PrusaSlicer-NonPlainar/src/libslic3r/Config.hpp
2019-08-14 17:07:30 +02:00

1749 lines
78 KiB
C++

#ifndef slic3r_Config_hpp_
#define slic3r_Config_hpp_
#include <assert.h>
#include <map>
#include <climits>
#include <cstdio>
#include <cstdlib>
#include <functional>
#include <iostream>
#include <stdexcept>
#include <string>
#include <vector>
#include "libslic3r.h"
#include "clonable_ptr.hpp"
#include "Point.hpp"
#include <boost/algorithm/string/trim.hpp>
#include <boost/format.hpp>
#include <boost/property_tree/ptree.hpp>
#include <cereal/access.hpp>
#include <cereal/types/base_class.hpp>
namespace Slic3r {
// Name of the configuration option.
typedef std::string t_config_option_key;
typedef std::vector<std::string> t_config_option_keys;
extern std::string escape_string_cstyle(const std::string &str);
extern std::string escape_strings_cstyle(const std::vector<std::string> &strs);
extern bool unescape_string_cstyle(const std::string &str, std::string &out);
extern bool unescape_strings_cstyle(const std::string &str, std::vector<std::string> &out);
/// Specialization of std::exception to indicate that an unknown config option has been encountered.
class UnknownOptionException : public std::runtime_error {
public:
UnknownOptionException() :
std::runtime_error("Unknown option exception") {}
UnknownOptionException(const std::string &opt_key) :
std::runtime_error(std::string("Unknown option exception: ") + opt_key) {}
};
/// Indicate that the ConfigBase derived class does not provide config definition (the method def() returns null).
class NoDefinitionException : public std::runtime_error
{
public:
NoDefinitionException() :
std::runtime_error("No definition exception") {}
NoDefinitionException(const std::string &opt_key) :
std::runtime_error(std::string("No definition exception: ") + opt_key) {}
};
// Type of a configuration value.
enum ConfigOptionType {
coVectorType = 0x4000,
coNone = 0,
// single float
coFloat = 1,
// vector of floats
coFloats = coFloat + coVectorType,
// single int
coInt = 2,
// vector of ints
coInts = coInt + coVectorType,
// single string
coString = 3,
// vector of strings
coStrings = coString + coVectorType,
// percent value. Currently only used for infill.
coPercent = 4,
// percents value. Currently used for retract before wipe only.
coPercents = coPercent + coVectorType,
// a fraction or an absolute value
coFloatOrPercent = 5,
// single 2d point (Point2f). Currently not used.
coPoint = 6,
// vector of 2d points (Point2f). Currently used for the definition of the print bed and for the extruder offsets.
coPoints = coPoint + coVectorType,
coPoint3 = 7,
// coPoint3s = coPoint3 + coVectorType,
// single boolean value
coBool = 8,
// vector of boolean values
coBools = coBool + coVectorType,
// a generic enum
coEnum = 9,
};
enum ConfigOptionMode {
comSimple = 0,
comAdvanced,
comExpert
};
enum PrinterTechnology : unsigned char
{
// Fused Filament Fabrication
ptFFF,
// Stereolitography
ptSLA,
// Unknown, useful for command line processing
ptUnknown,
// Any technology, useful for parameters compatible with both ptFFF and ptSLA
ptAny
};
// A generic value of a configuration option.
class ConfigOption {
public:
virtual ~ConfigOption() {}
virtual ConfigOptionType type() const = 0;
virtual std::string serialize() const = 0;
virtual bool deserialize(const std::string &str, bool append = false) = 0;
virtual ConfigOption* clone() const = 0;
// Set a value from a ConfigOption. The two options should be compatible.
virtual void set(const ConfigOption *option) = 0;
virtual int getInt() const { throw std::runtime_error("Calling ConfigOption::getInt on a non-int ConfigOption"); return 0; }
virtual double getFloat() const { throw std::runtime_error("Calling ConfigOption::getFloat on a non-float ConfigOption"); return 0; }
virtual bool getBool() const { throw std::runtime_error("Calling ConfigOption::getBool on a non-boolean ConfigOption"); return 0; }
virtual void setInt(int /* val */) { throw std::runtime_error("Calling ConfigOption::setInt on a non-int ConfigOption"); }
virtual bool operator==(const ConfigOption &rhs) const = 0;
bool operator!=(const ConfigOption &rhs) const { return ! (*this == rhs); }
bool is_scalar() const { return (int(this->type()) & int(coVectorType)) == 0; }
bool is_vector() const { return ! this->is_scalar(); }
// If this option is nullable, then it may have its value or values set to nil.
virtual bool nullable() const { return false; }
// A scalar is nil, or all values of a vector are nil.
virtual bool is_nil() const { return false; }
// Is this option overridden by another option?
// An option overrides another option if it is not nil and not equal.
virtual bool overriden_by(const ConfigOption *rhs) const {
assert(! this->nullable() && ! rhs->nullable());
return *this != *rhs;
}
// Apply an override option, possibly a nullable one.
virtual bool apply_override(const ConfigOption *rhs) {
if (*this == *rhs)
return false;
*this = *rhs;
return true;
}
};
typedef ConfigOption* ConfigOptionPtr;
typedef const ConfigOption* ConfigOptionConstPtr;
// Value of a single valued option (bool, int, float, string, point, enum)
template <class T>
class ConfigOptionSingle : public ConfigOption {
public:
T value;
explicit ConfigOptionSingle(T value) : value(value) {}
operator T() const { return this->value; }
void set(const ConfigOption *rhs) override
{
if (rhs->type() != this->type())
throw std::runtime_error("ConfigOptionSingle: Assigning an incompatible type");
assert(dynamic_cast<const ConfigOptionSingle<T>*>(rhs));
this->value = static_cast<const ConfigOptionSingle<T>*>(rhs)->value;
}
bool operator==(const ConfigOption &rhs) const override
{
if (rhs.type() != this->type())
throw std::runtime_error("ConfigOptionSingle: Comparing incompatible types");
assert(dynamic_cast<const ConfigOptionSingle<T>*>(&rhs));
return this->value == static_cast<const ConfigOptionSingle<T>*>(&rhs)->value;
}
bool operator==(const T &rhs) const { return this->value == rhs; }
bool operator!=(const T &rhs) const { return this->value != rhs; }
private:
friend class cereal::access;
template<class Archive> void serialize(Archive & ar) { ar(this->value); }
};
// Value of a vector valued option (bools, ints, floats, strings, points)
class ConfigOptionVectorBase : public ConfigOption {
public:
// Currently used only to initialize the PlaceholderParser.
virtual std::vector<std::string> vserialize() const = 0;
// Set from a vector of ConfigOptions.
// If the rhs ConfigOption is scalar, then its value is used,
// otherwise for each of rhs, the first value of a vector is used.
// This function is useful to collect values for multiple extrder / filament settings.
virtual void set(const std::vector<const ConfigOption*> &rhs) = 0;
// Set a single vector item from either a scalar option or the first value of a vector option.vector of ConfigOptions.
// This function is useful to split values from multiple extrder / filament settings into separate configurations.
virtual void set_at(const ConfigOption *rhs, size_t i, size_t j) = 0;
// Resize the vector of values, copy the newly added values from opt_default if provided.
virtual void resize(size_t n, const ConfigOption *opt_default = nullptr) = 0;
// Clear the values vector.
virtual void clear() = 0;
// Get size of this vector.
virtual size_t size() const = 0;
// Is this vector empty?
virtual bool empty() const = 0;
// Is the value nil? That should only be possible if this->nullable().
virtual bool is_nil(size_t idx) const = 0;
protected:
// Used to verify type compatibility when assigning to / from a scalar ConfigOption.
ConfigOptionType scalar_type() const { return static_cast<ConfigOptionType>(this->type() - coVectorType); }
};
// Value of a vector valued option (bools, ints, floats, strings, points), template
template <class T>
class ConfigOptionVector : public ConfigOptionVectorBase
{
public:
ConfigOptionVector() {}
explicit ConfigOptionVector(size_t n, const T &value) : values(n, value) {}
explicit ConfigOptionVector(std::initializer_list<T> il) : values(std::move(il)) {}
explicit ConfigOptionVector(const std::vector<T> &values) : values(values) {}
explicit ConfigOptionVector(std::vector<T> &&values) : values(std::move(values)) {}
std::vector<T> values;
void set(const ConfigOption *rhs) override
{
if (rhs->type() != this->type())
throw std::runtime_error("ConfigOptionVector: Assigning an incompatible type");
assert(dynamic_cast<const ConfigOptionVector<T>*>(rhs));
this->values = static_cast<const ConfigOptionVector<T>*>(rhs)->values;
}
// Set from a vector of ConfigOptions.
// If the rhs ConfigOption is scalar, then its value is used,
// otherwise for each of rhs, the first value of a vector is used.
// This function is useful to collect values for multiple extrder / filament settings.
void set(const std::vector<const ConfigOption*> &rhs) override
{
this->values.clear();
this->values.reserve(rhs.size());
for (const ConfigOption *opt : rhs) {
if (opt->type() == this->type()) {
auto other = static_cast<const ConfigOptionVector<T>*>(opt);
if (other->values.empty())
throw std::runtime_error("ConfigOptionVector::set(): Assigning from an empty vector");
this->values.emplace_back(other->values.front());
} else if (opt->type() == this->scalar_type())
this->values.emplace_back(static_cast<const ConfigOptionSingle<T>*>(opt)->value);
else
throw std::runtime_error("ConfigOptionVector::set():: Assigning an incompatible type");
}
}
// Set a single vector item from either a scalar option or the first value of a vector option.vector of ConfigOptions.
// This function is useful to split values from multiple extrder / filament settings into separate configurations.
void set_at(const ConfigOption *rhs, size_t i, size_t j) override
{
// It is expected that the vector value has at least one value, which is the default, if not overwritten.
assert(! this->values.empty());
if (this->values.size() <= i) {
// Resize this vector, fill in the new vector fields with the copy of the first field.
T v = this->values.front();
this->values.resize(i + 1, v);
}
if (rhs->type() == this->type()) {
// Assign the first value of the rhs vector.
auto other = static_cast<const ConfigOptionVector<T>*>(rhs);
if (other->values.empty())
throw std::runtime_error("ConfigOptionVector::set_at(): Assigning from an empty vector");
this->values[i] = other->get_at(j);
} else if (rhs->type() == this->scalar_type())
this->values[i] = static_cast<const ConfigOptionSingle<T>*>(rhs)->value;
else
throw std::runtime_error("ConfigOptionVector::set_at(): Assigning an incompatible type");
}
T& get_at(size_t i)
{
assert(! this->values.empty());
return (i < this->values.size()) ? this->values[i] : this->values.front();
}
const T& get_at(size_t i) const { return const_cast<ConfigOptionVector<T>*>(this)->get_at(i); }
// Resize this vector by duplicating the /*last*/first value.
// If the current vector is empty, the default value is used instead.
void resize(size_t n, const ConfigOption *opt_default = nullptr) override
{
assert(opt_default == nullptr || opt_default->is_vector());
// assert(opt_default == nullptr || dynamic_cast<ConfigOptionVector<T>>(opt_default));
assert(! this->values.empty() || opt_default != nullptr);
if (n == 0)
this->values.clear();
else if (n < this->values.size())
this->values.erase(this->values.begin() + n, this->values.end());
else if (n > this->values.size()) {
if (this->values.empty()) {
if (opt_default == nullptr)
throw std::runtime_error("ConfigOptionVector::resize(): No default value provided.");
if (opt_default->type() != this->type())
throw std::runtime_error("ConfigOptionVector::resize(): Extending with an incompatible type.");
this->values.resize(n, static_cast<const ConfigOptionVector<T>*>(opt_default)->values.front());
} else {
// Resize by duplicating the last value.
this->values.resize(n, this->values./*back*/front());
}
}
}
// Clear the values vector.
void clear() override { this->values.clear(); }
size_t size() const override { return this->values.size(); }
bool empty() const override { return this->values.empty(); }
bool operator==(const ConfigOption &rhs) const override
{
if (rhs.type() != this->type())
throw std::runtime_error("ConfigOptionVector: Comparing incompatible types");
assert(dynamic_cast<const ConfigOptionVector<T>*>(&rhs));
return this->values == static_cast<const ConfigOptionVector<T>*>(&rhs)->values;
}
bool operator==(const std::vector<T> &rhs) const { return this->values == rhs; }
bool operator!=(const std::vector<T> &rhs) const { return this->values != rhs; }
// Is this option overridden by another option?
// An option overrides another option if it is not nil and not equal.
bool overriden_by(const ConfigOption *rhs) const override {
if (this->nullable())
throw std::runtime_error("Cannot override a nullable ConfigOption.");
if (rhs->type() != this->type())
throw std::runtime_error("ConfigOptionVector.overriden_by() applied to different types.");
auto rhs_vec = static_cast<const ConfigOptionVector<T>*>(rhs);
if (! rhs->nullable())
// Overridding a non-nullable object with another non-nullable object.
return this->values != rhs_vec->values;
size_t i = 0;
size_t cnt = std::min(this->size(), rhs_vec->size());
for (; i < cnt; ++ i)
if (! rhs_vec->is_nil(i) && this->values[i] != rhs_vec->values[i])
return true;
for (; i < rhs_vec->size(); ++ i)
if (! rhs_vec->is_nil(i))
return true;
return false;
}
// Apply an override option, possibly a nullable one.
bool apply_override(const ConfigOption *rhs) override {
if (this->nullable())
throw std::runtime_error("Cannot override a nullable ConfigOption.");
if (rhs->type() != this->type())
throw std::runtime_error("ConfigOptionVector.apply_override() applied to different types.");
auto rhs_vec = static_cast<const ConfigOptionVector<T>*>(rhs);
if (! rhs->nullable()) {
// Overridding a non-nullable object with another non-nullable object.
if (this->values != rhs_vec->values) {
this->values = rhs_vec->values;
return true;
}
return false;
}
size_t i = 0;
size_t cnt = std::min(this->size(), rhs_vec->size());
bool modified = false;
for (; i < cnt; ++ i)
if (! rhs_vec->is_nil(i) && this->values[i] != rhs_vec->values[i]) {
this->values[i] = rhs_vec->values[i];
modified = true;
}
for (; i < rhs_vec->size(); ++ i)
if (! rhs_vec->is_nil(i)) {
if (this->values.empty())
this->values.resize(i + 1);
else
this->values.resize(i + 1, this->values.front());
this->values[i] = rhs_vec->values[i];
modified = true;
}
return modified;
}
private:
friend class cereal::access;
template<class Archive> void serialize(Archive & ar) { ar(this->values); }
};
class ConfigOptionFloat : public ConfigOptionSingle<double>
{
public:
ConfigOptionFloat() : ConfigOptionSingle<double>(0) {}
explicit ConfigOptionFloat(double _value) : ConfigOptionSingle<double>(_value) {}
static ConfigOptionType static_type() { return coFloat; }
ConfigOptionType type() const override { return static_type(); }
double getFloat() const override { return this->value; }
ConfigOption* clone() const override { return new ConfigOptionFloat(*this); }
bool operator==(const ConfigOptionFloat &rhs) const { return this->value == rhs.value; }
std::string serialize() const override
{
std::ostringstream ss;
ss << this->value;
return ss.str();
}
bool deserialize(const std::string &str, bool append = false) override
{
UNUSED(append);
std::istringstream iss(str);
iss >> this->value;
return !iss.fail();
}
ConfigOptionFloat& operator=(const ConfigOption *opt)
{
this->set(opt);
return *this;
}
private:
friend class cereal::access;
template<class Archive> void serialize(Archive &ar) { ar(cereal::base_class<ConfigOptionSingle<double>>(this)); }
};
template<bool NULLABLE>
class ConfigOptionFloatsTempl : public ConfigOptionVector<double>
{
public:
ConfigOptionFloatsTempl() : ConfigOptionVector<double>() {}
explicit ConfigOptionFloatsTempl(size_t n, double value) : ConfigOptionVector<double>(n, value) {}
explicit ConfigOptionFloatsTempl(std::initializer_list<double> il) : ConfigOptionVector<double>(std::move(il)) {}
explicit ConfigOptionFloatsTempl(const std::vector<double> &vec) : ConfigOptionVector<double>(vec) {}
explicit ConfigOptionFloatsTempl(std::vector<double> &&vec) : ConfigOptionVector<double>(std::move(vec)) {}
static ConfigOptionType static_type() { return coFloats; }
ConfigOptionType type() const override { return static_type(); }
ConfigOption* clone() const override { return new ConfigOptionFloatsTempl(*this); }
bool operator==(const ConfigOptionFloatsTempl &rhs) const { return vectors_equal(this->values, rhs.values); }
bool operator==(const ConfigOption &rhs) const override {
if (rhs.type() != this->type())
throw std::runtime_error("ConfigOptionFloatsTempl: Comparing incompatible types");
assert(dynamic_cast<const ConfigOptionVector<double>*>(&rhs));
return vectors_equal(this->values, static_cast<const ConfigOptionVector<double>*>(&rhs)->values);
}
// Could a special "nil" value be stored inside the vector, indicating undefined value?
bool nullable() const override { return NULLABLE; }
// Special "nil" value to be stored into the vector if this->supports_nil().
static double nil_value() { return std::numeric_limits<double>::quiet_NaN(); }
// A scalar is nil, or all values of a vector are nil.
bool is_nil() const override { for (auto v : this->values) if (! std::isnan(v)) return false; return true; }
bool is_nil(size_t idx) const override { return std::isnan(this->values[idx]); }
std::string serialize() const override
{
std::ostringstream ss;
for (const double &v : this->values) {
if (&v != &this->values.front())
ss << ",";
serialize_single_value(ss, v);
}
return ss.str();
}
std::vector<std::string> vserialize() const override
{
std::vector<std::string> vv;
vv.reserve(this->values.size());
for (const double v : this->values) {
std::ostringstream ss;
serialize_single_value(ss, v);
vv.push_back(ss.str());
}
return vv;
}
bool deserialize(const std::string &str, bool append = false) override
{
if (! append)
this->values.clear();
std::istringstream is(str);
std::string item_str;
while (std::getline(is, item_str, ',')) {
boost::trim(item_str);
if (item_str == "nil") {
if (NULLABLE)
this->values.push_back(nil_value());
else
std::runtime_error("Deserializing nil into a non-nullable object");
} else {
std::istringstream iss(item_str);
double value;
iss >> value;
this->values.push_back(value);
}
}
return true;
}
ConfigOptionFloatsTempl& operator=(const ConfigOption *opt)
{
this->set(opt);
return *this;
}
protected:
void serialize_single_value(std::ostringstream &ss, const double v) const {
if (std::isfinite(v))
ss << v;
else if (std::isnan(v)) {
if (NULLABLE)
ss << "nil";
else
std::runtime_error("Serializing NaN");
} else
std::runtime_error("Serializing invalid number");
}
static bool vectors_equal(const std::vector<double> &v1, const std::vector<double> &v2) {
if (NULLABLE) {
if (v1.size() != v2.size())
return false;
for (auto it1 = v1.begin(), it2 = v2.begin(); it1 != v1.end(); ++ it1, ++ it2)
if (! ((std::isnan(*it1) && std::isnan(*it2)) || *it1 == *it2))
return false;
return true;
} else
// Not supporting nullable values, the default vector compare is cheaper.
return v1 == v2;
}
private:
friend class cereal::access;
template<class Archive> void serialize(Archive &ar) { ar(cereal::base_class<ConfigOptionVector<double>>(this)); }
};
using ConfigOptionFloats = ConfigOptionFloatsTempl<false>;
using ConfigOptionFloatsNullable = ConfigOptionFloatsTempl<true>;
class ConfigOptionInt : public ConfigOptionSingle<int>
{
public:
ConfigOptionInt() : ConfigOptionSingle<int>(0) {}
explicit ConfigOptionInt(int value) : ConfigOptionSingle<int>(value) {}
explicit ConfigOptionInt(double _value) : ConfigOptionSingle<int>(int(floor(_value + 0.5))) {}
static ConfigOptionType static_type() { return coInt; }
ConfigOptionType type() const override { return static_type(); }
int getInt() const override { return this->value; }
void setInt(int val) { this->value = val; }
ConfigOption* clone() const override { return new ConfigOptionInt(*this); }
bool operator==(const ConfigOptionInt &rhs) const { return this->value == rhs.value; }
std::string serialize() const override
{
std::ostringstream ss;
ss << this->value;
return ss.str();
}
bool deserialize(const std::string &str, bool append = false) override
{
UNUSED(append);
std::istringstream iss(str);
iss >> this->value;
return !iss.fail();
}
ConfigOptionInt& operator=(const ConfigOption *opt)
{
this->set(opt);
return *this;
}
private:
friend class cereal::access;
template<class Archive> void serialize(Archive &ar) { ar(cereal::base_class<ConfigOptionSingle<int>>(this)); }
};
template<bool NULLABLE>
class ConfigOptionIntsTempl : public ConfigOptionVector<int>
{
public:
ConfigOptionIntsTempl() : ConfigOptionVector<int>() {}
explicit ConfigOptionIntsTempl(size_t n, int value) : ConfigOptionVector<int>(n, value) {}
explicit ConfigOptionIntsTempl(std::initializer_list<int> il) : ConfigOptionVector<int>(std::move(il)) {}
static ConfigOptionType static_type() { return coInts; }
ConfigOptionType type() const override { return static_type(); }
ConfigOption* clone() const override { return new ConfigOptionIntsTempl(*this); }
ConfigOptionIntsTempl& operator=(const ConfigOption *opt) { this->set(opt); return *this; }
bool operator==(const ConfigOptionIntsTempl &rhs) const { return this->values == rhs.values; }
// Could a special "nil" value be stored inside the vector, indicating undefined value?
bool nullable() const override { return NULLABLE; }
// Special "nil" value to be stored into the vector if this->supports_nil().
static int nil_value() { return std::numeric_limits<int>::max(); }
// A scalar is nil, or all values of a vector are nil.
bool is_nil() const override { for (auto v : this->values) if (v != nil_value()) return false; return true; }
bool is_nil(size_t idx) const override { return this->values[idx] == nil_value(); }
std::string serialize() const override
{
std::ostringstream ss;
for (const int &v : this->values) {
if (&v != &this->values.front())
ss << ",";
serialize_single_value(ss, v);
}
return ss.str();
}
std::vector<std::string> vserialize() const override
{
std::vector<std::string> vv;
vv.reserve(this->values.size());
for (const int v : this->values) {
std::ostringstream ss;
serialize_single_value(ss, v);
vv.push_back(ss.str());
}
return vv;
}
bool deserialize(const std::string &str, bool append = false) override
{
if (! append)
this->values.clear();
std::istringstream is(str);
std::string item_str;
while (std::getline(is, item_str, ',')) {
boost::trim(item_str);
if (item_str == "nil") {
if (NULLABLE)
this->values.push_back(nil_value());
else
std::runtime_error("Deserializing nil into a non-nullable object");
} else {
std::istringstream iss(item_str);
int value;
iss >> value;
this->values.push_back(value);
}
}
return true;
}
private:
void serialize_single_value(std::ostringstream &ss, const int v) const {
if (v == nil_value()) {
if (NULLABLE)
ss << "nil";
else
std::runtime_error("Serializing NaN");
} else
ss << v;
}
friend class cereal::access;
template<class Archive> void serialize(Archive &ar) { ar(cereal::base_class<ConfigOptionVector<int>>(this)); }
};
using ConfigOptionInts = ConfigOptionIntsTempl<false>;
using ConfigOptionIntsNullable = ConfigOptionIntsTempl<true>;
class ConfigOptionString : public ConfigOptionSingle<std::string>
{
public:
ConfigOptionString() : ConfigOptionSingle<std::string>("") {}
explicit ConfigOptionString(const std::string &value) : ConfigOptionSingle<std::string>(value) {}
static ConfigOptionType static_type() { return coString; }
ConfigOptionType type() const override { return static_type(); }
ConfigOption* clone() const override { return new ConfigOptionString(*this); }
ConfigOptionString& operator=(const ConfigOption *opt) { this->set(opt); return *this; }
bool operator==(const ConfigOptionString &rhs) const { return this->value == rhs.value; }
std::string serialize() const override
{
return escape_string_cstyle(this->value);
}
bool deserialize(const std::string &str, bool append = false) override
{
UNUSED(append);
return unescape_string_cstyle(str, this->value);
}
private:
friend class cereal::access;
template<class Archive> void serialize(Archive &ar) { ar(cereal::base_class<ConfigOptionSingle<std::string>>(this)); }
};
// semicolon-separated strings
class ConfigOptionStrings : public ConfigOptionVector<std::string>
{
public:
ConfigOptionStrings() : ConfigOptionVector<std::string>() {}
explicit ConfigOptionStrings(size_t n, const std::string &value) : ConfigOptionVector<std::string>(n, value) {}
explicit ConfigOptionStrings(const std::vector<std::string> &values) : ConfigOptionVector<std::string>(values) {}
explicit ConfigOptionStrings(std::vector<std::string> &&values) : ConfigOptionVector<std::string>(std::move(values)) {}
explicit ConfigOptionStrings(std::initializer_list<std::string> il) : ConfigOptionVector<std::string>(std::move(il)) {}
static ConfigOptionType static_type() { return coStrings; }
ConfigOptionType type() const override { return static_type(); }
ConfigOption* clone() const override { return new ConfigOptionStrings(*this); }
ConfigOptionStrings& operator=(const ConfigOption *opt) { this->set(opt); return *this; }
bool operator==(const ConfigOptionStrings &rhs) const { return this->values == rhs.values; }
bool is_nil(size_t idx) const override { return false; }
std::string serialize() const override
{
return escape_strings_cstyle(this->values);
}
std::vector<std::string> vserialize() const override
{
return this->values;
}
bool deserialize(const std::string &str, bool append = false) override
{
if (! append)
this->values.clear();
return unescape_strings_cstyle(str, this->values);
}
private:
friend class cereal::access;
template<class Archive> void serialize(Archive &ar) { ar(cereal::base_class<ConfigOptionVector<std::string>>(this)); }
};
class ConfigOptionPercent : public ConfigOptionFloat
{
public:
ConfigOptionPercent() : ConfigOptionFloat(0) {}
explicit ConfigOptionPercent(double _value) : ConfigOptionFloat(_value) {}
static ConfigOptionType static_type() { return coPercent; }
ConfigOptionType type() const override { return static_type(); }
ConfigOption* clone() const override { return new ConfigOptionPercent(*this); }
ConfigOptionPercent& operator=(const ConfigOption *opt) { this->set(opt); return *this; }
bool operator==(const ConfigOptionPercent &rhs) const { return this->value == rhs.value; }
double get_abs_value(double ratio_over) const { return ratio_over * this->value / 100; }
std::string serialize() const override
{
std::ostringstream ss;
ss << this->value;
std::string s(ss.str());
s += "%";
return s;
}
bool deserialize(const std::string &str, bool append = false) override
{
UNUSED(append);
// don't try to parse the trailing % since it's optional
std::istringstream iss(str);
iss >> this->value;
return !iss.fail();
}
private:
friend class cereal::access;
template<class Archive> void serialize(Archive &ar) { ar(cereal::base_class<ConfigOptionFloat>(this)); }
};
template<bool NULLABLE>
class ConfigOptionPercentsTempl : public ConfigOptionFloatsTempl<NULLABLE>
{
public:
ConfigOptionPercentsTempl() : ConfigOptionFloatsTempl<NULLABLE>() {}
explicit ConfigOptionPercentsTempl(size_t n, double value) : ConfigOptionFloatsTempl<NULLABLE>(n, value) {}
explicit ConfigOptionPercentsTempl(std::initializer_list<double> il) : ConfigOptionFloatsTempl<NULLABLE>(std::move(il)) {}
explicit ConfigOptionPercentsTempl(const std::vector<double>& vec) : ConfigOptionFloatsTempl<NULLABLE>(vec) {}
explicit ConfigOptionPercentsTempl(std::vector<double>&& vec) : ConfigOptionFloatsTempl<NULLABLE>(std::move(vec)) {}
static ConfigOptionType static_type() { return coPercents; }
ConfigOptionType type() const override { return static_type(); }
ConfigOption* clone() const override { return new ConfigOptionPercentsTempl(*this); }
ConfigOptionPercentsTempl& operator=(const ConfigOption *opt) { this->set(opt); return *this; }
bool operator==(const ConfigOptionPercentsTempl &rhs) const { return this->values == rhs.values; }
std::string serialize() const override
{
std::ostringstream ss;
for (const double &v : this->values) {
if (&v != &this->values.front())
ss << ",";
this->serialize_single_value(ss, v);
if (! std::isnan(v))
ss << "%";
}
std::string str = ss.str();
return str;
}
std::vector<std::string> vserialize() const override
{
std::vector<std::string> vv;
vv.reserve(this->values.size());
for (const double v : this->values) {
std::ostringstream ss;
this->serialize_single_value(ss, v);
if (! std::isnan(v))
ss << "%";
vv.push_back(ss.str());
}
return vv;
}
// The float's deserialize function shall ignore the trailing optional %.
// bool deserialize(const std::string &str, bool append = false) override;
private:
friend class cereal::access;
template<class Archive> void serialize(Archive &ar) { ar(cereal::base_class<ConfigOptionFloatsTempl<NULLABLE>>(this)); }
};
using ConfigOptionPercents = ConfigOptionPercentsTempl<false>;
using ConfigOptionPercentsNullable = ConfigOptionPercentsTempl<true>;
class ConfigOptionFloatOrPercent : public ConfigOptionPercent
{
public:
bool percent;
ConfigOptionFloatOrPercent() : ConfigOptionPercent(0), percent(false) {}
explicit ConfigOptionFloatOrPercent(double _value, bool _percent) : ConfigOptionPercent(_value), percent(_percent) {}
static ConfigOptionType static_type() { return coFloatOrPercent; }
ConfigOptionType type() const override { return static_type(); }
ConfigOption* clone() const override { return new ConfigOptionFloatOrPercent(*this); }
ConfigOptionFloatOrPercent& operator=(const ConfigOption *opt) { this->set(opt); return *this; }
bool operator==(const ConfigOption &rhs) const override
{
if (rhs.type() != this->type())
throw std::runtime_error("ConfigOptionFloatOrPercent: Comparing incompatible types");
assert(dynamic_cast<const ConfigOptionFloatOrPercent*>(&rhs));
return *this == *static_cast<const ConfigOptionFloatOrPercent*>(&rhs);
}
bool operator==(const ConfigOptionFloatOrPercent &rhs) const
{ return this->value == rhs.value && this->percent == rhs.percent; }
double get_abs_value(double ratio_over) const
{ return this->percent ? (ratio_over * this->value / 100) : this->value; }
void set(const ConfigOption *rhs) override {
if (rhs->type() != this->type())
throw std::runtime_error("ConfigOptionFloatOrPercent: Assigning an incompatible type");
assert(dynamic_cast<const ConfigOptionFloatOrPercent*>(rhs));
*this = *static_cast<const ConfigOptionFloatOrPercent*>(rhs);
}
std::string serialize() const override
{
std::ostringstream ss;
ss << this->value;
std::string s(ss.str());
if (this->percent) s += "%";
return s;
}
bool deserialize(const std::string &str, bool append = false) override
{
UNUSED(append);
this->percent = str.find_first_of("%") != std::string::npos;
std::istringstream iss(str);
iss >> this->value;
return !iss.fail();
}
private:
friend class cereal::access;
template<class Archive> void serialize(Archive &ar) { ar(cereal::base_class<ConfigOptionPercent>(this), percent); }
};
class ConfigOptionPoint : public ConfigOptionSingle<Vec2d>
{
public:
ConfigOptionPoint() : ConfigOptionSingle<Vec2d>(Vec2d(0,0)) {}
explicit ConfigOptionPoint(const Vec2d &value) : ConfigOptionSingle<Vec2d>(value) {}
static ConfigOptionType static_type() { return coPoint; }
ConfigOptionType type() const override { return static_type(); }
ConfigOption* clone() const override { return new ConfigOptionPoint(*this); }
ConfigOptionPoint& operator=(const ConfigOption *opt) { this->set(opt); return *this; }
bool operator==(const ConfigOptionPoint &rhs) const { return this->value == rhs.value; }
std::string serialize() const override
{
std::ostringstream ss;
ss << this->value(0);
ss << ",";
ss << this->value(1);
return ss.str();
}
bool deserialize(const std::string &str, bool append = false) override
{
UNUSED(append);
char dummy;
return sscanf(str.data(), " %lf , %lf %c", &this->value(0), &this->value(1), &dummy) == 2 ||
sscanf(str.data(), " %lf x %lf %c", &this->value(0), &this->value(1), &dummy) == 2;
}
private:
friend class cereal::access;
template<class Archive> void serialize(Archive &ar) { ar(cereal::base_class<ConfigOptionSingle<Vec2d>>(this)); }
};
class ConfigOptionPoints : public ConfigOptionVector<Vec2d>
{
public:
ConfigOptionPoints() : ConfigOptionVector<Vec2d>() {}
explicit ConfigOptionPoints(size_t n, const Vec2d &value) : ConfigOptionVector<Vec2d>(n, value) {}
explicit ConfigOptionPoints(std::initializer_list<Vec2d> il) : ConfigOptionVector<Vec2d>(std::move(il)) {}
explicit ConfigOptionPoints(const std::vector<Vec2d> &values) : ConfigOptionVector<Vec2d>(values) {}
static ConfigOptionType static_type() { return coPoints; }
ConfigOptionType type() const override { return static_type(); }
ConfigOption* clone() const override { return new ConfigOptionPoints(*this); }
ConfigOptionPoints& operator=(const ConfigOption *opt) { this->set(opt); return *this; }
bool operator==(const ConfigOptionPoints &rhs) const { return this->values == rhs.values; }
bool is_nil(size_t idx) const override { return false; }
std::string serialize() const override
{
std::ostringstream ss;
for (Pointfs::const_iterator it = this->values.begin(); it != this->values.end(); ++it) {
if (it - this->values.begin() != 0) ss << ",";
ss << (*it)(0);
ss << "x";
ss << (*it)(1);
}
return ss.str();
}
std::vector<std::string> vserialize() const override
{
std::vector<std::string> vv;
for (Pointfs::const_iterator it = this->values.begin(); it != this->values.end(); ++it) {
std::ostringstream ss;
ss << *it;
vv.push_back(ss.str());
}
return vv;
}
bool deserialize(const std::string &str, bool append = false) override
{
if (! append)
this->values.clear();
std::istringstream is(str);
std::string point_str;
while (std::getline(is, point_str, ',')) {
Vec2d point(Vec2d::Zero());
std::istringstream iss(point_str);
std::string coord_str;
if (std::getline(iss, coord_str, 'x')) {
std::istringstream(coord_str) >> point(0);
if (std::getline(iss, coord_str, 'x')) {
std::istringstream(coord_str) >> point(1);
}
}
this->values.push_back(point);
}
return true;
}
private:
friend class cereal::access;
template<class Archive> void save(Archive& archive) const {
size_t cnt = this->values.size();
archive(cnt);
archive.saveBinary((const char*)this->values.data(), sizeof(Vec2d) * cnt);
}
template<class Archive> void load(Archive& archive) {
size_t cnt;
archive(cnt);
this->values.assign(cnt, Vec2d());
archive.loadBinary((char*)this->values.data(), sizeof(Vec2d) * cnt);
}
};
class ConfigOptionPoint3 : public ConfigOptionSingle<Vec3d>
{
public:
ConfigOptionPoint3() : ConfigOptionSingle<Vec3d>(Vec3d(0,0,0)) {}
explicit ConfigOptionPoint3(const Vec3d &value) : ConfigOptionSingle<Vec3d>(value) {}
static ConfigOptionType static_type() { return coPoint3; }
ConfigOptionType type() const override { return static_type(); }
ConfigOption* clone() const override { return new ConfigOptionPoint3(*this); }
ConfigOptionPoint3& operator=(const ConfigOption *opt) { this->set(opt); return *this; }
bool operator==(const ConfigOptionPoint3 &rhs) const { return this->value == rhs.value; }
std::string serialize() const override
{
std::ostringstream ss;
ss << this->value(0);
ss << ",";
ss << this->value(1);
ss << ",";
ss << this->value(2);
return ss.str();
}
bool deserialize(const std::string &str, bool append = false) override
{
UNUSED(append);
char dummy;
return sscanf(str.data(), " %lf , %lf , %lf %c", &this->value(0), &this->value(1), &this->value(2), &dummy) == 2 ||
sscanf(str.data(), " %lf x %lf x %lf %c", &this->value(0), &this->value(1), &this->value(2), &dummy) == 2;
}
private:
friend class cereal::access;
template<class Archive> void serialize(Archive &ar) { ar(cereal::base_class<ConfigOptionSingle<Vec3d>>(this)); }
};
class ConfigOptionBool : public ConfigOptionSingle<bool>
{
public:
ConfigOptionBool() : ConfigOptionSingle<bool>(false) {}
explicit ConfigOptionBool(bool _value) : ConfigOptionSingle<bool>(_value) {}
static ConfigOptionType static_type() { return coBool; }
ConfigOptionType type() const override { return static_type(); }
bool getBool() const override { return this->value; }
ConfigOption* clone() const override { return new ConfigOptionBool(*this); }
ConfigOptionBool& operator=(const ConfigOption *opt) { this->set(opt); return *this; }
bool operator==(const ConfigOptionBool &rhs) const { return this->value == rhs.value; }
std::string serialize() const override
{
return std::string(this->value ? "1" : "0");
}
bool deserialize(const std::string &str, bool append = false) override
{
UNUSED(append);
this->value = (str.compare("1") == 0);
return true;
}
private:
friend class cereal::access;
template<class Archive> void serialize(Archive &ar) { ar(cereal::base_class<ConfigOptionSingle<bool>>(this)); }
};
template<bool NULLABLE>
class ConfigOptionBoolsTempl : public ConfigOptionVector<unsigned char>
{
public:
ConfigOptionBoolsTempl() : ConfigOptionVector<unsigned char>() {}
explicit ConfigOptionBoolsTempl(size_t n, bool value) : ConfigOptionVector<unsigned char>(n, (unsigned char)value) {}
explicit ConfigOptionBoolsTempl(std::initializer_list<bool> il) { values.reserve(il.size()); for (bool b : il) values.emplace_back((unsigned char)b); }
explicit ConfigOptionBoolsTempl(std::initializer_list<unsigned char> il) { values.reserve(il.size()); for (unsigned char b : il) values.emplace_back(b); }
explicit ConfigOptionBoolsTempl(const std::vector<unsigned char>& vec) : ConfigOptionVector<unsigned char>(vec) {}
explicit ConfigOptionBoolsTempl(std::vector<unsigned char>&& vec) : ConfigOptionVector<unsigned char>(std::move(vec)) {}
static ConfigOptionType static_type() { return coBools; }
ConfigOptionType type() const override { return static_type(); }
ConfigOption* clone() const override { return new ConfigOptionBoolsTempl(*this); }
ConfigOptionBoolsTempl& operator=(const ConfigOption *opt) { this->set(opt); return *this; }
bool operator==(const ConfigOptionBoolsTempl &rhs) const { return this->values == rhs.values; }
// Could a special "nil" value be stored inside the vector, indicating undefined value?
bool nullable() const override { return NULLABLE; }
// Special "nil" value to be stored into the vector if this->supports_nil().
static unsigned char nil_value() { return std::numeric_limits<unsigned char>::max(); }
// A scalar is nil, or all values of a vector are nil.
bool is_nil() const override { for (auto v : this->values) if (v != nil_value()) return false; return true; }
bool is_nil(size_t idx) const override { return this->values[idx] == nil_value(); }
bool& get_at(size_t i) {
assert(! this->values.empty());
return *reinterpret_cast<bool*>(&((i < this->values.size()) ? this->values[i] : this->values.front()));
}
//FIXME this smells, the parent class has the method declared returning (unsigned char&).
bool get_at(size_t i) const { return ((i < this->values.size()) ? this->values[i] : this->values.front()) != 0; }
std::string serialize() const override
{
std::ostringstream ss;
for (const unsigned char &v : this->values) {
if (&v != &this->values.front())
ss << ",";
this->serialize_single_value(ss, v);
}
return ss.str();
}
std::vector<std::string> vserialize() const override
{
std::vector<std::string> vv;
for (const unsigned char v : this->values) {
std::ostringstream ss;
this->serialize_single_value(ss, v);
vv.push_back(ss.str());
}
return vv;
}
bool deserialize(const std::string &str, bool append = false) override
{
if (! append)
this->values.clear();
std::istringstream is(str);
std::string item_str;
while (std::getline(is, item_str, ',')) {
boost::trim(item_str);
if (item_str == "nil") {
if (NULLABLE)
this->values.push_back(nil_value());
else
std::runtime_error("Deserializing nil into a non-nullable object");
} else
this->values.push_back(item_str.compare("1") == 0);
}
return true;
}
protected:
void serialize_single_value(std::ostringstream &ss, const unsigned char v) const {
if (v == nil_value()) {
if (NULLABLE)
ss << "nil";
else
std::runtime_error("Serializing NaN");
} else
ss << (v ? "1" : "0");
}
private:
friend class cereal::access;
template<class Archive> void serialize(Archive &ar) { ar(cereal::base_class<ConfigOptionVector<unsigned char>>(this)); }
};
using ConfigOptionBools = ConfigOptionBoolsTempl<false>;
using ConfigOptionBoolsNullable = ConfigOptionBoolsTempl<true>;
// Map from an enum integer value to an enum name.
typedef std::vector<std::string> t_config_enum_names;
// Map from an enum name to an enum integer value.
typedef std::map<std::string,int> t_config_enum_values;
template <class T>
class ConfigOptionEnum : public ConfigOptionSingle<T>
{
public:
// by default, use the first value (0) of the T enum type
ConfigOptionEnum() : ConfigOptionSingle<T>(static_cast<T>(0)) {}
explicit ConfigOptionEnum(T _value) : ConfigOptionSingle<T>(_value) {}
static ConfigOptionType static_type() { return coEnum; }
ConfigOptionType type() const override { return static_type(); }
ConfigOption* clone() const override { return new ConfigOptionEnum<T>(*this); }
ConfigOptionEnum<T>& operator=(const ConfigOption *opt) { this->set(opt); return *this; }
bool operator==(const ConfigOptionEnum<T> &rhs) const { return this->value == rhs.value; }
int getInt() const override { return (int)this->value; }
bool operator==(const ConfigOption &rhs) const override
{
if (rhs.type() != this->type())
throw std::runtime_error("ConfigOptionEnum<T>: Comparing incompatible types");
// rhs could be of the following type: ConfigOptionEnumGeneric or ConfigOptionEnum<T>
return this->value == (T)rhs.getInt();
}
void set(const ConfigOption *rhs) override {
if (rhs->type() != this->type())
throw std::runtime_error("ConfigOptionEnum<T>: Assigning an incompatible type");
// rhs could be of the following type: ConfigOptionEnumGeneric or ConfigOptionEnum<T>
this->value = (T)rhs->getInt();
}
std::string serialize() const override
{
const t_config_enum_names& names = ConfigOptionEnum<T>::get_enum_names();
assert(static_cast<int>(this->value) < int(names.size()));
return names[static_cast<int>(this->value)];
}
bool deserialize(const std::string &str, bool append = false) override
{
UNUSED(append);
return from_string(str, this->value);
}
static bool has(T value)
{
for (const std::pair<std::string, int> &kvp : ConfigOptionEnum<T>::get_enum_values())
if (kvp.second == value)
return true;
return false;
}
// Map from an enum name to an enum integer value.
static const t_config_enum_names& get_enum_names()
{
static t_config_enum_names names;
if (names.empty()) {
// Initialize the map.
const t_config_enum_values &enum_keys_map = ConfigOptionEnum<T>::get_enum_values();
int cnt = 0;
for (const std::pair<std::string, int> &kvp : enum_keys_map)
cnt = std::max(cnt, kvp.second);
cnt += 1;
names.assign(cnt, "");
for (const std::pair<std::string, int> &kvp : enum_keys_map)
names[kvp.second] = kvp.first;
}
return names;
}
// Map from an enum name to an enum integer value.
static const t_config_enum_values& get_enum_values();
static bool from_string(const std::string &str, T &value)
{
const t_config_enum_values &enum_keys_map = ConfigOptionEnum<T>::get_enum_values();
auto it = enum_keys_map.find(str);
if (it == enum_keys_map.end())
return false;
value = static_cast<T>(it->second);
return true;
}
};
// Generic enum configuration value.
// We use this one in DynamicConfig objects when creating a config value object for ConfigOptionType == coEnum.
// In the StaticConfig, it is better to use the specialized ConfigOptionEnum<T> containers.
class ConfigOptionEnumGeneric : public ConfigOptionInt
{
public:
ConfigOptionEnumGeneric(const t_config_enum_values* keys_map = nullptr) : keys_map(keys_map) {}
explicit ConfigOptionEnumGeneric(const t_config_enum_values* keys_map, int value) : ConfigOptionInt(value), keys_map(keys_map) {}
const t_config_enum_values* keys_map;
static ConfigOptionType static_type() { return coEnum; }
ConfigOptionType type() const override { return static_type(); }
ConfigOption* clone() const override { return new ConfigOptionEnumGeneric(*this); }
ConfigOptionEnumGeneric& operator=(const ConfigOption *opt) { this->set(opt); return *this; }
bool operator==(const ConfigOptionEnumGeneric &rhs) const { return this->value == rhs.value; }
bool operator==(const ConfigOption &rhs) const override
{
if (rhs.type() != this->type())
throw std::runtime_error("ConfigOptionEnumGeneric: Comparing incompatible types");
// rhs could be of the following type: ConfigOptionEnumGeneric or ConfigOptionEnum<T>
return this->value == rhs.getInt();
}
void set(const ConfigOption *rhs) override {
if (rhs->type() != this->type())
throw std::runtime_error("ConfigOptionEnumGeneric: Assigning an incompatible type");
// rhs could be of the following type: ConfigOptionEnumGeneric or ConfigOptionEnum<T>
this->value = rhs->getInt();
}
std::string serialize() const override
{
for (const auto &kvp : *this->keys_map)
if (kvp.second == this->value)
return kvp.first;
return std::string();
}
bool deserialize(const std::string &str, bool append = false) override
{
UNUSED(append);
auto it = this->keys_map->find(str);
if (it == this->keys_map->end())
return false;
this->value = it->second;
return true;
}
private:
friend class cereal::access;
template<class Archive> void serialize(Archive& ar) { ar(cereal::base_class<ConfigOptionInt>(this)); }
};
// Definition of a configuration value for the purpose of GUI presentation, editing, value mapping and config file handling.
class ConfigOptionDef
{
public:
// Identifier of this option. It is stored here so that it is accessible through the by_serialization_key_ordinal map.
t_config_option_key opt_key;
// What type? bool, int, string etc.
ConfigOptionType type = coNone;
// If a type is nullable, then it accepts a "nil" value (scalar) or "nil" values (vector).
bool nullable = false;
// Default value of this option. The default value object is owned by ConfigDef, it is released in its destructor.
Slic3r::clonable_ptr<const ConfigOption> default_value;
void set_default_value(const ConfigOption* ptr) { this->default_value = Slic3r::clonable_ptr<const ConfigOption>(ptr); }
template<typename T> const T* get_default_value() const { return static_cast<const T*>(this->default_value.get()); }
// Create an empty option to be used as a base for deserialization of DynamicConfig.
ConfigOption* create_empty_option() const;
// Create a default option to be inserted into a DynamicConfig.
ConfigOption* create_default_option() const;
template<class Archive> ConfigOption* load_option_from_archive(Archive &archive) const {
if (this->nullable) {
switch (this->type) {
case coFloats: { auto opt = new ConfigOptionFloatsNullable(); archive(*opt); return opt; }
case coInts: { auto opt = new ConfigOptionIntsNullable(); archive(*opt); return opt; }
case coPercents: { auto opt = new ConfigOptionPercentsNullable();archive(*opt); return opt; }
case coBools: { auto opt = new ConfigOptionBoolsNullable(); archive(*opt); return opt; }
default: throw std::runtime_error(std::string("ConfigOptionDef::load_option_from_archive(): Unknown nullable option type for option ") + this->opt_key);
}
} else {
switch (this->type) {
case coFloat: { auto opt = new ConfigOptionFloat(); archive(*opt); return opt; }
case coFloats: { auto opt = new ConfigOptionFloats(); archive(*opt); return opt; }
case coInt: { auto opt = new ConfigOptionInt(); archive(*opt); return opt; }
case coInts: { auto opt = new ConfigOptionInts(); archive(*opt); return opt; }
case coString: { auto opt = new ConfigOptionString(); archive(*opt); return opt; }
case coStrings: { auto opt = new ConfigOptionStrings(); archive(*opt); return opt; }
case coPercent: { auto opt = new ConfigOptionPercent(); archive(*opt); return opt; }
case coPercents: { auto opt = new ConfigOptionPercents(); archive(*opt); return opt; }
case coFloatOrPercent: { auto opt = new ConfigOptionFloatOrPercent(); archive(*opt); return opt; }
case coPoint: { auto opt = new ConfigOptionPoint(); archive(*opt); return opt; }
case coPoints: { auto opt = new ConfigOptionPoints(); archive(*opt); return opt; }
case coPoint3: { auto opt = new ConfigOptionPoint3(); archive(*opt); return opt; }
case coBool: { auto opt = new ConfigOptionBool(); archive(*opt); return opt; }
case coBools: { auto opt = new ConfigOptionBools(); archive(*opt); return opt; }
case coEnum: { auto opt = new ConfigOptionEnumGeneric(this->enum_keys_map); archive(*opt); return opt; }
default: throw std::runtime_error(std::string("ConfigOptionDef::load_option_from_archive(): Unknown option type for option ") + this->opt_key);
}
}
}
template<class Archive> ConfigOption* save_option_to_archive(Archive &archive, const ConfigOption *opt) const {
if (this->nullable) {
switch (this->type) {
case coFloats: archive(*static_cast<const ConfigOptionFloatsNullable*>(opt)); break;
case coInts: archive(*static_cast<const ConfigOptionIntsNullable*>(opt)); break;
case coPercents: archive(*static_cast<const ConfigOptionPercentsNullable*>(opt));break;
case coBools: archive(*static_cast<const ConfigOptionBoolsNullable*>(opt)); break;
default: throw std::runtime_error(std::string("ConfigOptionDef::save_option_to_archive(): Unknown nullable option type for option ") + this->opt_key);
}
} else {
switch (this->type) {
case coFloat: archive(*static_cast<const ConfigOptionFloat*>(opt)); break;
case coFloats: archive(*static_cast<const ConfigOptionFloats*>(opt)); break;
case coInt: archive(*static_cast<const ConfigOptionInt*>(opt)); break;
case coInts: archive(*static_cast<const ConfigOptionInts*>(opt)); break;
case coString: archive(*static_cast<const ConfigOptionString*>(opt)); break;
case coStrings: archive(*static_cast<const ConfigOptionStrings*>(opt)); break;
case coPercent: archive(*static_cast<const ConfigOptionPercent*>(opt)); break;
case coPercents: archive(*static_cast<const ConfigOptionPercents*>(opt)); break;
case coFloatOrPercent: archive(*static_cast<const ConfigOptionFloatOrPercent*>(opt)); break;
case coPoint: archive(*static_cast<const ConfigOptionPoint*>(opt)); break;
case coPoints: archive(*static_cast<const ConfigOptionPoints*>(opt)); break;
case coPoint3: archive(*static_cast<const ConfigOptionPoint3*>(opt)); break;
case coBool: archive(*static_cast<const ConfigOptionBool*>(opt)); break;
case coBools: archive(*static_cast<const ConfigOptionBools*>(opt)); break;
case coEnum: archive(*static_cast<const ConfigOptionEnumGeneric*>(opt)); break;
default: throw std::runtime_error(std::string("ConfigOptionDef::save_option_to_archive(): Unknown option type for option ") + this->opt_key);
}
}
// Make the compiler happy, shut up the warnings.
return nullptr;
}
// Usually empty.
// Special values - "i_enum_open", "f_enum_open" to provide combo box for int or float selection,
// "select_open" - to open a selection dialog (currently only a serial port selection).
std::string gui_type;
// Usually empty. Otherwise "serialized" or "show_value"
// The flags may be combined.
// "serialized" - vector valued option is entered in a single edit field. Values are separated by a semicolon.
// "show_value" - even if enum_values / enum_labels are set, still display the value, not the enum label.
std::string gui_flags;
// Label of the GUI input field.
// In case the GUI input fields are grouped in some views, the label defines a short label of a grouped value,
// while full_label contains a label of a stand-alone field.
// The full label is shown, when adding an override parameter for an object or a modified object.
std::string label;
std::string full_label;
// With which printer technology is this configuration valid?
PrinterTechnology printer_technology = ptUnknown;
// Category of a configuration field, from the GUI perspective.
// One of: "Layers and Perimeters", "Infill", "Support material", "Speed", "Extruders", "Advanced", "Extrusion Width"
std::string category;
// A tooltip text shown in the GUI.
std::string tooltip;
// Text right from the input field, usually a unit of measurement.
std::string sidetext;
// Format of this parameter on a command line.
std::string cli;
// Set for type == coFloatOrPercent.
// It provides a link to a configuration value, of which this option provides a ratio.
// For example,
// For example external_perimeter_speed may be defined as a fraction of perimeter_speed.
t_config_option_key ratio_over;
// True for multiline strings.
bool multiline = false;
// For text input: If true, the GUI text box spans the complete page width.
bool full_width = false;
// Not editable. Currently only used for the display of the number of threads.
bool readonly = false;
// Height of a multiline GUI text box.
int height = -1;
// Optional width of an input field.
int width = -1;
// <min, max> limit of a numeric input.
// If not set, the <min, max> is set to <INT_MIN, INT_MAX>
// By setting min=0, only nonnegative input is allowed.
int min = INT_MIN;
int max = INT_MAX;
ConfigOptionMode mode = comSimple;
// Legacy names for this configuration option.
// Used when parsing legacy configuration file.
std::vector<t_config_option_key> aliases;
// Sometimes a single value may well define multiple values in a "beginner" mode.
// Currently used for aliasing "solid_layers" to "top_solid_layers", "bottom_solid_layers".
std::vector<t_config_option_key> shortcut;
// Definition of values / labels for a combo box.
// Mostly used for enums (when type == coEnum), but may be used for ints resp. floats, if gui_type is set to "i_enum_open" resp. "f_enum_open".
std::vector<std::string> enum_values;
std::vector<std::string> enum_labels;
// For enums (when type == coEnum). Maps enum_values to enums.
// Initialized by ConfigOptionEnum<xxx>::get_enum_values()
const t_config_enum_values *enum_keys_map = nullptr;
bool has_enum_value(const std::string &value) const {
for (const std::string &v : enum_values)
if (v == value)
return true;
return false;
}
// 0 is an invalid key.
size_t serialization_key_ordinal = 0;
// Returns the alternative CLI arguments for the given option.
// If there are no cli arguments defined, use the key and replace underscores with dashes.
std::vector<std::string> cli_args(const std::string &key) const;
// Assign this key to cli to disable CLI for this option.
static std::string nocli;
};
// Map from a config option name to its definition.
// The definition does not carry an actual value of the config option, only its constant default value.
// t_config_option_key is std::string
typedef std::map<t_config_option_key, ConfigOptionDef> t_optiondef_map;
// Definition of configuration values for the purpose of GUI presentation, editing, value mapping and config file handling.
// The configuration definition is static: It does not carry the actual configuration values,
// but it carries the defaults of the configuration values.
class ConfigDef
{
public:
t_optiondef_map options;
std::map<size_t, const ConfigOptionDef*> by_serialization_key_ordinal;
bool has(const t_config_option_key &opt_key) const { return this->options.count(opt_key) > 0; }
const ConfigOptionDef* get(const t_config_option_key &opt_key) const {
t_optiondef_map::iterator it = const_cast<ConfigDef*>(this)->options.find(opt_key);
return (it == this->options.end()) ? nullptr : &it->second;
}
std::vector<std::string> keys() const {
std::vector<std::string> out;
out.reserve(options.size());
for(auto const& kvp : options)
out.push_back(kvp.first);
return out;
}
/// Iterate through all of the CLI options and write them to a stream.
std::ostream& print_cli_help(
std::ostream& out, bool show_defaults,
std::function<bool(const ConfigOptionDef &)> filter = [](const ConfigOptionDef &){ return true; }) const;
protected:
ConfigOptionDef* add(const t_config_option_key &opt_key, ConfigOptionType type);
ConfigOptionDef* add_nullable(const t_config_option_key &opt_key, ConfigOptionType type);
};
// An abstract configuration store.
class ConfigBase
{
public:
// Definition of configuration values for the purpose of GUI presentation, editing, value mapping and config file handling.
// The configuration definition is static: It does not carry the actual configuration values,
// but it carries the defaults of the configuration values.
ConfigBase() {}
virtual ~ConfigBase() {}
// Virtual overridables:
public:
// Static configuration definition. Any value stored into this ConfigBase shall have its definition here.
virtual const ConfigDef* def() const = 0;
// Find ando/or create a ConfigOption instance for a given name.
virtual ConfigOption* optptr(const t_config_option_key &opt_key, bool create = false) = 0;
// Collect names of all configuration values maintained by this configuration store.
virtual t_config_option_keys keys() const = 0;
protected:
// Verify whether the opt_key has not been obsoleted or renamed.
// Both opt_key and value may be modified by handle_legacy().
// If the opt_key is no more valid in this version of Slic3r, opt_key is cleared by handle_legacy().
// handle_legacy() is called internally by set_deserialize().
virtual void handle_legacy(t_config_option_key &opt_key, std::string &value) const {}
public:
// Non-virtual methods:
bool has(const t_config_option_key &opt_key) const { return this->option(opt_key) != nullptr; }
const ConfigOption* option(const t_config_option_key &opt_key) const
{ return const_cast<ConfigBase*>(this)->option(opt_key, false); }
ConfigOption* option(const t_config_option_key &opt_key, bool create = false)
{ return this->optptr(opt_key, create); }
template<typename TYPE>
TYPE* option(const t_config_option_key &opt_key, bool create = false)
{
ConfigOption *opt = this->optptr(opt_key, create);
return (opt == nullptr || opt->type() != TYPE::static_type()) ? nullptr : static_cast<TYPE*>(opt);
}
template<typename TYPE>
const TYPE* option(const t_config_option_key &opt_key) const
{ return const_cast<ConfigBase*>(this)->option<TYPE>(opt_key, false); }
template<typename TYPE>
TYPE* option_throw(const t_config_option_key &opt_key, bool create = false)
{
ConfigOption *opt = this->optptr(opt_key, create);
if (opt == nullptr)
throw UnknownOptionException(opt_key);
if (opt->type() != TYPE::static_type())
throw std::runtime_error("Conversion to a wrong type");
return static_cast<TYPE*>(opt);
}
template<typename TYPE>
const TYPE* option_throw(const t_config_option_key &opt_key) const
{ return const_cast<ConfigBase*>(this)->option_throw<TYPE>(opt_key, false); }
// Apply all keys of other ConfigBase defined by this->def() to this ConfigBase.
// An UnknownOptionException is thrown in case some option keys of other are not defined by this->def(),
// or this ConfigBase is of a StaticConfig type and it does not support some of the keys, and ignore_nonexistent is not set.
void apply(const ConfigBase &other, bool ignore_nonexistent = false) { this->apply_only(other, other.keys(), ignore_nonexistent); }
// Apply explicitely enumerated keys of other ConfigBase defined by this->def() to this ConfigBase.
// An UnknownOptionException is thrown in case some option keys are not defined by this->def(),
// or this ConfigBase is of a StaticConfig type and it does not support some of the keys, and ignore_nonexistent is not set.
void apply_only(const ConfigBase &other, const t_config_option_keys &keys, bool ignore_nonexistent = false);
bool equals(const ConfigBase &other) const { return this->diff(other).empty(); }
t_config_option_keys diff(const ConfigBase &other) const;
t_config_option_keys equal(const ConfigBase &other) const;
std::string opt_serialize(const t_config_option_key &opt_key) const;
// Set a configuration value from a string, it will call an overridable handle_legacy()
// to resolve renamed and removed configuration keys.
bool set_deserialize(const t_config_option_key &opt_key, const std::string &str, bool append = false);
double get_abs_value(const t_config_option_key &opt_key) const;
double get_abs_value(const t_config_option_key &opt_key, double ratio_over) const;
void setenv_() const;
void load(const std::string &file);
void load_from_ini(const std::string &file);
void load_from_gcode_file(const std::string &file);
// Returns number of key/value pairs extracted.
size_t load_from_gcode_string(const char* str);
void load(const boost::property_tree::ptree &tree);
void save(const std::string &file) const;
// Set all the nullable values to nils.
void null_nullables();
private:
// Set a configuration value from a string.
bool set_deserialize_raw(const t_config_option_key &opt_key_src, const std::string &str, bool append);
};
// Configuration store with dynamic number of configuration values.
// In Slic3r, the dynamic config is mostly used at the user interface layer.
class DynamicConfig : public virtual ConfigBase
{
public:
DynamicConfig() {}
DynamicConfig(const DynamicConfig& other) { *this = other; }
DynamicConfig(DynamicConfig&& other) : options(std::move(other.options)) { other.options.clear(); }
virtual ~DynamicConfig() { clear(); }
// Copy a content of one DynamicConfig to another DynamicConfig.
// If rhs.def() is not null, then it has to be equal to this->def().
DynamicConfig& operator=(const DynamicConfig &rhs)
{
assert(this->def() == nullptr || this->def() == rhs.def());
this->clear();
for (const auto &kvp : rhs.options)
this->options[kvp.first].reset(kvp.second->clone());
return *this;
}
// Move a content of one DynamicConfig to another DynamicConfig.
// If rhs.def() is not null, then it has to be equal to this->def().
DynamicConfig& operator=(DynamicConfig &&rhs)
{
assert(this->def() == nullptr || this->def() == rhs.def());
this->clear();
this->options = std::move(rhs.options);
rhs.options.clear();
return *this;
}
// Add a content of one DynamicConfig to another DynamicConfig.
// If rhs.def() is not null, then it has to be equal to this->def().
DynamicConfig& operator+=(const DynamicConfig &rhs)
{
assert(this->def() == nullptr || this->def() == rhs.def());
for (const auto &kvp : rhs.options) {
auto it = this->options.find(kvp.first);
if (it == this->options.end())
this->options[kvp.first].reset(kvp.second->clone());
else {
assert(it->second->type() == kvp.second->type());
if (it->second->type() == kvp.second->type())
*it->second = *kvp.second;
else
it->second.reset(kvp.second->clone());
}
}
return *this;
}
// Move a content of one DynamicConfig to another DynamicConfig.
// If rhs.def() is not null, then it has to be equal to this->def().
DynamicConfig& operator+=(DynamicConfig &&rhs)
{
assert(this->def() == nullptr || this->def() == rhs.def());
for (auto &kvp : rhs.options) {
auto it = this->options.find(kvp.first);
if (it == this->options.end()) {
this->options.insert(std::make_pair(kvp.first, std::move(kvp.second)));
} else {
assert(it->second->type() == kvp.second->type());
it->second = std::move(kvp.second);
}
}
rhs.options.clear();
return *this;
}
bool operator==(const DynamicConfig &rhs) const;
bool operator!=(const DynamicConfig &rhs) const { return ! (*this == rhs); }
void swap(DynamicConfig &other)
{
std::swap(this->options, other.options);
}
void clear()
{
this->options.clear();
}
bool erase(const t_config_option_key &opt_key)
{
auto it = this->options.find(opt_key);
if (it == this->options.end())
return false;
this->options.erase(it);
return true;
}
// Remove options with all nil values, those are optional and it does not help to hold them.
size_t remove_nil_options();
// Allow DynamicConfig to be instantiated on ints own without a definition.
// If the definition is not defined, the method requiring the definition will throw NoDefinitionException.
const ConfigDef* def() const override { return nullptr; }
template<class T> T* opt(const t_config_option_key &opt_key, bool create = false)
{ return dynamic_cast<T*>(this->option(opt_key, create)); }
template<class T> const T* opt(const t_config_option_key &opt_key) const
{ return dynamic_cast<const T*>(this->option(opt_key)); }
// Overrides ConfigBase::optptr(). Find ando/or create a ConfigOption instance for a given name.
ConfigOption* optptr(const t_config_option_key &opt_key, bool create = false) override;
// Overrides ConfigBase::keys(). Collect names of all configuration values maintained by this configuration store.
t_config_option_keys keys() const override;
bool empty() const { return options.empty(); }
// Set a value for an opt_key. Returns true if the value did not exist yet.
// This DynamicConfig will take ownership of opt.
// Be careful, as this method does not test the existence of opt_key in this->def().
bool set_key_value(const std::string &opt_key, ConfigOption *opt)
{
auto it = this->options.find(opt_key);
if (it == this->options.end()) {
this->options[opt_key].reset(opt);
return true;
} else {
it->second.reset(opt);
return false;
}
}
std::string& opt_string(const t_config_option_key &opt_key, bool create = false) { return this->option<ConfigOptionString>(opt_key, create)->value; }
const std::string& opt_string(const t_config_option_key &opt_key) const { return const_cast<DynamicConfig*>(this)->opt_string(opt_key); }
std::string& opt_string(const t_config_option_key &opt_key, unsigned int idx) { return this->option<ConfigOptionStrings>(opt_key)->get_at(idx); }
const std::string& opt_string(const t_config_option_key &opt_key, unsigned int idx) const { return const_cast<DynamicConfig*>(this)->opt_string(opt_key, idx); }
double& opt_float(const t_config_option_key &opt_key) { return this->option<ConfigOptionFloat>(opt_key)->value; }
const double opt_float(const t_config_option_key &opt_key) const { return dynamic_cast<const ConfigOptionFloat*>(this->option(opt_key))->value; }
double& opt_float(const t_config_option_key &opt_key, unsigned int idx) { return this->option<ConfigOptionFloats>(opt_key)->get_at(idx); }
const double opt_float(const t_config_option_key &opt_key, unsigned int idx) const { return dynamic_cast<const ConfigOptionFloats*>(this->option(opt_key))->get_at(idx); }
int& opt_int(const t_config_option_key &opt_key) { return this->option<ConfigOptionInt>(opt_key)->value; }
const int opt_int(const t_config_option_key &opt_key) const { return dynamic_cast<const ConfigOptionInt*>(this->option(opt_key))->value; }
int& opt_int(const t_config_option_key &opt_key, unsigned int idx) { return this->option<ConfigOptionInts>(opt_key)->get_at(idx); }
const int opt_int(const t_config_option_key &opt_key, unsigned int idx) const { return dynamic_cast<const ConfigOptionInts*>(this->option(opt_key))->get_at(idx); }
template<typename ENUM>
ENUM opt_enum(const t_config_option_key &opt_key) const { return (ENUM)dynamic_cast<const ConfigOptionEnumGeneric*>(this->option(opt_key))->value; }
bool opt_bool(const t_config_option_key &opt_key) const { return this->option<ConfigOptionBool>(opt_key)->value != 0; }
bool opt_bool(const t_config_option_key &opt_key, unsigned int idx) const { return this->option<ConfigOptionBools>(opt_key)->get_at(idx) != 0; }
// Command line processing
void read_cli(const std::vector<std::string> &tokens, t_config_option_keys* extra, t_config_option_keys* keys = nullptr);
bool read_cli(int argc, char** argv, t_config_option_keys* extra, t_config_option_keys* keys = nullptr);
std::map<t_config_option_key, std::unique_ptr<ConfigOption>>::const_iterator cbegin() const { return options.cbegin(); }
std::map<t_config_option_key, std::unique_ptr<ConfigOption>>::const_iterator cend() const { return options.cend(); }
size_t size() const { return options.size(); }
private:
std::map<t_config_option_key, std::unique_ptr<ConfigOption>> options;
friend class cereal::access;
template<class Archive> void serialize(Archive &ar) { ar(options); }
};
/// Configuration store with a static definition of configuration values.
/// In Slic3r, the static configuration stores are during the slicing / g-code generation for efficiency reasons,
/// because the configuration values could be accessed directly.
class StaticConfig : public virtual ConfigBase
{
public:
StaticConfig() {}
/// Gets list of config option names for each config option of this->def, which has a static counter-part defined by the derived object
/// and which could be resolved by this->optptr(key) call.
t_config_option_keys keys() const;
protected:
/// Set all statically defined config options to their defaults defined by this->def().
void set_defaults();
};
}
#endif