PrusaSlicer-NonPlainar/xs/src/libslic3r/Config.cpp

352 lines
12 KiB
C++

#include "Config.hpp"
#include <stdlib.h> // for setenv()
#include <assert.h>
#include <string.h>
#if defined(_WIN32) && !defined(setenv) && defined(_putenv_s)
#define setenv(k, v, o) _putenv_s(k, v)
#endif
namespace Slic3r {
std::string escape_string_cstyle(const std::string &str)
{
// Allocate a buffer twice the input string length,
// so the output will fit even if all input characters get escaped.
std::vector<char> out(str.size() * 2, 0);
char *outptr = out.data();
for (size_t i = 0; i < str.size(); ++ i) {
char c = str[i];
if (c == '\n' || c == '\r') {
(*outptr ++) = '\\';
(*outptr ++) = 'n';
} else
(*outptr ++) = c;
}
return std::string(out.data(), outptr - out.data());
}
std::string escape_strings_cstyle(const std::vector<std::string> &strs)
{
// 1) Estimate the output buffer size to avoid buffer reallocation.
size_t outbuflen = 0;
for (size_t i = 0; i < strs.size(); ++ i)
// Reserve space for every character escaped + quotes + semicolon.
outbuflen += strs[i].size() * 2 + 3;
// 2) Fill in the buffer.
std::vector<char> out(outbuflen, 0);
char *outptr = out.data();
for (size_t j = 0; j < strs.size(); ++ j) {
if (j > 0)
// Separate the strings.
(*outptr ++) = ';';
const std::string &str = strs[j];
// Is the string simple or complex? Complex string contains spaces, tabs, new lines and other
// escapable characters. Empty string shall be quoted as well, if it is the only string in strs.
bool should_quote = strs.size() == 1 && str.empty();
for (size_t i = 0; i < str.size(); ++ i) {
char c = str[i];
if (c == ' ' || c == '\t' || c == '\\' || c == '"' || c == '\r' || c == '\n') {
should_quote = true;
break;
}
}
if (should_quote) {
(*outptr ++) = '"';
for (size_t i = 0; i < str.size(); ++ i) {
char c = str[i];
if (c == '\\' || c == '"') {
(*outptr ++) = '\\';
(*outptr ++) = c;
} else if (c == '\n' || c == '\r') {
(*outptr ++) = '\\';
(*outptr ++) = 'n';
} else
(*outptr ++) = c;
}
(*outptr ++) = '"';
} else {
memcpy(outptr, str.data(), str.size());
outptr += str.size();
}
}
return std::string(out.data(), outptr - out.data());
}
bool unescape_string_cstyle(const std::string &str, std::string &str_out)
{
std::vector<char> out(str.size(), 0);
char *outptr = out.data();
for (size_t i = 0; i < str.size(); ++ i) {
char c = str[i];
if (c == '\\') {
if (++ i == str.size())
return false;
c = str[i];
if (c == 'n')
(*outptr ++) = '\n';
} else
(*outptr ++) = c;
}
str_out.assign(out.data(), outptr - out.data());
return true;
}
bool unescape_strings_cstyle(const std::string &str, std::vector<std::string> &out)
{
out.clear();
if (str.empty())
return true;
size_t i = 0;
for (;;) {
// Skip white spaces.
char c = str[i];
while (c == ' ' || c == '\t') {
if (++ i == str.size())
return true;
c = str[i];
}
// Start of a word.
std::vector<char> buf;
buf.reserve(16);
// Is it enclosed in quotes?
c = str[i];
if (c == '"') {
// Complex case, string is enclosed in quotes.
for (++ i; i < str.size(); ++ i) {
c = str[i];
if (c == '"') {
// End of string.
break;
}
if (c == '\\') {
if (++ i == str.size())
return false;
c = str[i];
if (c == 'n')
c = '\n';
}
buf.push_back(c);
}
if (i == str.size())
return false;
++ i;
} else {
for (; i < str.size(); ++ i) {
c = str[i];
if (c == ';')
break;
buf.push_back(c);
}
}
// Store the string into the output vector.
out.push_back(std::string(buf.data(), buf.size()));
if (i == str.size())
return true;
// Skip white spaces.
c = str[i];
while (c == ' ' || c == '\t') {
if (++ i == str.size())
// End of string. This is correct.
return true;
c = str[i];
}
if (c != ';')
return false;
if (++ i == str.size()) {
// Emit one additional empty string.
out.push_back(std::string());
return true;
}
}
}
void ConfigBase::apply(const ConfigBase &other, const t_config_option_keys &keys, bool ignore_nonexistent)
{
// loop through options and apply them
for (const t_config_option_key &key : keys) {
ConfigOption *my_opt = this->option(key, true);
if (my_opt == nullptr) {
if (! ignore_nonexistent)
throw "Attempt to apply non-existent option";
continue;
}
// not the most efficient way, but easier than casting pointers to subclasses
if (! my_opt->deserialize(other.option(key)->serialize()))
CONFESS((std::string("Unexpected failure when deserializing serialized value for ") + key).c_str());
}
}
// this will *ignore* options not present in both configs
t_config_option_keys ConfigBase::diff(const ConfigBase &other) const
{
t_config_option_keys diff;
for (const t_config_option_key &opt_key : this->keys())
if (other.has(opt_key) && other.serialize(opt_key) != this->serialize(opt_key))
diff.push_back(opt_key);
return diff;
}
std::string ConfigBase::serialize(const t_config_option_key &opt_key) const
{
const ConfigOption* opt = this->option(opt_key);
assert(opt != nullptr);
return opt->serialize();
}
bool ConfigBase::set_deserialize(const t_config_option_key &opt_key, std::string str)
{
const ConfigOptionDef* optdef = this->def->get(opt_key);
if (optdef == NULL) throw "Calling set_deserialize() on unknown option";
if (!optdef->shortcut.empty()) {
for (std::vector<t_config_option_key>::const_iterator it = optdef->shortcut.begin(); it != optdef->shortcut.end(); ++it) {
if (!this->set_deserialize(*it, str)) return false;
}
return true;
}
ConfigOption* opt = this->option(opt_key, true);
assert(opt != nullptr);
return opt->deserialize(str);
}
// Return an absolute value of a possibly relative config variable.
// For example, return absolute infill extrusion width, either from an absolute value, or relative to the layer height.
double ConfigBase::get_abs_value(const t_config_option_key &opt_key) const
{
const ConfigOption* opt = this->option(opt_key);
if (const ConfigOptionFloatOrPercent* optv = dynamic_cast<const ConfigOptionFloatOrPercent*>(opt)) {
// get option definition
const ConfigOptionDef* def = this->def->get(opt_key);
assert(def != nullptr);
// compute absolute value over the absolute value of the base option
return optv->get_abs_value(this->get_abs_value(def->ratio_over));
} else if (const ConfigOptionFloat* optv = dynamic_cast<const ConfigOptionFloat*>(opt)) {
return optv->value;
} else {
throw "Not a valid option type for get_abs_value()";
}
}
// Return an absolute value of a possibly relative config variable.
// For example, return absolute infill extrusion width, either from an absolute value, or relative to a provided value.
double ConfigBase::get_abs_value(const t_config_option_key &opt_key, double ratio_over) const
{
// get stored option value
const ConfigOptionFloatOrPercent* opt = dynamic_cast<const ConfigOptionFloatOrPercent*>(this->option(opt_key));
assert(opt != nullptr);
// compute absolute value
return opt->get_abs_value(ratio_over);
}
void ConfigBase::setenv_()
{
#ifdef setenv
t_config_option_keys opt_keys = this->keys();
for (t_config_option_keys::const_iterator it = opt_keys.begin(); it != opt_keys.end(); ++it) {
// prepend the SLIC3R_ prefix
std::ostringstream ss;
ss << "SLIC3R_";
ss << *it;
std::string envname = ss.str();
// capitalize environment variable name
for (size_t i = 0; i < envname.size(); ++i)
envname[i] = (envname[i] <= 'z' && envname[i] >= 'a') ? envname[i]-('a'-'A') : envname[i];
setenv(envname.c_str(), this->serialize(*it).c_str(), 1);
}
#endif
}
ConfigOption* DynamicConfig::optptr(const t_config_option_key &opt_key, bool create) {
t_options_map::iterator it = options.find(opt_key);
if (it == options.end()) {
if (create) {
const ConfigOptionDef* optdef = this->def->get(opt_key);
assert(optdef != NULL);
ConfigOption* opt;
if (optdef->type == coFloat) {
opt = new ConfigOptionFloat ();
} else if (optdef->type == coFloats) {
opt = new ConfigOptionFloats ();
} else if (optdef->type == coInt) {
opt = new ConfigOptionInt ();
} else if (optdef->type == coInts) {
opt = new ConfigOptionInts ();
} else if (optdef->type == coString) {
opt = new ConfigOptionString ();
} else if (optdef->type == coStrings) {
opt = new ConfigOptionStrings ();
} else if (optdef->type == coPercent) {
opt = new ConfigOptionPercent ();
} else if (optdef->type == coPercents) {
opt = new ConfigOptionPercents ();
} else if (optdef->type == coFloatOrPercent) {
opt = new ConfigOptionFloatOrPercent ();
} else if (optdef->type == coPoint) {
opt = new ConfigOptionPoint ();
} else if (optdef->type == coPoints) {
opt = new ConfigOptionPoints ();
} else if (optdef->type == coBool) {
opt = new ConfigOptionBool ();
} else if (optdef->type == coBools) {
opt = new ConfigOptionBools ();
} else if (optdef->type == coEnum) {
ConfigOptionEnumGeneric* optv = new ConfigOptionEnumGeneric ();
optv->keys_map = &optdef->enum_keys_map;
opt = static_cast<ConfigOption*>(optv);
} else {
throw "Unknown option type";
}
this->options[opt_key] = opt;
return opt;
} else {
return NULL;
}
}
return it->second;
}
template<class T>
T* DynamicConfig::opt(const t_config_option_key &opt_key, bool create) {
return dynamic_cast<T*>(this->option(opt_key, create));
}
template ConfigOptionInt* DynamicConfig::opt<ConfigOptionInt>(const t_config_option_key &opt_key, bool create);
template ConfigOptionBool* DynamicConfig::opt<ConfigOptionBool>(const t_config_option_key &opt_key, bool create);
template ConfigOptionBools* DynamicConfig::opt<ConfigOptionBools>(const t_config_option_key &opt_key, bool create);
template ConfigOptionPercent* DynamicConfig::opt<ConfigOptionPercent>(const t_config_option_key &opt_key, bool create);
t_config_option_keys DynamicConfig::keys() const
{
t_config_option_keys keys;
keys.reserve(this->options.size());
for (const auto &opt : this->options)
keys.emplace_back(opt.first);
return keys;
}
void StaticConfig::set_defaults()
{
// use defaults from definition
if (this->def != nullptr) {
for (const std::string &key : this->keys()) {
const ConfigOptionDef* def = this->def->get(key);
if (def->default_value != nullptr)
this->option(key)->set(*def->default_value);
}
}
}
t_config_option_keys StaticConfig::keys() const
{
t_config_option_keys keys;
assert(this->def != nullptr);
for (const auto &opt_def : this->def->options)
if (this->option(opt_def.first) != nullptr)
keys.push_back(opt_def.first);
return keys;
}
}