PrusaSlicer-NonPlainar/src/slic3r/GUI/GLTexture.cpp
2020-11-24 11:09:05 +01:00

622 lines
22 KiB
C++

#include "libslic3r/libslic3r.h"
#include "GLTexture.hpp"
#include "3DScene.hpp"
#include "OpenGLManager.hpp"
#include <GL/glew.h>
#include <wx/image.h>
#include <boost/filesystem.hpp>
#include <boost/algorithm/string/predicate.hpp>
#include <vector>
#include <algorithm>
#include <thread>
#define STB_DXT_IMPLEMENTATION
#include "stb_dxt/stb_dxt.h"
#include "nanosvg/nanosvg.h"
#include "nanosvg/nanosvgrast.h"
#include "libslic3r/Utils.hpp"
namespace Slic3r {
namespace GUI {
void GLTexture::Compressor::reset()
{
if (m_thread.joinable()) {
m_abort_compressing = true;
m_thread.join();
m_levels.clear();
m_num_levels_compressed = 0;
m_abort_compressing = false;
}
assert(m_levels.empty());
assert(m_abort_compressing == false);
assert(m_num_levels_compressed == 0);
}
void GLTexture::Compressor::start_compressing()
{
// The worker thread should be stopped already.
assert(! m_thread.joinable());
assert(! m_levels.empty());
assert(m_abort_compressing == false);
assert(m_num_levels_compressed == 0);
if (! m_levels.empty()) {
std::thread thrd(&GLTexture::Compressor::compress, this);
m_thread = std::move(thrd);
}
}
bool GLTexture::Compressor::unsent_compressed_data_available() const
{
if (m_levels.empty())
return false;
// Querying the atomic m_num_levels_compressed value synchronizes processor caches, so that the data of m_levels modified by the worker thread are accessible to the calling thread.
unsigned int num_compressed = m_num_levels_compressed;
for (unsigned int i = 0; i < num_compressed; ++ i)
if (! m_levels[i].sent_to_gpu && ! m_levels[i].compressed_data.empty())
return true;
return false;
}
void GLTexture::Compressor::send_compressed_data_to_gpu()
{
// this method should be called inside the main thread of Slicer or a new OpenGL context (sharing resources) would be needed
if (m_levels.empty())
return;
glsafe(::glPixelStorei(GL_UNPACK_ALIGNMENT, 1));
glsafe(::glBindTexture(GL_TEXTURE_2D, m_texture.m_id));
// Querying the atomic m_num_levels_compressed value synchronizes processor caches, so that the dat of m_levels modified by the worker thread are accessible to the calling thread.
int num_compressed = (int)m_num_levels_compressed;
for (int i = 0; i < num_compressed; ++ i) {
Level& level = m_levels[i];
if (! level.sent_to_gpu && ! level.compressed_data.empty()) {
glsafe(::glCompressedTexSubImage2D(GL_TEXTURE_2D, (GLint)i, 0, 0, (GLsizei)level.w, (GLsizei)level.h, GL_COMPRESSED_RGBA_S3TC_DXT5_EXT, (GLsizei)level.compressed_data.size(), (const GLvoid*)level.compressed_data.data()));
glsafe(::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, i));
glsafe(::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, (i > 0) ? GL_LINEAR_MIPMAP_LINEAR : GL_LINEAR));
level.sent_to_gpu = true;
// we are done with the compressed data, we can discard it
level.compressed_data.clear();
}
}
glsafe(::glBindTexture(GL_TEXTURE_2D, 0));
if (num_compressed == (int)m_levels.size())
// Finalize the worker thread, close it.
this->reset();
}
void GLTexture::Compressor::compress()
{
// reference: https://github.com/Cyan4973/RygsDXTc
assert(m_num_levels_compressed == 0);
assert(m_abort_compressing == false);
for (Level& level : m_levels) {
if (m_abort_compressing)
break;
// stb_dxt library, despite claiming that the needed size of the destination buffer is equal to (source buffer size)/4,
// crashes if doing so, requiring a minimum of 64 bytes and up to a third of the source buffer size, so we set the destination buffer initial size to be half the source buffer size
level.compressed_data = std::vector<unsigned char>(std::max((unsigned int)64, (unsigned int)level.src_data.size() / 2), 0);
int compressed_size = 0;
rygCompress(level.compressed_data.data(), level.src_data.data(), level.w, level.h, 1, compressed_size);
level.compressed_data.resize(compressed_size);
// we are done with the source data, we can discard it
level.src_data.clear();
++ m_num_levels_compressed;
}
}
GLTexture::Quad_UVs GLTexture::FullTextureUVs = { { 0.0f, 1.0f }, { 1.0f, 1.0f }, { 1.0f, 0.0f }, { 0.0f, 0.0f } };
GLTexture::GLTexture()
: m_id(0)
, m_width(0)
, m_height(0)
, m_source("")
, m_compressor(*this)
{
}
GLTexture::~GLTexture()
{
reset();
}
bool GLTexture::load_from_file(const std::string& filename, bool use_mipmaps, ECompressionType compression_type, bool apply_anisotropy)
{
reset();
if (!boost::filesystem::exists(filename))
return false;
if (boost::algorithm::iends_with(filename, ".png"))
return load_from_png(filename, use_mipmaps, compression_type, apply_anisotropy);
else
return false;
}
bool GLTexture::load_from_svg_file(const std::string& filename, bool use_mipmaps, bool compress, bool apply_anisotropy, unsigned int max_size_px)
{
reset();
if (!boost::filesystem::exists(filename))
return false;
if (boost::algorithm::iends_with(filename, ".svg"))
return load_from_svg(filename, use_mipmaps, compress, apply_anisotropy, max_size_px);
else
return false;
}
bool GLTexture::load_from_svg_files_as_sprites_array(const std::vector<std::string>& filenames, const std::vector<std::pair<int, bool>>& states, unsigned int sprite_size_px, bool compress)
{
reset();
if (filenames.empty() || states.empty() || sprite_size_px == 0)
return false;
// every tile needs to have a 1px border around it to avoid artifacts when linear sampling on its edges
unsigned int sprite_size_px_ex = sprite_size_px + 1;
m_width = 1 + (int)(sprite_size_px_ex * states.size());
m_height = 1 + (int)(sprite_size_px_ex * filenames.size());
int n_pixels = m_width * m_height;
int sprite_n_pixels = sprite_size_px_ex * sprite_size_px_ex;
int sprite_stride = sprite_size_px_ex * 4;
int sprite_bytes = sprite_n_pixels * 4;
if (n_pixels <= 0) {
reset();
return false;
}
std::vector<unsigned char> data(n_pixels * 4, 0);
std::vector<unsigned char> sprite_data(sprite_bytes, 0);
std::vector<unsigned char> sprite_white_only_data(sprite_bytes, 0);
std::vector<unsigned char> sprite_gray_only_data(sprite_bytes, 0);
std::vector<unsigned char> output_data(sprite_bytes, 0);
NSVGrasterizer* rast = nsvgCreateRasterizer();
if (rast == nullptr) {
reset();
return false;
}
int sprite_id = -1;
for (const std::string& filename : filenames) {
++sprite_id;
if (!boost::filesystem::exists(filename))
continue;
if (!boost::algorithm::iends_with(filename, ".svg"))
continue;
NSVGimage* image = nsvgParseFromFile(filename.c_str(), "px", 96.0f);
if (image == nullptr)
continue;
float scale = (float)sprite_size_px / std::max(image->width, image->height);
// offset by 1 to leave the first pixel empty (both in x and y)
nsvgRasterize(rast, image, 1, 1, scale, sprite_data.data(), sprite_size_px, sprite_size_px, sprite_stride);
// makes white only copy of the sprite
::memcpy((void*)sprite_white_only_data.data(), (const void*)sprite_data.data(), sprite_bytes);
for (int i = 0; i < sprite_n_pixels; ++i) {
int offset = i * 4;
if (sprite_white_only_data.data()[offset] != 0)
::memset((void*)&sprite_white_only_data.data()[offset], 255, 3);
}
// makes gray only copy of the sprite
::memcpy((void*)sprite_gray_only_data.data(), (const void*)sprite_data.data(), sprite_bytes);
for (int i = 0; i < sprite_n_pixels; ++i) {
int offset = i * 4;
if (sprite_gray_only_data.data()[offset] != 0)
::memset((void*)&sprite_gray_only_data.data()[offset], 128, 3);
}
int sprite_offset_px = sprite_id * (int)sprite_size_px_ex * m_width;
int state_id = -1;
for (const std::pair<int, bool>& state : states) {
++state_id;
// select the sprite variant
std::vector<unsigned char>* src = nullptr;
switch (state.first)
{
case 1: { src = &sprite_white_only_data; break; }
case 2: { src = &sprite_gray_only_data; break; }
default: { src = &sprite_data; break; }
}
::memcpy((void*)output_data.data(), (const void*)src->data(), sprite_bytes);
// applies background, if needed
if (state.second) {
float inv_255 = 1.0f / 255.0f;
// offset by 1 to leave the first pixel empty (both in x and y)
for (unsigned int r = 1; r <= sprite_size_px; ++r) {
unsigned int offset_r = r * sprite_size_px_ex;
for (unsigned int c = 1; c <= sprite_size_px; ++c) {
unsigned int offset = (offset_r + c) * 4;
float alpha = (float)output_data.data()[offset + 3] * inv_255;
output_data.data()[offset + 0] = (unsigned char)(output_data.data()[offset + 0] * alpha);
output_data.data()[offset + 1] = (unsigned char)(output_data.data()[offset + 1] * alpha);
output_data.data()[offset + 2] = (unsigned char)(output_data.data()[offset + 2] * alpha);
output_data.data()[offset + 3] = (unsigned char)(128 * (1.0f - alpha) + output_data.data()[offset + 3] * alpha);
}
}
}
int state_offset_px = sprite_offset_px + state_id * sprite_size_px_ex;
for (int j = 0; j < (int)sprite_size_px_ex; ++j) {
::memcpy((void*)&data.data()[(state_offset_px + j * m_width) * 4], (const void*)&output_data.data()[j * sprite_stride], sprite_stride);
}
}
nsvgDelete(image);
}
nsvgDeleteRasterizer(rast);
// sends data to gpu
glsafe(::glPixelStorei(GL_UNPACK_ALIGNMENT, 1));
glsafe(::glGenTextures(1, &m_id));
glsafe(::glBindTexture(GL_TEXTURE_2D, m_id));
if (compress && GLEW_EXT_texture_compression_s3tc)
glsafe(::glTexImage2D(GL_TEXTURE_2D, 0, GL_COMPRESSED_RGBA_S3TC_DXT5_EXT, (GLsizei)m_width, (GLsizei)m_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, (const void*)data.data()));
else
glsafe(::glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, (GLsizei)m_width, (GLsizei)m_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, (const void*)data.data()));
glsafe(::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR));
glsafe(::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 0));
glsafe(::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR));
glsafe(::glBindTexture(GL_TEXTURE_2D, 0));
m_source = filenames.front();
#if 0
// debug output
static int pass = 0;
++pass;
wxImage output(m_width, m_height);
output.InitAlpha();
for (int h = 0; h < m_height; ++h) {
int px_h = h * m_width;
for (int w = 0; w < m_width; ++w) {
int offset = (px_h + w) * 4;
output.SetRGB(w, h, data.data()[offset + 0], data.data()[offset + 1], data.data()[offset + 2]);
output.SetAlpha(w, h, data.data()[offset + 3]);
}
}
std::string out_filename = resources_dir() + "/icons/test_" + std::to_string(pass) + ".png";
output.SaveFile(out_filename, wxBITMAP_TYPE_PNG);
#endif // 0
return true;
}
void GLTexture::reset()
{
if (m_id != 0)
glsafe(::glDeleteTextures(1, &m_id));
m_id = 0;
m_width = 0;
m_height = 0;
m_source = "";
m_compressor.reset();
}
void GLTexture::render_texture(unsigned int tex_id, float left, float right, float bottom, float top)
{
render_sub_texture(tex_id, left, right, bottom, top, FullTextureUVs);
}
void GLTexture::render_sub_texture(unsigned int tex_id, float left, float right, float bottom, float top, const GLTexture::Quad_UVs& uvs)
{
glsafe(::glEnable(GL_BLEND));
glsafe(::glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA));
glsafe(::glEnable(GL_TEXTURE_2D));
glsafe(::glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE));
glsafe(::glBindTexture(GL_TEXTURE_2D, (GLuint)tex_id));
::glBegin(GL_QUADS);
::glTexCoord2f(uvs.left_bottom.u, uvs.left_bottom.v); ::glVertex2f(left, bottom);
::glTexCoord2f(uvs.right_bottom.u, uvs.right_bottom.v); ::glVertex2f(right, bottom);
::glTexCoord2f(uvs.right_top.u, uvs.right_top.v); ::glVertex2f(right, top);
::glTexCoord2f(uvs.left_top.u, uvs.left_top.v); ::glVertex2f(left, top);
glsafe(::glEnd());
glsafe(::glBindTexture(GL_TEXTURE_2D, 0));
glsafe(::glDisable(GL_TEXTURE_2D));
glsafe(::glDisable(GL_BLEND));
}
bool GLTexture::load_from_png(const std::string& filename, bool use_mipmaps, ECompressionType compression_type, bool apply_anisotropy)
{
bool compression_enabled = (compression_type != None) && GLEW_EXT_texture_compression_s3tc;
// Load a PNG with an alpha channel.
wxImage image;
if (!image.LoadFile(wxString::FromUTF8(filename.c_str()), wxBITMAP_TYPE_PNG)) {
reset();
return false;
}
m_width = image.GetWidth();
m_height = image.GetHeight();
bool requires_rescale = false;
if (compression_enabled && compression_type == MultiThreaded) {
// the stb_dxt compression library seems to like only texture sizes which are a multiple of 4
int width_rem = m_width % 4;
int height_rem = m_height % 4;
if (width_rem != 0) {
m_width += (4 - width_rem);
requires_rescale = true;
}
if (height_rem != 0) {
m_height += (4 - height_rem);
requires_rescale = true;
}
}
if (requires_rescale)
image = image.ResampleBicubic(m_width, m_height);
int n_pixels = m_width * m_height;
if (n_pixels <= 0) {
reset();
return false;
}
// Get RGB & alpha raw data from wxImage, pack them into an array.
unsigned char* img_rgb = image.GetData();
if (img_rgb == nullptr) {
reset();
return false;
}
unsigned char* img_alpha = image.GetAlpha();
std::vector<unsigned char> data(n_pixels * 4, 0);
for (int i = 0; i < n_pixels; ++i) {
int data_id = i * 4;
int img_id = i * 3;
data[data_id + 0] = img_rgb[img_id + 0];
data[data_id + 1] = img_rgb[img_id + 1];
data[data_id + 2] = img_rgb[img_id + 2];
data[data_id + 3] = (img_alpha != nullptr) ? img_alpha[i] : 255;
}
// sends data to gpu
glsafe(::glPixelStorei(GL_UNPACK_ALIGNMENT, 1));
glsafe(::glGenTextures(1, &m_id));
glsafe(::glBindTexture(GL_TEXTURE_2D, m_id));
if (apply_anisotropy) {
GLfloat max_anisotropy = OpenGLManager::get_gl_info().get_max_anisotropy();
if (max_anisotropy > 1.0f)
glsafe(::glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, max_anisotropy));
}
if (compression_enabled) {
if (compression_type == SingleThreaded)
glsafe(::glTexImage2D(GL_TEXTURE_2D, 0, GL_COMPRESSED_RGBA_S3TC_DXT5_EXT, (GLsizei)m_width, (GLsizei)m_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, (const void*)data.data()));
else {
// initializes the texture on GPU
glsafe(::glTexImage2D(GL_TEXTURE_2D, 0, GL_COMPRESSED_RGBA_S3TC_DXT5_EXT, (GLsizei)m_width, (GLsizei)m_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, 0));
// and send the uncompressed data to the compressor
m_compressor.add_level((unsigned int)m_width, (unsigned int)m_height, data);
}
}
else
glsafe(::glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, (GLsizei)m_width, (GLsizei)m_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, (const void*)data.data()));
if (use_mipmaps) {
// we manually generate mipmaps because glGenerateMipmap() function is not reliable on all graphics cards
int lod_w = m_width;
int lod_h = m_height;
GLint level = 0;
while (lod_w > 1 || lod_h > 1) {
++level;
lod_w = std::max(lod_w / 2, 1);
lod_h = std::max(lod_h / 2, 1);
n_pixels = lod_w * lod_h;
image = image.ResampleBicubic(lod_w, lod_h);
data.resize(n_pixels * 4);
img_rgb = image.GetData();
img_alpha = image.GetAlpha();
for (int i = 0; i < n_pixels; ++i) {
int data_id = i * 4;
int img_id = i * 3;
data[data_id + 0] = img_rgb[img_id + 0];
data[data_id + 1] = img_rgb[img_id + 1];
data[data_id + 2] = img_rgb[img_id + 2];
data[data_id + 3] = (img_alpha != nullptr) ? img_alpha[i] : 255;
}
if (compression_enabled) {
if (compression_type == SingleThreaded)
glsafe(::glTexImage2D(GL_TEXTURE_2D, level, GL_COMPRESSED_RGBA_S3TC_DXT5_EXT, (GLsizei)m_width, (GLsizei)m_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, (const void*)data.data()));
else {
// initializes the texture on GPU
glsafe(::glTexImage2D(GL_TEXTURE_2D, level, GL_COMPRESSED_RGBA_S3TC_DXT5_EXT, (GLsizei)lod_w, (GLsizei)lod_h, 0, GL_RGBA, GL_UNSIGNED_BYTE, 0));
// and send the uncompressed data to the compressor
m_compressor.add_level((unsigned int)lod_w, (unsigned int)lod_h, data);
}
}
else
glsafe(::glTexImage2D(GL_TEXTURE_2D, level, GL_RGBA, (GLsizei)lod_w, (GLsizei)lod_h, 0, GL_RGBA, GL_UNSIGNED_BYTE, (const void*)data.data()));
}
if (!compression_enabled) {
glsafe(::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, level));
glsafe(::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR));
}
}
else {
glsafe(::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR));
glsafe(::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 0));
}
glsafe(::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR));
glsafe(::glBindTexture(GL_TEXTURE_2D, 0));
m_source = filename;
if (compression_enabled && compression_type == MultiThreaded)
// start asynchronous compression
m_compressor.start_compressing();
return true;
}
bool GLTexture::load_from_svg(const std::string& filename, bool use_mipmaps, bool compress, bool apply_anisotropy, unsigned int max_size_px)
{
bool compression_enabled = compress && GLEW_EXT_texture_compression_s3tc;
NSVGimage* image = nsvgParseFromFile(filename.c_str(), "px", 96.0f);
if (image == nullptr) {
reset();
return false;
}
float scale = (float)max_size_px / std::max(image->width, image->height);
m_width = (int)(scale * image->width);
m_height = (int)(scale * image->height);
if (compression_enabled) {
// the stb_dxt compression library seems to like only texture sizes which are a multiple of 4
int width_rem = m_width % 4;
int height_rem = m_height % 4;
if (width_rem != 0)
m_width += (4 - width_rem);
if (height_rem != 0)
m_height += (4 - height_rem);
}
int n_pixels = m_width * m_height;
if (n_pixels <= 0) {
reset();
nsvgDelete(image);
return false;
}
NSVGrasterizer* rast = nsvgCreateRasterizer();
if (rast == nullptr) {
nsvgDelete(image);
reset();
return false;
}
// creates the temporary buffer only once, with max size, and reuse it for all the levels, if generating mipmaps
std::vector<unsigned char> data(n_pixels * 4, 0);
nsvgRasterize(rast, image, 0, 0, scale, data.data(), m_width, m_height, m_width * 4);
// sends data to gpu
glsafe(::glPixelStorei(GL_UNPACK_ALIGNMENT, 1));
glsafe(::glGenTextures(1, &m_id));
glsafe(::glBindTexture(GL_TEXTURE_2D, m_id));
if (apply_anisotropy) {
GLfloat max_anisotropy = OpenGLManager::get_gl_info().get_max_anisotropy();
if (max_anisotropy > 1.0f)
glsafe(::glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, max_anisotropy));
}
if (compression_enabled) {
// initializes the texture on GPU
glsafe(::glTexImage2D(GL_TEXTURE_2D, 0, GL_COMPRESSED_RGBA_S3TC_DXT5_EXT, (GLsizei)m_width, (GLsizei)m_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, 0));
// and send the uncompressed data to the compressor
m_compressor.add_level((unsigned int)m_width, (unsigned int)m_height, data);
}
else
glsafe(::glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, (GLsizei)m_width, (GLsizei)m_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, (const void*)data.data()));
if (use_mipmaps) {
// we manually generate mipmaps because glGenerateMipmap() function is not reliable on all graphics cards
int lod_w = m_width;
int lod_h = m_height;
GLint level = 0;
while (lod_w > 1 || lod_h > 1) {
++level;
lod_w = std::max(lod_w / 2, 1);
lod_h = std::max(lod_h / 2, 1);
scale /= 2.0f;
data.resize(lod_w * lod_h * 4);
nsvgRasterize(rast, image, 0, 0, scale, data.data(), lod_w, lod_h, lod_w * 4);
if (compression_enabled) {
// initializes the texture on GPU
glsafe(::glTexImage2D(GL_TEXTURE_2D, level, GL_COMPRESSED_RGBA_S3TC_DXT5_EXT, (GLsizei)lod_w, (GLsizei)lod_h, 0, GL_RGBA, GL_UNSIGNED_BYTE, 0));
// and send the uncompressed data to the compressor
m_compressor.add_level((unsigned int)lod_w, (unsigned int)lod_h, data);
}
else
glsafe(::glTexImage2D(GL_TEXTURE_2D, level, GL_RGBA, (GLsizei)lod_w, (GLsizei)lod_h, 0, GL_RGBA, GL_UNSIGNED_BYTE, (const void*)data.data()));
}
if (!compression_enabled) {
glsafe(::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, level));
glsafe(::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR));
}
}
else {
glsafe(::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR));
glsafe(::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 0));
}
glsafe(::glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR));
glsafe(::glBindTexture(GL_TEXTURE_2D, 0));
m_source = filename;
if (compression_enabled)
// start asynchronous compression
m_compressor.start_compressing();
nsvgDeleteRasterizer(rast);
nsvgDelete(image);
return true;
}
} // namespace GUI
} // namespace Slic3r