PrusaSlicer-NonPlainar/xs/src/libslic3r/TriangleMesh.hpp

169 lines
5.9 KiB
C++

#ifndef slic3r_TriangleMesh_hpp_
#define slic3r_TriangleMesh_hpp_
#include "libslic3r.h"
#include <admesh/stl.h>
#include <vector>
#include <boost/thread.hpp>
#include "BoundingBox.hpp"
#include "Line.hpp"
#include "Point.hpp"
#include "Polygon.hpp"
#include "ExPolygon.hpp"
namespace Slic3r {
class TriangleMesh;
class TriangleMeshSlicer;
typedef std::vector<TriangleMesh*> TriangleMeshPtrs;
class TriangleMesh
{
public:
TriangleMesh();
TriangleMesh(const Pointf3s &points, const std::vector<Point3> &facets);
TriangleMesh(const TriangleMesh &other);
TriangleMesh(TriangleMesh &&other);
TriangleMesh& operator=(const TriangleMesh &other);
TriangleMesh& operator=(TriangleMesh &&other);
void swap(TriangleMesh &other);
~TriangleMesh();
void ReadSTLFile(const char* input_file);
void write_ascii(const char* output_file);
void write_binary(const char* output_file);
void repair();
float volume();
void check_topology();
bool is_manifold() const;
void WriteOBJFile(char* output_file);
void scale(float factor);
void scale(const Pointf3 &versor);
void translate(float x, float y, float z);
void rotate(float angle, const Axis &axis);
void rotate(float angle, Pointf3 axis);
void rotate_x(float angle);
void rotate_y(float angle);
void rotate_z(float angle);
void mirror(const Axis &axis);
void mirror_x();
void mirror_y();
void mirror_z();
void transform(const float* matrix3x4);
void align_to_origin();
void rotate(double angle, Point* center);
TriangleMeshPtrs split() const;
void merge(const TriangleMesh &mesh);
ExPolygons horizontal_projection() const;
const float* first_vertex() const;
Polygon convex_hull();
BoundingBoxf3 bounding_box() const;
// Returns the bbox of this TriangleMesh transformed by the given matrix
BoundingBoxf3 transformed_bounding_box(const std::vector<float>& matrix) const;
// Returns the convex hull of this TriangleMesh
TriangleMesh convex_hull_3d() const;
void reset_repair_stats();
bool needed_repair() const;
size_t facets_count() const;
// Returns true, if there are two and more connected patches in the mesh.
// Returns false, if one or zero connected patch is in the mesh.
bool has_multiple_patches() const;
// Count disconnected triangle patches.
size_t number_of_patches() const;
mutable stl_file stl;
bool repaired;
private:
void require_shared_vertices();
friend class TriangleMeshSlicer;
};
enum FacetEdgeType {
// A general case, the cutting plane intersect a face at two different edges.
feNone,
// Two vertices are aligned with the cutting plane, the third vertex is below the cutting plane.
feTop,
// Two vertices are aligned with the cutting plane, the third vertex is above the cutting plane.
feBottom,
// All three vertices of a face are aligned with the cutting plane.
feHorizontal
};
class IntersectionReference
{
public:
IntersectionReference() : point_id(-1), edge_id(-1) {};
IntersectionReference(int point_id, int edge_id) : point_id(point_id), edge_id(edge_id) {}
// Where is this intersection point located? On mesh vertex or mesh edge?
// Only one of the following will be set, the other will remain set to -1.
// Index of the mesh vertex.
int point_id;
// Index of the mesh edge.
int edge_id;
};
class IntersectionPoint : public Point, public IntersectionReference
{
public:
IntersectionPoint() {};
IntersectionPoint(int point_id, int edge_id, const Point &pt) : IntersectionReference(point_id, edge_id), Point(pt) {}
IntersectionPoint(const IntersectionReference &ir, const Point &pt) : IntersectionReference(ir), Point(pt) {}
// Inherits coord_t x, y
};
class IntersectionLine : public Line
{
public:
// Inherits Point a, b
// For each line end point, either {a,b}_id or {a,b}edge_a_id is set, the other is left to -1.
// Vertex indices of the line end points.
int a_id;
int b_id;
// Source mesh edges of the line end points.
int edge_a_id;
int edge_b_id;
// feNone, feTop, feBottom, feHorizontal
FacetEdgeType edge_type;
// Used by TriangleMeshSlicer::make_loops() to skip duplicate edges.
bool skip;
IntersectionLine() : a_id(-1), b_id(-1), edge_a_id(-1), edge_b_id(-1), edge_type(feNone), skip(false) {};
};
typedef std::vector<IntersectionLine> IntersectionLines;
typedef std::vector<IntersectionLine*> IntersectionLinePtrs;
class TriangleMeshSlicer
{
public:
TriangleMeshSlicer(TriangleMesh* _mesh);
void slice(const std::vector<float> &z, std::vector<Polygons>* layers) const;
void slice(const std::vector<float> &z, std::vector<ExPolygons>* layers) const;
bool slice_facet(float slice_z, const stl_facet &facet, const int facet_idx,
const float min_z, const float max_z, IntersectionLine *line_out) const;
void cut(float z, TriangleMesh* upper, TriangleMesh* lower) const;
private:
const TriangleMesh *mesh;
// Map from a facet to an edge index.
std::vector<int> facets_edges;
// Scaled copy of this->mesh->stl.v_shared
std::vector<stl_vertex> v_scaled_shared;
void _slice_do(size_t facet_idx, std::vector<IntersectionLines>* lines, boost::mutex* lines_mutex, const std::vector<float> &z) const;
void make_loops(std::vector<IntersectionLine> &lines, Polygons* loops) const;
void make_expolygons(const Polygons &loops, ExPolygons* slices) const;
void make_expolygons_simple(std::vector<IntersectionLine> &lines, ExPolygons* slices) const;
void make_expolygons(std::vector<IntersectionLine> &lines, ExPolygons* slices) const;
};
TriangleMesh make_cube(double x, double y, double z);
// Generate a TriangleMesh of a cylinder
TriangleMesh make_cylinder(double r, double h, double fa=(2*PI/360));
TriangleMesh make_sphere(double rho, double fa=(2*PI/360));
}
#endif