
int drag_group_id = selected_volumes[0]->drag_group_id;
for (const GLVolume* volume : selected_volumes)
{
if (drag_group_id != volume->drag_group_id)
{
use_drag_group_id = false;
break;
}
}
}
if (use_drag_group_id)
{
for (const GLVolume* volume : selected_volumes)
{
bb.merge(volume->bounding_box);
}
bb = bb.transformed(selected_volumes[0]->world_matrix().cast<double>());
}
else
{
for (const GLVolume* volume : selected_volumes)
{
bb.merge(volume->transformed_convex_hull_bounding_box());
}
}
return bb;
}
void GLCanvas3D::_zoom_to_bounding_box(const BoundingBoxf3& bbox)
{
// Calculate the zoom factor needed to adjust viewport to bounding box.
float zoom = _get_zoom_to_bounding_box_factor(bbox);
if (zoom > 0.0f)
{
m_camera.zoom = zoom;
// center view around bounding box center
m_camera.target = bbox.center();
m_on_viewport_changed_callback.call();
_refresh_if_shown_on_screen();
}
}
float GLCanvas3D::_get_zoom_to_bounding_box_factor(const BoundingBoxf3& bbox) const
{
float max_bb_size = bbox.max_size();
if (max_bb_size == 0.0f)
return -1.0f;
// project the bbox vertices on a plane perpendicular to the camera forward axis
// then calculates the vertices coordinate on this plane along the camera xy axes
// we need the view matrix, we let opengl calculate it (same as done in render())
_camera_tranform();
// get the view matrix back from opengl
GLfloat matrix[16];
::glGetFloatv(GL_MODELVIEW_MATRIX, matrix);
// camera axes
Vec3d right((double)matrix[0], (double)matrix[4], (double)matrix[8]);
Vec3d up((double)matrix[1], (double)matrix[5], (double)matrix[9]);
Vec3d forward((double)matrix[2], (double)matrix[6], (double)matrix[10]);
Vec3d bb_min = bbox.min;
Vec3d bb_max = bbox.max;
Vec3d bb_center = bbox.center();
// bbox vertices in world space
std::vector<Vec3d> vertices;
vertices.reserve(8);
vertices.push_back(bb_min);
vertices.emplace_back(bb_max(0), bb_min(1), bb_min(2));
vertices.emplace_back(bb_max(0), bb_max(1), bb_min(2));
vertices.emplace_back(bb_min(0), bb_max(1), bb_min(2));
vertices.emplace_back(bb_min(0), bb_min(1), bb_max(2));
vertices.emplace_back(bb_max(0), bb_min(1), bb_max(2));
vertices.push_back(bb_max);
vertices.emplace_back(bb_min(0), bb_max(1), bb_max(2));
double max_x = 0.0;
double max_y = 0.0;
// margin factor to give some empty space around the bbox
double margin_factor = 1.25;
for (const Vec3d v : vertices)
{
// project vertex on the plane perpendicular to camera forward axis
Vec3d pos(v(0) - bb_center(0), v(1) - bb_center(1), v(2) - bb_center(2));
Vec3d proj_on_plane = pos - pos.dot(forward) * forward;
// calculates vertex coordinate along camera xy axes
double x_on_plane = proj_on_plane.dot(right);
double y_on_plane = proj_on_plane.dot(up);
max_x = std::max(max_x, margin_factor * std::abs(x_on_plane));
max_y = std::max(max_y, margin_factor * std::abs(y_on_plane));
}
if ((max_x == 0.0) || (max_y == 0.0))
return -1.0f;
max_x *= 2.0;
max_y *= 2.0;
const Size& cnv_size = get_canvas_size();
return (float)std::min((double)cnv_size.get_width() / max_x, (double)cnv_size.get_height() / max_y);
}
void GLCanvas3D::_deregister_callbacks()
{
m_on_viewport_changed_callback.deregister_callback();
m_on_double_click_callback.deregister_callback();
m_on_right_click_callback.deregister_callback();
m_on_select_object_callback.deregister_callback();
m_on_model_update_callback.deregister_callback();
m_on_remove_object_callback.deregister_callback();
m_on_arrange_callback.deregister_callback();
m_on_rotate_object_left_callback.deregister_callback();
m_on_rotate_object_right_callback.deregister_callback();
m_on_scale_object_uniformly_callback.deregister_callback();
m_on_increase_objects_callback.deregister_callback();
m_on_decrease_objects_callback.deregister_callback();
m_on_instance_moved_callback.deregister_callback();
m_on_wipe_tower_moved_callback.deregister_callback();
m_on_enable_action_buttons_callback.deregister_callback();
m_on_gizmo_scale_uniformly_callback.deregister_callback();
m_on_gizmo_rotate_callback.deregister_callback();
m_on_update_geometry_info_callback.deregister_callback();
m_action_add_callback.deregister_callback();
m_action_delete_callback.deregister_callback();
m_action_deleteall_callback.deregister_callback();
m_action_arrange_callback.deregister_callback();
m_action_more_callback.deregister_callback();
m_action_fewer_callback.deregister_callback();
m_action_ccw45_callback.deregister_callback();
m_action_cw45_callback.deregister_callback();
m_action_scale_callback.deregister_callback();
m_action_split_callback.deregister_callback();
m_action_cut_callback.deregister_callback();
m_action_settings_callback.deregister_callback();
m_action_layersediting_callback.deregister_callback();
}
void GLCanvas3D::_mark_volumes_for_layer_height() const
{
if (m_print == nullptr)
return;
for (GLVolume* vol : m_volumes.volumes)
{
int object_id = int(vol->select_group_id / 1000000);
int shader_id = m_layers_editing.get_shader_program_id();
if (is_layers_editing_enabled() && (shader_id != -1) && vol->selected &&
vol->has_layer_height_texture() && (object_id < (int)m_print->objects.size()))
{
vol->set_layer_height_texture_data(m_layers_editing.get_z_texture_id(), shader_id,
m_print->get_object(object_id), _get_layers_editing_cursor_z_relative(), m_layers_editing.band_width);
}
else
vol->reset_layer_height_texture_data();
}
}
void GLCanvas3D::_refresh_if_shown_on_screen()
{
if (_is_shown_on_screen())
{
const Size& cnv_size = get_canvas_size();
_resize((unsigned int)cnv_size.get_width(), (unsigned int)cnv_size.get_height());
if (m_canvas != nullptr)
m_canvas->Refresh();
}
}
void GLCanvas3D::_camera_tranform() const
{
::glMatrixMode(GL_MODELVIEW);
::glLoadIdentity();
::glRotatef(-m_camera.get_theta(), 1.0f, 0.0f, 0.0f); // pitch
::glRotatef(m_camera.phi, 0.0f, 0.0f, 1.0f); // yaw
Vec3d neg_target = - m_camera.target;
::glTranslatef((GLfloat)neg_target(0), (GLfloat)neg_target(1), (GLfloat)neg_target(2));
}
void GLCanvas3D::_picking_pass() const
{
const Vec2d& pos = m_mouse.position;
if (m_picking_enabled && !m_mouse.dragging && (pos != Vec2d(DBL_MAX, DBL_MAX)))
{
// Render the object for picking.
// FIXME This cannot possibly work in a multi - sampled context as the color gets mangled by the anti - aliasing.
// Better to use software ray - casting on a bounding - box hierarchy.
if (m_multisample_allowed)
::glDisable(GL_MULTISAMPLE);
::glDisable(GL_BLEND);
::glEnable(GL_DEPTH_TEST);
::glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
_render_volumes(true);
m_gizmos.render_current_gizmo_for_picking_pass(_selected_volumes_bounding_box());
if (m_multisample_allowed)
::glEnable(GL_MULTISAMPLE);
int volume_id = -1;
for (GLVolume* vol : m_volumes.volumes)
{
vol->hover = false;
}
GLubyte color[4] = { 0, 0, 0, 0 };
const Size& cnv_size = get_canvas_size();
bool inside = (0 <= pos(0)) && (pos(0) < cnv_size.get_width()) && (0 <= pos(1)) && (pos(1) < cnv_size.get_height());
if (inside)
{
::glReadPixels(pos(0), cnv_size.get_height() - pos(1) - 1, 1, 1, GL_RGBA, GL_UNSIGNED_BYTE, (void*)color);
volume_id = color[0] + color[1] * 256 + color[2] * 256 * 256;
}
if ((0 <= volume_id) && (volume_id < (int)m_volumes.volumes.size()))
{
m_hover_volume_id = volume_id;
m_volumes.volumes[volume_id]->hover = true;
int group_id = m_volumes.volumes[volume_id]->select_group_id;
if (group_id != -1)
{
for (GLVolume* vol : m_volumes.volumes)
{
if (vol->select_group_id == group_id)
vol->hover = true;
}
}
m_gizmos.set_hover_id(-1);
}
else
{
m_hover_volume_id = -1;
m_gizmos.set_hover_id(inside ? (254 - (int)color[2]) : -1);
}
// updates gizmos overlay
if (_get_first_selected_object_id() != -1)
m_gizmos.update_hover_state(*this, pos);
else
m_gizmos.reset_all_states();
m_toolbar.update_hover_state(pos);
}
}
void GLCanvas3D::_render_background() const
{
::glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
::glPushMatrix();
::glLoadIdentity();
::glMatrixMode(GL_PROJECTION);
::glPushMatrix();
::glLoadIdentity();
// Draws a bluish bottom to top gradient over the complete screen.
::glDisable(GL_DEPTH_TEST);
::glBegin(GL_QUADS);
::glColor3f(0.0f, 0.0f, 0.0f);
::glVertex2f(-1.0f, -1.0f);
::glVertex2f(1.0f, -1.0f);
if (m_dynamic_background_enabled && _is_any_volume_outside())
::glColor3f(ERROR_BG_COLOR[0], ERROR_BG_COLOR[1], ERROR_BG_COLOR[2]);
else
::glColor3f(DEFAULT_BG_COLOR[0], DEFAULT_BG_COLOR[1], DEFAULT_BG_COLOR[2]);
::glVertex2f(1.0f, 1.0f);
::glVertex2f(-1.0f, 1.0f);
::glEnd();
::glEnable(GL_DEPTH_TEST);
::glPopMatrix();
::glMatrixMode(GL_MODELVIEW);
::glPopMatrix();
}
void GLCanvas3D::_render_bed(float theta) const
{
m_bed.render(theta);
}
void GLCanvas3D::_render_axes(bool depth_test) const
{
m_axes.render(depth_test);
}
void GLCanvas3D::_render_objects() const
{
if (m_volumes.empty())
return;
::glEnable(GL_LIGHTING);
::glEnable(GL_DEPTH_TEST);
if (!m_shader_enabled)
_render_volumes(false);
else if (m_use_VBOs)
{
if (m_picking_enabled)
{
_mark_volumes_for_layer_height();
if (m_config != nullptr)
{
const BoundingBoxf3& bed_bb = m_bed.get_bounding_box();
m_volumes.set_print_box((float)bed_bb.min(0), (float)bed_bb.min(1), 0.0f, (float)bed_bb.max(0), (float)bed_bb.max(1), (float)m_config->opt_float("max_print_height"));
m_volumes.check_outside_state(m_config, nullptr);
}
// do not cull backfaces to show broken geometry, if any
::glDisable(GL_CULL_FACE);
}
m_shader.start_using();
m_volumes.render_VBOs();
m_shader.stop_using();
if (m_picking_enabled)
::glEnable(GL_CULL_FACE);
}
else
{
// do not cull backfaces to show broken geometry, if any
if (m_picking_enabled)
::glDisable(GL_CULL_FACE);
m_volumes.render_legacy();
if (m_picking_enabled)
::glEnable(GL_CULL_FACE);
}
::glDisable(GL_LIGHTING);
}
void GLCanvas3D::_render_cutting_plane() const
{
m_cutting_plane.render(volumes_bounding_box());
}
void GLCanvas3D::_render_warning_texture() const
{
if (!m_warning_texture_enabled)
return;
m_warning_texture.render(*this);
}
void GLCanvas3D::_render_legend_texture() const
{
if (!m_legend_texture_enabled)
return;
m_legend_texture.render(*this);
}
void GLCanvas3D::_render_layer_editing_overlay() const
{
if (m_print == nullptr)
return;
GLVolume* volume = nullptr;
for (GLVolume* vol : m_volumes.volumes)
{
if ((vol != nullptr) && vol->selected && vol->has_layer_height_texture())
{
volume = vol;
break;
}
}
if (volume == nullptr)
return;
// If the active object was not allocated at the Print, go away.This should only be a momentary case between an object addition / deletion
// and an update by Platter::async_apply_config.
int object_idx = int(volume->select_group_id / 1000000);
if ((int)m_print->objects.size() < object_idx)
return;
const PrintObject* print_object = m_print->get_object(object_idx);
if (print_object == nullptr)
return;
m_layers_editing.render(*this, *print_object, *volume);
}
void GLCanvas3D::_render_volumes(bool fake_colors) const
{
static const GLfloat INV_255 = 1.0f / 255.0f;
if (!fake_colors)
::glEnable(GL_LIGHTING);
// do not cull backfaces to show broken geometry, if any
::glDisable(GL_CULL_FACE);
::glEnable(GL_BLEND);
::glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
::glEnableClientState(GL_VERTEX_ARRAY);
::glEnableClientState(GL_NORMAL_ARRAY);
unsigned int volume_id = 0;
for (GLVolume* vol : m_volumes.volumes)
{
if (fake_colors)
{
// Object picking mode. Render the object with a color encoding the object index.
unsigned int r = (volume_id & 0x000000FF) >> 0;
unsigned int g = (volume_id & 0x0000FF00) >> 8;
unsigned int b = (volume_id & 0x00FF0000) >> 16;
::glColor3f((GLfloat)r * INV_255, (GLfloat)g * INV_255, (GLfloat)b * INV_255);
}
else
{
vol->set_render_color();
::glColor4f(vol->render_color[0], vol->render_color[1], vol->render_color[2], vol->render_color[3]);
}
vol->render();
++volume_id;
}
::glDisableClientState(GL_NORMAL_ARRAY);
::glDisableClientState(GL_VERTEX_ARRAY);
::glDisable(GL_BLEND);
::glEnable(GL_CULL_FACE);
if (!fake_colors)
::glDisable(GL_LIGHTING);
}
void GLCanvas3D::_render_current_gizmo() const
{
m_gizmos.render_current_gizmo(_selected_volumes_bounding_box());
}
void GLCanvas3D::_render_gizmos_overlay() const
{
m_gizmos.render_overlay(*this);
}
void GLCanvas3D::_render_toolbar() const
{
_resize_toolbar();
m_toolbar.render();
}
float GLCanvas3D::_get_layers_editing_cursor_z_relative() const
{
return m_layers_editing.get_cursor_z_relative(*this);
}
void GLCanvas3D::_perform_layer_editing_action(wxMouseEvent* evt)
{
int object_idx_selected = m_layers_editing.last_object_id;
if (object_idx_selected == -1)
return;
if (m_print == nullptr)
return;
PrintObject* selected_obj = m_print->get_object(object_idx_selected);
if (selected_obj == nullptr)
return;
// A volume is selected. Test, whether hovering over a layer thickness bar.
if (evt != nullptr)
{
const Rect& rect = LayersEditing::get_bar_rect_screen(*this);
float b = rect.get_bottom();
m_layers_editing.last_z = unscale<double>(selected_obj->size(2)) * (b - evt->GetY() - 1.0f) / (b - rect.get_top());
m_layers_editing.last_action = evt->ShiftDown() ? (evt->RightIsDown() ? 3 : 2) : (evt->RightIsDown() ? 0 : 1);
}
// Mark the volume as modified, so Print will pick its layer height profile ? Where to mark it ?
// Start a timer to refresh the print ? schedule_background_process() ?
// The PrintObject::adjust_layer_height_profile() call adjusts the profile of its associated ModelObject, it does not modify the profile of the PrintObject itself.
selected_obj->adjust_layer_height_profile(m_layers_editing.last_z, m_layers_editing.strength, m_layers_editing.band_width, m_layers_editing.last_action);
// searches the id of the first volume of the selected object
int volume_idx = 0;
for (int i = 0; i < object_idx_selected; ++i)
{
PrintObject* obj = m_print->get_object(i);
if (obj != nullptr)
{
for (int j = 0; j < (int)obj->region_volumes.size(); ++j)
{
volume_idx += (int)obj->region_volumes[j].size();
}
}
}
m_volumes.volumes[volume_idx]->generate_layer_height_texture(selected_obj, 1);
_refresh_if_shown_on_screen();
// Automatic action on mouse down with the same coordinate.
_start_timer();
}
Vec3d GLCanvas3D::_mouse_to_3d(const Point& mouse_pos, float* z)
{
if (m_canvas == nullptr)
return Vec3d(DBL_MAX, DBL_MAX, DBL_MAX);
_camera_tranform();
GLint viewport[4];
::glGetIntegerv(GL_VIEWPORT, viewport);
GLdouble modelview_matrix[16];
::glGetDoublev(GL_MODELVIEW_MATRIX, modelview_matrix);
GLdouble projection_matrix[16];
::glGetDoublev(GL_PROJECTION_MATRIX, projection_matrix);
GLint y = viewport[3] - (GLint)mouse_pos(1);
GLfloat mouse_z;
if (z == nullptr)
::glReadPixels((GLint)mouse_pos(0), y, 1, 1, GL_DEPTH_COMPONENT, GL_FLOAT, (void*)&mouse_z);
else
mouse_z = *z;
GLdouble out_x, out_y, out_z;
::gluUnProject((GLdouble)mouse_pos(0), (GLdouble)y, (GLdouble)mouse_z, modelview_matrix, projection_matrix, viewport, &out_x, &out_y, &out_z);
return Vec3d((double)out_x, (double)out_y, (double)out_z);
}
Vec3d GLCanvas3D::_mouse_to_bed_3d(const Point& mouse_pos)
{
return mouse_ray(mouse_pos).intersect_plane(0.0);
}
Linef3 GLCanvas3D::mouse_ray(const Point& mouse_pos)
{
float z0 = 0.0f;
float z1 = 1.0f;
return Linef3(_mouse_to_3d(mouse_pos, &z0), _mouse_to_3d(mouse_pos, &z1));
}
void GLCanvas3D::_start_timer()
{
if (m_timer != nullptr)
m_timer->Start(100, wxTIMER_CONTINUOUS);
}
void GLCanvas3D::_stop_timer()
{
if (m_timer != nullptr)
m_timer->Stop();
}
int GLCanvas3D::_get_first_selected_object_id() const
{
if (m_print != nullptr)
{
int objects_count = (int)m_print->objects.size();
for (const GLVolume* vol : m_volumes.volumes)
{
if ((vol != nullptr) && vol->selected)
{
int object_id = vol->select_group_id / 1000000;
// Objects with object_id >= 1000 have a specific meaning, for example the wipe tower proxy.
if (object_id < 10000)
return (object_id >= objects_count) ? -1 : object_id;
}
}
}
return -1;
}
int GLCanvas3D::_get_first_selected_volume_id(int object_id) const
{
int volume_id = -1;
for (const GLVolume* vol : m_volumes.volumes)
{
++volume_id;
if ((vol != nullptr) && vol->selected && (object_id == vol->select_group_id / 1000000))
return volume_id;
}
return -1;
}
void GLCanvas3D::_load_print_toolpaths()
{
// ensures this canvas is current
if (!set_current())
return;
if (m_print == nullptr)
return;
if (!m_print->state.is_done(psSkirt) || !m_print->state.is_done(psBrim))
return;
if (!m_print->has_skirt() && (m_print->config.brim_width.value == 0))
return;
const float color[] = { 0.5f, 1.0f, 0.5f, 1.0f }; // greenish
// number of skirt layers
size_t total_layer_count = 0;
for (const PrintObject* print_object : m_print->objects)
{
total_layer_count = std::max(total_layer_count, print_object->total_layer_count());
}
size_t skirt_height = m_print->has_infinite_skirt() ? total_layer_count : std::min<size_t>(m_print->config.skirt_height.value, total_layer_count);
if ((skirt_height == 0) && (m_print->config.brim_width.value > 0))
skirt_height = 1;
// get first skirt_height layers (maybe this should be moved to a PrintObject method?)
const PrintObject* object0 = m_print->objects.front();
std::vector<float> print_zs;
print_zs.reserve(skirt_height * 2);
for (size_t i = 0; i < std::min(skirt_height, object0->layers.size()); ++i)
{
print_zs.push_back(float(object0->layers[i]->print_z));
}
//FIXME why there are support layers?
for (size_t i = 0; i < std::min(skirt_height, object0->support_layers.size()); ++i)
{
print_zs.push_back(float(object0->support_layers[i]->print_z));
}
sort_remove_duplicates(print_zs);
if (print_zs.size() > skirt_height)
print_zs.erase(print_zs.begin() + skirt_height, print_zs.end());
m_volumes.volumes.emplace_back(new GLVolume(color));
GLVolume& volume = *m_volumes.volumes.back();
for (size_t i = 0; i < skirt_height; ++i) {
volume.print_zs.push_back(print_zs[i]);
volume.offsets.push_back(volume.indexed_vertex_array.quad_indices.size());
volume.offsets.push_back(volume.indexed_vertex_array.triangle_indices.size());
if (i == 0)
_3DScene::extrusionentity_to_verts(m_print->brim, print_zs[i], Point(0, 0), volume);
_3DScene::extrusionentity_to_verts(m_print->skirt, print_zs[i], Point(0, 0), volume);
}
volume.bounding_box = volume.indexed_vertex_array.bounding_box();
volume.indexed_vertex_array.finalize_geometry(m_use_VBOs && m_initialized);
}
void GLCanvas3D::_load_print_object_toolpaths(const PrintObject& print_object, const std::vector<std::string>& str_tool_colors)
{
std::vector<float> tool_colors = _parse_colors(str_tool_colors);
struct Ctxt
{
const Points *shifted_copies;
std::vector<const Layer*> layers;
bool has_perimeters;
bool has_infill;
bool has_support;
const std::vector<float>* tool_colors;
// Number of vertices (each vertex is 6x4=24 bytes long)
static const size_t alloc_size_max() { return 131072; } // 3.15MB
// static const size_t alloc_size_max () { return 65536; } // 1.57MB
// static const size_t alloc_size_max () { return 32768; } // 786kB
static const size_t alloc_size_reserve() { return alloc_size_max() * 2; }
static const float* color_perimeters() { static float color[4] = { 1.0f, 1.0f, 0.0f, 1.f }; return color; } // yellow
static const float* color_infill() { static float color[4] = { 1.0f, 0.5f, 0.5f, 1.f }; return color; } // redish
static const float* color_support() { static float color[4] = { 0.5f, 1.0f, 0.5f, 1.f }; return color; } // greenish
// For cloring by a tool, return a parsed color.
bool color_by_tool() const { return tool_colors != nullptr; }
size_t number_tools() const { return this->color_by_tool() ? tool_colors->size() / 4 : 0; }
const float* color_tool(size_t tool) const { return tool_colors->data() + tool * 4; }
int volume_idx(int extruder, int feature) const
{
return this->color_by_tool() ? std::min<int>(this->number_tools() - 1, std::max<int>(extruder - 1, 0)) : feature;
}
} ctxt;
ctxt.shifted_copies = &print_object._shifted_copies;
// order layers by print_z
ctxt.layers.reserve(print_object.layers.size() + print_object.support_layers.size());
for (const Layer *layer : print_object.layers)
ctxt.layers.push_back(layer);
for (const Layer *layer : print_object.support_layers)
ctxt.layers.push_back(layer);
std::sort(ctxt.layers.begin(), ctxt.layers.end(), [](const Layer *l1, const Layer *l2) { return l1->print_z < l2->print_z; });
// Maximum size of an allocation block: 32MB / sizeof(float)
ctxt.has_perimeters = print_object.state.is_done(posPerimeters);
ctxt.has_infill = print_object.state.is_done(posInfill);
ctxt.has_support = print_object.state.is_done(posSupportMaterial);
ctxt.tool_colors = tool_colors.empty() ? nullptr : &tool_colors;
BOOST_LOG_TRIVIAL(debug) << "Loading print object toolpaths in parallel - start";
//FIXME Improve the heuristics for a grain size.
size_t grain_size = std::max(ctxt.layers.size() / 16, size_t(1));
tbb::spin_mutex new_volume_mutex;
auto new_volume = [this, &new_volume_mutex](const float *color) -> GLVolume* {
auto *volume = new GLVolume(color);
new_volume_mutex.lock();
m_volumes.volumes.emplace_back(volume);
new_volume_mutex.unlock();
return volume;
};
const size_t volumes_cnt_initial = m_volumes.volumes.size();
std::vector<GLVolumeCollection> volumes_per_thread(ctxt.layers.size());
tbb::parallel_for(
tbb::blocked_range<size_t>(0, ctxt.layers.size(), grain_size),
[&ctxt, &new_volume](const tbb::blocked_range<size_t>& range) {
std::vector<GLVolume*> vols;
if (ctxt.color_by_tool()) {
for (size_t i = 0; i < ctxt.number_tools(); ++i)
vols.emplace_back(new_volume(ctxt.color_tool(i)));
}
else
vols = { new_volume(ctxt.color_perimeters()), new_volume(ctxt.color_infill()), new_volume(ctxt.color_support()) };
for (GLVolume *vol : vols)
vol->indexed_vertex_array.reserve(ctxt.alloc_size_reserve());
for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++idx_layer) {
const Layer *layer = ctxt.layers[idx_layer];
for (size_t i = 0; i < vols.size(); ++i) {
GLVolume &vol = *vols[i];
if (vol.print_zs.empty() || vol.print_zs.back() != layer->print_z) {
vol.print_zs.push_back(layer->print_z);
vol.offsets.push_back(vol.indexed_vertex_array.quad_indices.size());
vol.offsets.push_back(vol.indexed_vertex_array.triangle_indices.size());
}
}
for (const Point &copy : *ctxt.shifted_copies) {
for (const LayerRegion *layerm : layer->regions) {
if (ctxt.has_perimeters)
_3DScene::extrusionentity_to_verts(layerm->perimeters, float(layer->print_z), copy,
*vols[ctxt.volume_idx(layerm->region()->config.perimeter_extruder.value, 0)]);
if (ctxt.has_infill) {
for (const ExtrusionEntity *ee : layerm->fills.entities) {
// fill represents infill extrusions of a single island.
const auto *fill = dynamic_cast<const ExtrusionEntityCollection*>(ee);
if (!fill->entities.empty())
_3DScene::extrusionentity_to_verts(*fill, float(layer->print_z), copy,
*vols[ctxt.volume_idx(
is_solid_infill(fill->entities.front()->role()) ?
layerm->region()->config.solid_infill_extruder :
layerm->region()->config.infill_extruder,
1)]);
}
}
}
if (ctxt.has_support) {
const SupportLayer *support_layer = dynamic_cast<const SupportLayer*>(layer);
if (support_layer) {
for (const ExtrusionEntity *extrusion_entity : support_layer->support_fills.entities)
_3DScene::extrusionentity_to_verts(extrusion_entity, float(layer->print_z), copy,
*vols[ctxt.volume_idx(
(extrusion_entity->role() == erSupportMaterial) ?
support_layer->object()->config.support_material_extruder :
support_layer->object()->config.support_material_interface_extruder,
2)]);
}
}
}
for (size_t i = 0; i < vols.size(); ++i) {
GLVolume &vol = *vols[i];
if (vol.indexed_vertex_array.vertices_and_normals_interleaved.size() / 6 > ctxt.alloc_size_max()) {
// Store the vertex arrays and restart their containers,
vols[i] = new_volume(vol.color);
GLVolume &vol_new = *vols[i];
// Assign the large pre-allocated buffers to the new GLVolume.
vol_new.indexed_vertex_array = std::move(vol.indexed_vertex_array);
// Copy the content back to the old GLVolume.
vol.indexed_vertex_array = vol_new.indexed_vertex_array;
// Finalize a bounding box of the old GLVolume.
vol.bounding_box = vol.indexed_vertex_array.bounding_box();
// Clear the buffers, but keep them pre-allocated.
vol_new.indexed_vertex_array.clear();
// Just make sure that clear did not clear the reserved memory.
vol_new.indexed_vertex_array.reserve(ctxt.alloc_size_reserve());
}
}
}
for (GLVolume *vol : vols) {
vol->bounding_box = vol->indexed_vertex_array.bounding_box();
vol->indexed_vertex_array.shrink_to_fit();
}
});
BOOST_LOG_TRIVIAL(debug) << "Loading print object toolpaths in parallel - finalizing results";
// Remove empty volumes from the newly added volumes.
m_volumes.volumes.erase(
std::remove_if(m_volumes.volumes.begin() + volumes_cnt_initial, m_volumes.volumes.end(),
[](const GLVolume *volume) { return volume->empty(); }),
m_volumes.volumes.end());
for (size_t i = volumes_cnt_initial; i < m_volumes.volumes.size(); ++i)
m_volumes.volumes[i]->indexed_vertex_array.finalize_geometry(m_use_VBOs && m_initialized);
BOOST_LOG_TRIVIAL(debug) << "Loading print object toolpaths in parallel - end";
}
void GLCanvas3D::_load_wipe_tower_toolpaths(const std::vector<std::string>& str_tool_colors)
{
if ((m_print == nullptr) || m_print->m_wipe_tower_tool_changes.empty())
return;
if (!m_print->state.is_done(psWipeTower))
return;
std::vector<float> tool_colors = _parse_colors(str_tool_colors);
struct Ctxt
{
const Print *print;
const std::vector<float> *tool_colors;
WipeTower::xy wipe_tower_pos;
float wipe_tower_angle;
// Number of vertices (each vertex is 6x4=24 bytes long)
static const size_t alloc_size_max() { return 131072; } // 3.15MB
static const size_t alloc_size_reserve() { return alloc_size_max() * 2; }
static const float* color_support() { static float color[4] = { 0.5f, 1.0f, 0.5f, 1.f }; return color; } // greenish
// For cloring by a tool, return a parsed color.
bool color_by_tool() const { return tool_colors != nullptr; }
size_t number_tools() const { return this->color_by_tool() ? tool_colors->size() / 4 : 0; }
const float* color_tool(size_t tool) const { return tool_colors->data() + tool * 4; }
int volume_idx(int tool, int feature) const
{
return this->color_by_tool() ? std::min<int>(this->number_tools() - 1, std::max<int>(tool, 0)) : feature;
}
const std::vector<WipeTower::ToolChangeResult>& tool_change(size_t idx) {
return priming.empty() ?
((idx == print->m_wipe_tower_tool_changes.size()) ? final : print->m_wipe_tower_tool_changes[idx]) :
((idx == 0) ? priming : (idx == print->m_wipe_tower_tool_changes.size() + 1) ? final : print->m_wipe_tower_tool_changes[idx - 1]);
}
std::vector<WipeTower::ToolChangeResult> priming;
std::vector<WipeTower::ToolChangeResult> final;
} ctxt;
ctxt.print = m_print;
ctxt.tool_colors = tool_colors.empty() ? nullptr : &tool_colors;
if (m_print->m_wipe_tower_priming && m_print->config.single_extruder_multi_material_priming)
ctxt.priming.emplace_back(*m_print->m_wipe_tower_priming.get());
if (m_print->m_wipe_tower_final_purge)
ctxt.final.emplace_back(*m_print->m_wipe_tower_final_purge.get());
ctxt.wipe_tower_angle = ctxt.print->config.wipe_tower_rotation_angle.value/180.f * M_PI;
ctxt.wipe_tower_pos = WipeTower::xy(ctxt.print->config.wipe_tower_x.value, ctxt.print->config.wipe_tower_y.value);
BOOST_LOG_TRIVIAL(debug) << "Loading wipe tower toolpaths in parallel - start";
//FIXME Improve the heuristics for a grain size.
size_t n_items = m_print->m_wipe_tower_tool_changes.size() + (ctxt.priming.empty() ? 0 : 1);
size_t grain_size = std::max(n_items / 128, size_t(1));
tbb::spin_mutex new_volume_mutex;
auto new_volume = [this, &new_volume_mutex](const float *color) -> GLVolume* {
auto *volume = new GLVolume(color);
new_volume_mutex.lock();
m_volumes.volumes.emplace_back(volume);
new_volume_mutex.unlock();
return volume;
};
const size_t volumes_cnt_initial = m_volumes.volumes.size();
std::vector<GLVolumeCollection> volumes_per_thread(n_items);
tbb::parallel_for(
tbb::blocked_range<size_t>(0, n_items, grain_size),
[&ctxt, &new_volume](const tbb::blocked_range<size_t>& range) {
// Bounding box of this slab of a wipe tower.
std::vector<GLVolume*> vols;
if (ctxt.color_by_tool()) {
for (size_t i = 0; i < ctxt.number_tools(); ++i)
vols.emplace_back(new_volume(ctxt.color_tool(i)));
}
else
vols = { new_volume(ctxt.color_support()) };
for (GLVolume *volume : vols)
volume->indexed_vertex_array.reserve(ctxt.alloc_size_reserve());
for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++idx_layer) {
const std::vector<WipeTower::ToolChangeResult> &layer = ctxt.tool_change(idx_layer);
for (size_t i = 0; i < vols.size(); ++i) {
GLVolume &vol = *vols[i];
if (vol.print_zs.empty() || vol.print_zs.back() != layer.front().print_z) {
vol.print_zs.push_back(layer.front().print_z);
vol.offsets.push_back(vol.indexed_vertex_array.quad_indices.size());
vol.offsets.push_back(vol.indexed_vertex_array.triangle_indices.size());
}
}
for (const WipeTower::ToolChangeResult &extrusions : layer) {
for (size_t i = 1; i < extrusions.extrusions.size();) {
const WipeTower::Extrusion &e = extrusions.extrusions[i];
if (e.width == 0.) {
++i;
continue;
}
size_t j = i + 1;
if (ctxt.color_by_tool())
for (; j < extrusions.extrusions.size() && extrusions.extrusions[j].tool == e.tool && extrusions.extrusions[j].width > 0.f; ++j);
else
for (; j < extrusions.extrusions.size() && extrusions.extrusions[j].width > 0.f; ++j);
size_t n_lines = j - i;
Lines lines;
std::vector<double> widths;
std::vector<double> heights;
lines.reserve(n_lines);
widths.reserve(n_lines);
heights.assign(n_lines, extrusions.layer_height);
WipeTower::Extrusion e_prev = extrusions.extrusions[i-1];
if (!extrusions.priming) { // wipe tower extrusions describe the wipe tower at the origin with no rotation
e_prev.pos.rotate(ctxt.wipe_tower_angle);
e_prev.pos.translate(ctxt.wipe_tower_pos);
}
for (; i < j; ++i) {
WipeTower::Extrusion e = extrusions.extrusions[i];
assert(e.width > 0.f);
if (!extrusions.priming) {
e.pos.rotate(ctxt.wipe_tower_angle);
e.pos.translate(ctxt.wipe_tower_pos);
}
lines.emplace_back(Point::new_scale(e_prev.pos.x, e_prev.pos.y), Point::new_scale(e.pos.x, e.pos.y));
widths.emplace_back(e.width);
e_prev = e;
}
_3DScene::thick_lines_to_verts(lines, widths, heights, lines.front().a == lines.back().b, extrusions.print_z,
*vols[ctxt.volume_idx(e.tool, 0)]);
}
}
}
for (size_t i = 0; i < vols.size(); ++i) {
GLVolume &vol = *vols[i];
if (vol.indexed_vertex_array.vertices_and_normals_interleaved.size() / 6 > ctxt.alloc_size_max()) {
// Store the vertex arrays and restart their containers,
vols[i] = new_volume(vol.color);
GLVolume &vol_new = *vols[i];
// Assign the large pre-allocated buffers to the new GLVolume.
vol_new.indexed_vertex_array = std::move(vol.indexed_vertex_array);
// Copy the content back to the old GLVolume.
vol.indexed_vertex_array = vol_new.indexed_vertex_array;
// Finalize a bounding box of the old GLVolume.
vol.bounding_box = vol.indexed_vertex_array.bounding_box();
// Clear the buffers, but keep them pre-allocated.
vol_new.indexed_vertex_array.clear();
// Just make sure that clear did not clear the reserved memory.
vol_new.indexed_vertex_array.reserve(ctxt.alloc_size_reserve());
}
}
for (GLVolume *vol : vols) {
vol->bounding_box = vol->indexed_vertex_array.bounding_box();
vol->indexed_vertex_array.shrink_to_fit();
}
});
BOOST_LOG_TRIVIAL(debug) << "Loading wipe tower toolpaths in parallel - finalizing results";
// Remove empty volumes from the newly added volumes.
m_volumes.volumes.erase(
std::remove_if(m_volumes.volumes.begin() + volumes_cnt_initial, m_volumes.volumes.end(),
[](const GLVolume *volume) { return volume->empty(); }),
m_volumes.volumes.end());
for (size_t i = volumes_cnt_initial; i < m_volumes.volumes.size(); ++i)
m_volumes.volumes[i]->indexed_vertex_array.finalize_geometry(m_use_VBOs && m_initialized);
BOOST_LOG_TRIVIAL(debug) << "Loading wipe tower toolpaths in parallel - end";
}
static inline int hex_digit_to_int(const char c)
{
return
(c >= '0' && c <= '9') ? int(c - '0') :
(c >= 'A' && c <= 'F') ? int(c - 'A') + 10 :
(c >= 'a' && c <= 'f') ? int(c - 'a') + 10 : -1;
}
void GLCanvas3D::_load_gcode_extrusion_paths(const GCodePreviewData& preview_data, const std::vector<float>& tool_colors)
{
// helper functions to select data in dependence of the extrusion view type
struct Helper
{
static float path_filter(GCodePreviewData::Extrusion::EViewType type, const ExtrusionPath& path)
{
switch (type)
{
case GCodePreviewData::Extrusion::FeatureType:
return (float)path.role();
case GCodePreviewData::Extrusion::Height:
return path.height;
case GCodePreviewData::Extrusion::Width:
return path.width;
case GCodePreviewData::Extrusion::Feedrate:
return path.feedrate;
case GCodePreviewData::Extrusion::VolumetricRate:
return path.feedrate * (float)path.mm3_per_mm;
case GCodePreviewData::Extrusion::Tool:
return (float)path.extruder_id;
default:
return 0.0f;
}
return 0.0f;
}
static GCodePreviewData::Color path_color(const GCodePreviewData& data, const std::vector<float>& tool_colors, float value)
{
switch (data.extrusion.view_type)
{
case GCodePreviewData::Extrusion::FeatureType:
return data.get_extrusion_role_color((ExtrusionRole)(int)value);
case GCodePreviewData::Extrusion::Height:
return data.get_height_color(value);
case GCodePreviewData::Extrusion::Width:
return data.get_width_color(value);
case GCodePreviewData::Extrusion::Feedrate:
return data.get_feedrate_color(value);
case GCodePreviewData::Extrusion::VolumetricRate:
return data.get_volumetric_rate_color(value);
case GCodePreviewData::Extrusion::Tool:
{
GCodePreviewData::Color color;
::memcpy((void*)color.rgba, (const void*)(tool_colors.data() + (unsigned int)value * 4), 4 * sizeof(float));
return color;
}
default:
return GCodePreviewData::Color::Dummy;
}
return GCodePreviewData::Color::Dummy;
}
};
// Helper structure for filters
struct Filter
{
float value;
ExtrusionRole role;
GLVolume* volume;
Filter(float value, ExtrusionRole role)
: value(value)
, role(role)
, volume(nullptr)
{
}
bool operator == (const Filter& other) const
{
if (value != other.value)
return false;
if (role != other.role)
return false;
return true;
}
};
typedef std::vector<Filter> FiltersList;
size_t initial_volumes_count = m_volumes.volumes.size();
// detects filters
FiltersList filters;
for (const GCodePreviewData::Extrusion::Layer& layer : preview_data.extrusion.layers)
{
for (const ExtrusionPath& path : layer.paths)
{
ExtrusionRole role = path.role();
float path_filter = Helper::path_filter(preview_data.extrusion.view_type, path);
if (std::find(filters.begin(), filters.end(), Filter(path_filter, role)) == filters.end())
filters.emplace_back(path_filter, role);
}
}
// nothing to render, return
if (filters.empty())
return;
// creates a new volume for each filter
for (Filter& filter : filters)
{
m_gcode_preview_volume_index.first_volumes.emplace_back(GCodePreviewVolumeIndex::Extrusion, (unsigned int)filter.role, (unsigned int)m_volumes.volumes.size());
GLVolume* volume = new GLVolume(Helper::path_color(preview_data, tool_colors, filter.value).rgba);
if (volume != nullptr)
{
filter.volume = volume;
volume->is_extrusion_path = true;
m_volumes.volumes.emplace_back(volume);
}
else
{
// an error occourred - restore to previous state and return
m_gcode_preview_volume_index.first_volumes.pop_back();
if (initial_volumes_count != m_volumes.volumes.size())
{
std::vector<GLVolume*>::iterator begin = m_volumes.volumes.begin() + initial_volumes_count;
std::vector<GLVolume*>::iterator end = m_volumes.volumes.end();
for (std::vector<GLVolume*>::iterator it = begin; it < end; ++it)
{
GLVolume* volume = *it;
delete volume;
}
m_volumes.volumes.erase(begin, end);
return;
}
}
}
// populates volumes
for (const GCodePreviewData::Extrusion::Layer& layer : preview_data.extrusion.layers)
{
for (const ExtrusionPath& path : layer.paths)
{
float path_filter = Helper::path_filter(preview_data.extrusion.view_type, path);
FiltersList::iterator filter = std::find(filters.begin(), filters.end(), Filter(path_filter, path.role()));
if (filter != filters.end())
{
filter->volume->print_zs.push_back(layer.z);
filter->volume->offsets.push_back(filter->volume->indexed_vertex_array.quad_indices.size());
filter->volume->offsets.push_back(filter->volume->indexed_vertex_array.triangle_indices.size());
_3DScene::extrusionentity_to_verts(path, layer.z, *filter->volume);
}
}
}
// finalize volumes and sends geometry to gpu
if (m_volumes.volumes.size() > initial_volumes_count)
{
for (size_t i = initial_volumes_count; i < m_volumes.volumes.size(); ++i)
{
GLVolume* volume = m_volumes.volumes[i];
volume->bounding_box = volume->indexed_vertex_array.bounding_box();
volume->indexed_vertex_array.finalize_geometry(m_use_VBOs && m_initialized);
}
}
}
void GLCanvas3D::_load_gcode_travel_paths(const GCodePreviewData& preview_data, const std::vector<float>& tool_colors)
{
size_t initial_volumes_count = m_volumes.volumes.size();
m_gcode_preview_volume_index.first_volumes.emplace_back(GCodePreviewVolumeIndex::Travel, 0, (unsigned int)initial_volumes_count);
bool res = true;
switch (preview_data.extrusion.view_type)
{
case GCodePreviewData::Extrusion::Feedrate:
{
res = _travel_paths_by_feedrate(preview_data);
break;
}
case GCodePreviewData::Extrusion::Tool:
{
res = _travel_paths_by_tool(preview_data, tool_colors);
break;
}
default:
{
res = _travel_paths_by_type(preview_data);
break;
}
}
if (!res)
{
// an error occourred - restore to previous state and return
if (initial_volumes_count != m_volumes.volumes.size())
{
std::vector<GLVolume*>::iterator begin = m_volumes.volumes.begin() + initial_volumes_count;
std::vector<GLVolume*>::iterator end = m_volumes.volumes.end();
for (std::vector<GLVolume*>::iterator it = begin; it < end; ++it)
{
GLVolume* volume = *it;
delete volume;
}
m_volumes.volumes.erase(begin, end);
}
return;
}
// finalize volumes and sends geometry to gpu
if (m_volumes.volumes.size() > initial_volumes_count)
{
for (size_t i = initial_volumes_count; i < m_volumes.volumes.size(); ++i)
{
GLVolume* volume = m_volumes.volumes[i];
volume->bounding_box = volume->indexed_vertex_array.bounding_box();
volume->indexed_vertex_array.finalize_geometry(m_use_VBOs && m_initialized);
}
}
}
bool GLCanvas3D::_travel_paths_by_type(const GCodePreviewData& preview_data)
{
// Helper structure for types
struct Type
{
GCodePreviewData::Travel::EType value;
GLVolume* volume;
explicit Type(GCodePreviewData::Travel::EType value)
: value(value)
, volume(nullptr)
{
}
bool operator == (const Type& other) const
{
return value == other.value;
}
};
typedef std::vector<Type> TypesList;
// colors travels by travel type
// detects types
TypesList types;
for (const GCodePreviewData::Travel::Polyline& polyline : preview_data.travel.polylines)
{
if (std::find(types.begin(), types.end(), Type(polyline.type)) == types.end())
types.emplace_back(polyline.type);
}
// nothing to render, return
if (types.empty())
return true;
// creates a new volume for each type
for (Type& type : types)
{
GLVolume* volume = new GLVolume(preview_data.travel.type_colors[type.value].rgba);
if (volume == nullptr)
return false;
else
{
type.volume = volume;
m_volumes.volumes.emplace_back(volume);
}
}
// populates volumes
for (const GCodePreviewData::Travel::Polyline& polyline : preview_data.travel.polylines)
{
TypesList::iterator type = std::find(types.begin(), types.end(), Type(polyline.type));
if (type != types.end())
{
type->volume->print_zs.push_back(unscale<double>(polyline.polyline.bounding_box().min(2)));
type->volume->offsets.push_back(type->volume->indexed_vertex_array.quad_indices.size());
type->volume->offsets.push_back(type->volume->indexed_vertex_array.triangle_indices.size());
_3DScene::polyline3_to_verts(polyline.polyline, preview_data.travel.width, preview_data.travel.height, *type->volume);
}
}
return true;
}
bool GLCanvas3D::_travel_paths_by_feedrate(const GCodePreviewData& preview_data)
{
// Helper structure for feedrate
struct Feedrate
{
float value;
GLVolume* volume;
explicit Feedrate(float value)
: value(value)
, volume(nullptr)
{
}
bool operator == (const Feedrate& other) const
{
return value == other.value;
}
};
typedef std::vector<Feedrate> FeedratesList;
// colors travels by feedrate
// detects feedrates
FeedratesList feedrates;
for (const GCodePreviewData::Travel::Polyline& polyline : preview_data.travel.polylines)
{
if (std::find(feedrates.begin(), feedrates.end(), Feedrate(polyline.feedrate)) == feedrates.end())
feedrates.emplace_back(polyline.feedrate);
}
// nothing to render, return
if (feedrates.empty())
return true;
// creates a new volume for each feedrate
for (Feedrate& feedrate : feedrates)
{
GLVolume* volume = new GLVolume(preview_data.get_feedrate_color(feedrate.value).rgba);
if (volume == nullptr)
return false;
else
{
feedrate.volume = volume;
m_volumes.volumes.emplace_back(volume);
}
}
// populates volumes
for (const GCodePreviewData::Travel::Polyline& polyline : preview_data.travel.polylines)
{
FeedratesList::iterator feedrate = std::find(feedrates.begin(), feedrates.end(), Feedrate(polyline.feedrate));
if (feedrate != feedrates.end())
{
feedrate->volume->print_zs.push_back(unscale<double>(polyline.polyline.bounding_box().min(2)));
feedrate->volume->offsets.push_back(feedrate->volume->indexed_vertex_array.quad_indices.size());
feedrate->volume->offsets.push_back(feedrate->volume->indexed_vertex_array.triangle_indices.size());
_3DScene::polyline3_to_verts(polyline.polyline, preview_data.travel.width, preview_data.travel.height, *feedrate->volume);
}
}
return true;
}
bool GLCanvas3D::_travel_paths_by_tool(const GCodePreviewData& preview_data, const std::vector<float>& tool_colors)
{
// Helper structure for tool
struct Tool
{
unsigned int value;
GLVolume* volume;
explicit Tool(unsigned int value)
: value(value)
, volume(nullptr)
{
}
bool operator == (const Tool& other) const
{
return value == other.value;
}
};
typedef std::vector<Tool> ToolsList;
// colors travels by tool
// detects tools
ToolsList tools;
for (const GCodePreviewData::Travel::Polyline& polyline : preview_data.travel.polylines)
{
if (std::find(tools.begin(), tools.end(), Tool(polyline.extruder_id)) == tools.end())
tools.emplace_back(polyline.extruder_id);
}
// nothing to render, return
if (tools.empty())
return true;
// creates a new volume for each tool
for (Tool& tool : tools)
{
GLVolume* volume = new GLVolume(tool_colors.data() + tool.value * 4);
if (volume == nullptr)
return false;
else
{
tool.volume = volume;
m_volumes.volumes.emplace_back(volume);
}
}
// populates volumes
for (const GCodePreviewData::Travel::Polyline& polyline : preview_data.travel.polylines)
{
ToolsList::iterator tool = std::find(tools.begin(), tools.end(), Tool(polyline.extruder_id));
if (tool != tools.end())
{
tool->volume->print_zs.push_back(unscale<double>(polyline.polyline.bounding_box().min(2)));
tool->volume->offsets.push_back(tool->volume->indexed_vertex_array.quad_indices.size());
tool->volume->offsets.push_back(tool->volume->indexed_vertex_array.triangle_indices.size());
_3DScene::polyline3_to_verts(polyline.polyline, preview_data.travel.width, preview_data.travel.height, *tool->volume);
}
}
return true;
}
void GLCanvas3D::_load_gcode_retractions(const GCodePreviewData& preview_data)
{
m_gcode_preview_volume_index.first_volumes.emplace_back(GCodePreviewVolumeIndex::Retraction, 0, (unsigned int)m_volumes.volumes.size());
// nothing to render, return
if (preview_data.retraction.positions.empty())
return;
GLVolume* volume = new GLVolume(preview_data.retraction.color.rgba);
if (volume != nullptr)
{
m_volumes.volumes.emplace_back(volume);
GCodePreviewData::Retraction::PositionsList copy(preview_data.retraction.positions);
std::sort(copy.begin(), copy.end(), [](const GCodePreviewData::Retraction::Position& p1, const GCodePreviewData::Retraction::Position& p2){ return p1.position(2) < p2.position(2); });
for (const GCodePreviewData::Retraction::Position& position : copy)
{
volume->print_zs.push_back(unscale<double>(position.position(2)));
volume->offsets.push_back(volume->indexed_vertex_array.quad_indices.size());
volume->offsets.push_back(volume->indexed_vertex_array.triangle_indices.size());
_3DScene::point3_to_verts(position.position, position.width, position.height, *volume);
}
// finalize volumes and sends geometry to gpu
volume->bounding_box = volume->indexed_vertex_array.bounding_box();
volume->indexed_vertex_array.finalize_geometry(m_use_VBOs && m_initialized);
}
}
void GLCanvas3D::_load_gcode_unretractions(const GCodePreviewData& preview_data)
{
m_gcode_preview_volume_index.first_volumes.emplace_back(GCodePreviewVolumeIndex::Unretraction, 0, (unsigned int)m_volumes.volumes.size());
// nothing to render, return
if (preview_data.unretraction.positions.empty())
return;
GLVolume* volume = new GLVolume(preview_data.unretraction.color.rgba);
if (volume != nullptr)
{
m_volumes.volumes.emplace_back(volume);
GCodePreviewData::Retraction::PositionsList copy(preview_data.unretraction.positions);
std::sort(copy.begin(), copy.end(), [](const GCodePreviewData::Retraction::Position& p1, const GCodePreviewData::Retraction::Position& p2){ return p1.position(2) < p2.position(2); });
for (const GCodePreviewData::Retraction::Position& position : copy)
{
volume->print_zs.push_back(unscale<double>(position.position(2)));
volume->offsets.push_back(volume->indexed_vertex_array.quad_indices.size());
volume->offsets.push_back(volume->indexed_vertex_array.triangle_indices.size());
_3DScene::point3_to_verts(position.position, position.width, position.height, *volume);
}
// finalize volumes and sends geometry to gpu
volume->bounding_box = volume->indexed_vertex_array.bounding_box();
volume->indexed_vertex_array.finalize_geometry(m_use_VBOs && m_initialized);
}
}
void GLCanvas3D::_load_shells()
{
size_t initial_volumes_count = m_volumes.volumes.size();
m_gcode_preview_volume_index.first_volumes.emplace_back(GCodePreviewVolumeIndex::Shell, 0, (unsigned int)initial_volumes_count);
if (m_print->objects.empty())
// nothing to render, return
return;
// adds objects' volumes
unsigned int object_id = 0;
for (PrintObject* obj : m_print->objects)
{
ModelObject* model_obj = obj->model_object();
std::vector<int> instance_ids(model_obj->instances.size());
for (int i = 0; i < (int)model_obj->instances.size(); ++i)
{
instance_ids[i] = i;
}
m_volumes.load_object(model_obj, object_id, instance_ids, "object", "object", "object", m_use_VBOs && m_initialized);
++object_id;
}
// adds wipe tower's volume
double max_z = m_print->objects[0]->model_object()->get_model()->bounding_box().max(2);
const PrintConfig& config = m_print->config;
unsigned int extruders_count = config.nozzle_diameter.size();
if ((extruders_count > 1) && config.single_extruder_multi_material && config.wipe_tower && !config.complete_objects) {
float depth = m_print->get_wipe_tower_depth();
if (!m_print->state.is_done(psWipeTower))
depth = (900.f/config.wipe_tower_width) * (float)(extruders_count - 1) ;
m_volumes.load_wipe_tower_preview(1000, config.wipe_tower_x, config.wipe_tower_y, config.wipe_tower_width, depth, max_z, config.wipe_tower_rotation_angle,
m_use_VBOs && m_initialized, !m_print->state.is_done(psWipeTower), m_print->config.nozzle_diameter.values[0] * 1.25f * 4.5f);
}
}
void GLCanvas3D::_update_gcode_volumes_visibility(const GCodePreviewData& preview_data)
{
unsigned int size = (unsigned int)m_gcode_preview_volume_index.first_volumes.size();
for (unsigned int i = 0; i < size; ++i)
{
std::vector<GLVolume*>::iterator begin = m_volumes.volumes.begin() + m_gcode_preview_volume_index.first_volumes[i].id;
std::vector<GLVolume*>::iterator end = (i + 1 < size) ? m_volumes.volumes.begin() + m_gcode_preview_volume_index.first_volumes[i + 1].id : m_volumes.volumes.end();
for (std::vector<GLVolume*>::iterator it = begin; it != end; ++it)
{
GLVolume* volume = *it;
switch (m_gcode_preview_volume_index.first_volumes[i].type)
{
case GCodePreviewVolumeIndex::Extrusion:
{
if ((ExtrusionRole)m_gcode_preview_volume_index.first_volumes[i].flag == erCustom)
volume->zoom_to_volumes = false;
volume->is_active = preview_data.extrusion.is_role_flag_set((ExtrusionRole)m_gcode_preview_volume_index.first_volumes[i].flag);
break;
}
case GCodePreviewVolumeIndex::Travel:
{
volume->is_active = preview_data.travel.is_visible;
volume->zoom_to_volumes = false;
break;
}
case GCodePreviewVolumeIndex::Retraction:
{
volume->is_active = preview_data.retraction.is_visible;
volume->zoom_to_volumes = false;
break;
}
case GCodePreviewVolumeIndex::Unretraction:
{
volume->is_active = preview_data.unretraction.is_visible;
volume->zoom_to_volumes = false;
break;
}
case GCodePreviewVolumeIndex::Shell:
{
volume->is_active = preview_data.shell.is_visible;
volume->color[3] = 0.25f;
volume->zoom_to_volumes = false;
break;
}
default:
{
volume->is_active = false;
volume->zoom_to_volumes = false;
break;
}
}
}
}
}
void GLCanvas3D::_update_toolpath_volumes_outside_state()
{
// tolerance to avoid false detection at bed edges
static const double tolerance_x = 0.05;
static const double tolerance_y = 0.05;
BoundingBoxf3 print_volume;
if (m_config != nullptr)
{
const ConfigOptionPoints* opt = dynamic_cast<const ConfigOptionPoints*>(m_config->option("bed_shape"));
if (opt != nullptr)
{
BoundingBox bed_box_2D = get_extents(Polygon::new_scale(opt->values));
print_volume = BoundingBoxf3(Vec3d(unscale<double>(bed_box_2D.min(0)) - tolerance_x, unscale<double>(bed_box_2D.min(1)) - tolerance_y, 0.0), Vec3d(unscale<double>(bed_box_2D.max(0)) + tolerance_x, unscale<double>(bed_box_2D.max(1)) + tolerance_y, m_config->opt_float("max_print_height")));
// Allow the objects to protrude below the print bed
print_volume.min(2) = -1e10;
}
}
for (GLVolume* volume : m_volumes.volumes)
{
volume->is_outside = ((print_volume.radius() > 0.0) && volume->is_extrusion_path) ? !print_volume.contains(volume->bounding_box) : false;
}
}
void GLCanvas3D::_show_warning_texture_if_needed()
{
if (_is_any_volume_outside())
{
enable_warning_texture(true);
_generate_warning_texture(L("Detected toolpath outside print volume"));
}
else
{
enable_warning_texture(false);
_reset_warning_texture();
}
}
void GLCanvas3D::_on_move(const std::vector<int>& volume_idxs)
{
if (m_model == nullptr)
return;
std::set<std::string> done; // prevent moving instances twice
bool object_moved = false;
Vec3d wipe_tower_origin(0.0, 0.0, 0.0);
for (int volume_idx : volume_idxs)
{
GLVolume* volume = m_volumes.volumes[volume_idx];
int obj_idx = volume->object_idx();
int instance_idx = volume->instance_idx();
// prevent moving instances twice
char done_id[64];
::sprintf(done_id, "%d_%d", obj_idx, instance_idx);
if (done.find(done_id) != done.end())
continue;
done.insert(done_id);
if (obj_idx < 1000)
{
// Move a regular object.
ModelObject* model_object = m_model->objects[obj_idx];
const Vec3d& origin = volume->get_origin();
model_object->instances[instance_idx]->offset = Vec2d(origin(0), origin(1));
model_object->invalidate_bounding_box();
object_moved = true;
}
else if (obj_idx == 1000)
// Move a wipe tower proxy.
wipe_tower_origin = volume->get_origin();
}
if (object_moved)
m_on_instance_moved_callback.call();
if (wipe_tower_origin != Vec3d(0.0, 0.0, 0.0))
m_on_wipe_tower_moved_callback.call(wipe_tower_origin(0), wipe_tower_origin(1));
}
void GLCanvas3D::_on_select(int volume_idx)
{
int id = -1;
if ((volume_idx != -1) && (volume_idx < (int)m_volumes.volumes.size()))
{
if (m_select_by == "volume")
id = m_volumes.volumes[volume_idx]->volume_idx();
else if (m_select_by == "object")
id = m_volumes.volumes[volume_idx]->object_idx();
}
m_on_select_object_callback.call(id);
}
std::vector<float> GLCanvas3D::_parse_colors(const std::vector<std::string>& colors)
{
static const float INV_255 = 1.0f / 255.0f;
std::vector<float> output(colors.size() * 4, 1.0f);
for (size_t i = 0; i < colors.size(); ++i)
{
const std::string& color = colors[i];
const char* c = color.data() + 1;
if ((color.size() == 7) && (color.front() == '#'))
{
for (size_t j = 0; j < 3; ++j)
{
int digit1 = hex_digit_to_int(*c++);
int digit2 = hex_digit_to_int(*c++);
if ((digit1 == -1) || (digit2 == -1))
break;
output[i * 4 + j] = float(digit1 * 16 + digit2) * INV_255;
}
}
}
return output;
}
void GLCanvas3D::_generate_legend_texture(const GCodePreviewData& preview_data, const std::vector<float>& tool_colors)
{
if (!set_current())
return;
m_legend_texture.generate(preview_data, tool_colors);
}
void GLCanvas3D::_generate_warning_texture(const std::string& msg)
{
if (!set_current())
return;
m_warning_texture.generate(msg);
}
void GLCanvas3D::_reset_warning_texture()
{
if (!set_current())
return;
m_warning_texture.reset();
}
bool GLCanvas3D::_is_any_volume_outside() const
{
for (const GLVolume* volume : m_volumes.volumes)
{
if ((volume != nullptr) && volume->is_outside)
return true;
}
return false;
}
void GLCanvas3D::_resize_toolbar() const
{
Size cnv_size = get_canvas_size();
float zoom = get_camera_zoom();
float inv_zoom = (zoom != 0.0f) ? 1.0f / zoom : 0.0f;
switch (m_toolbar.get_layout_type())
{
default:
case GLToolbar::Layout::Horizontal:
{
// centers the toolbar on the top edge of the 3d scene
unsigned int toolbar_width = m_toolbar.get_width();
float top = (0.5f * (float)cnv_size.get_height() - 2.0f) * inv_zoom;
float left = -0.5f * (float)toolbar_width * inv_zoom;
m_toolbar.set_position(top, left);
break;
}
case GLToolbar::Layout::Vertical:
{
// centers the toolbar on the right edge of the 3d scene
unsigned int toolbar_width = m_toolbar.get_width();
unsigned int toolbar_height = m_toolbar.get_height();
float top = 0.5f * (float)toolbar_height * inv_zoom;
float left = (0.5f * (float)cnv_size.get_width() - toolbar_width - 2.0f) * inv_zoom;
m_toolbar.set_position(top, left);
break;
}
}
}
} // namespace GUI
} // namespace Slic3r