PrusaSlicer-NonPlainar/tests/libslic3r/test_geometry.cpp
2021-11-16 14:42:25 +01:00

711 lines
26 KiB
C++

#include <catch2/catch.hpp>
#include "libslic3r/Point.hpp"
#include "libslic3r/BoundingBox.hpp"
#include "libslic3r/Polygon.hpp"
#include "libslic3r/Polyline.hpp"
#include "libslic3r/Line.hpp"
#include "libslic3r/Geometry.hpp"
#include "libslic3r/Geometry/Circle.hpp"
#include "libslic3r/Geometry/ConvexHull.hpp"
#include "libslic3r/ClipperUtils.hpp"
#include "libslic3r/ShortestPath.hpp"
//#include <random>
//#include "libnest2d/tools/benchmark.h"
#include "libslic3r/SVG.hpp"
#include "../libnest2d/printer_parts.hpp"
#include <unordered_set>
using namespace Slic3r;
TEST_CASE("Line::parallel_to", "[Geometry]"){
Line l{ { 100000, 0 }, { 0, 0 } };
Line l2{ { 200000, 0 }, { 0, 0 } };
REQUIRE(l.parallel_to(l));
REQUIRE(l.parallel_to(l2));
Line l3(l2);
l3.rotate(0.9 * EPSILON, { 0, 0 });
REQUIRE(l.parallel_to(l3));
Line l4(l2);
l4.rotate(1.1 * EPSILON, { 0, 0 });
REQUIRE(! l.parallel_to(l4));
// The angle epsilon is so low that vectors shorter than 100um rotated by epsilon radians are not rotated at all.
Line l5{ { 20000, 0 }, { 0, 0 } };
l5.rotate(1.1 * EPSILON, { 0, 0 });
REQUIRE(l.parallel_to(l5));
l.rotate(1., { 0, 0 });
Point offset{ 342876, 97636249 };
l.translate(offset);
l3.rotate(1., { 0, 0 });
l3.translate(offset);
l4.rotate(1., { 0, 0 });
l4.translate(offset);
REQUIRE(l.parallel_to(l3));
REQUIRE(!l.parallel_to(l4));
}
TEST_CASE("Line::perpendicular_to", "[Geometry]") {
Line l{ { 100000, 0 }, { 0, 0 } };
Line l2{ { 0, 200000 }, { 0, 0 } };
REQUIRE(! l.perpendicular_to(l));
REQUIRE(l.perpendicular_to(l2));
Line l3(l2);
l3.rotate(0.9 * EPSILON, { 0, 0 });
REQUIRE(l.perpendicular_to(l3));
Line l4(l2);
l4.rotate(1.1 * EPSILON, { 0, 0 });
REQUIRE(! l.perpendicular_to(l4));
// The angle epsilon is so low that vectors shorter than 100um rotated by epsilon radians are not rotated at all.
Line l5{ { 0, 20000 }, { 0, 0 } };
l5.rotate(1.1 * EPSILON, { 0, 0 });
REQUIRE(l.perpendicular_to(l5));
l.rotate(1., { 0, 0 });
Point offset{ 342876, 97636249 };
l.translate(offset);
l3.rotate(1., { 0, 0 });
l3.translate(offset);
l4.rotate(1., { 0, 0 });
l4.translate(offset);
REQUIRE(l.perpendicular_to(l3));
REQUIRE(! l.perpendicular_to(l4));
}
TEST_CASE("Polygon::contains works properly", "[Geometry]"){
// this test was failing on Windows (GH #1950)
Slic3r::Polygon polygon(std::vector<Point>({
Point(207802834,-57084522),
Point(196528149,-37556190),
Point(173626821,-25420928),
Point(171285751,-21366123),
Point(118673592,-21366123),
Point(116332562,-25420928),
Point(93431208,-37556191),
Point(82156517,-57084523),
Point(129714478,-84542120),
Point(160244873,-84542120)
}));
Point point(95706562, -57294774);
REQUIRE(polygon.contains(point));
}
SCENARIO("Intersections of line segments", "[Geometry]"){
GIVEN("Integer coordinates"){
Line line1(Point(5,15),Point(30,15));
Line line2(Point(10,20), Point(10,10));
THEN("The intersection is valid"){
Point point;
line1.intersection(line2,&point);
REQUIRE(Point(10,15) == point);
}
}
GIVEN("Scaled coordinates"){
Line line1(Point(73.6310778185108 / 0.00001, 371.74239268924 / 0.00001), Point(73.6310778185108 / 0.00001, 501.74239268924 / 0.00001));
Line line2(Point(75/0.00001, 437.9853/0.00001), Point(62.7484/0.00001, 440.4223/0.00001));
THEN("There is still an intersection"){
Point point;
REQUIRE(line1.intersection(line2,&point));
}
}
}
SCENARIO("polygon_is_convex works") {
GIVEN("A square of dimension 10") {
WHEN("Polygon is convex clockwise") {
Polygon cw_square { { {0, 0}, {0,10}, {10,10}, {10,0} } };
THEN("it is not convex") {
REQUIRE(! polygon_is_convex(cw_square));
}
}
WHEN("Polygon is convex counter-clockwise") {
Polygon ccw_square { { {0, 0}, {10,0}, {10,10}, {0,10} } };
THEN("it is convex") {
REQUIRE(polygon_is_convex(ccw_square));
}
}
}
GIVEN("A concave polygon") {
Polygon concave = { {0,0}, {10,0}, {10,10}, {0,10}, {0,6}, {4,6}, {4,4}, {0,4} };
THEN("It is not convex") {
REQUIRE(! polygon_is_convex(concave));
}
}
}
TEST_CASE("Creating a polyline generates the obvious lines", "[Geometry]"){
Slic3r::Polyline polyline;
polyline.points = std::vector<Point>({Point(0, 0), Point(10, 0), Point(20, 0)});
REQUIRE(polyline.lines().at(0).a == Point(0,0));
REQUIRE(polyline.lines().at(0).b == Point(10,0));
REQUIRE(polyline.lines().at(1).a == Point(10,0));
REQUIRE(polyline.lines().at(1).b == Point(20,0));
}
TEST_CASE("Splitting a Polygon generates a polyline correctly", "[Geometry]"){
Slic3r::Polygon polygon(std::vector<Point>({Point(0, 0), Point(10, 0), Point(5, 5)}));
Slic3r::Polyline split = polygon.split_at_index(1);
REQUIRE(split.points[0]==Point(10,0));
REQUIRE(split.points[1]==Point(5,5));
REQUIRE(split.points[2]==Point(0,0));
REQUIRE(split.points[3]==Point(10,0));
}
TEST_CASE("Bounding boxes are scaled appropriately", "[Geometry]"){
BoundingBox bb(std::vector<Point>({Point(0, 1), Point(10, 2), Point(20, 2)}));
bb.scale(2);
REQUIRE(bb.min == Point(0,2));
REQUIRE(bb.max == Point(40,4));
}
TEST_CASE("Offseting a line generates a polygon correctly", "[Geometry]"){
Slic3r::Polyline tmp = { Point(10,10), Point(20,10) };
Slic3r::Polygon area = offset(tmp,5).at(0);
REQUIRE(area.area() == Slic3r::Polygon(std::vector<Point>({Point(10,5),Point(20,5),Point(20,15),Point(10,15)})).area());
}
SCENARIO("Circle Fit, TaubinFit with Newton's method", "[Geometry]") {
GIVEN("A vector of Vec2ds arranged in a half-circle with approximately the same distance R from some point") {
Vec2d expected_center(-6, 0);
Vec2ds sample {Vec2d(6.0, 0), Vec2d(5.1961524, 3), Vec2d(3 ,5.1961524), Vec2d(0, 6.0), Vec2d(3, 5.1961524), Vec2d(-5.1961524, 3), Vec2d(-6.0, 0)};
std::transform(sample.begin(), sample.end(), sample.begin(), [expected_center] (const Vec2d& a) { return a + expected_center;});
WHEN("Circle fit is called on the entire array") {
Vec2d result_center(0,0);
result_center = Geometry::circle_center_taubin_newton(sample);
THEN("A center point of -6,0 is returned.") {
REQUIRE(is_approx(result_center, expected_center));
}
}
WHEN("Circle fit is called on the first four points") {
Vec2d result_center(0,0);
result_center = Geometry::circle_center_taubin_newton(sample.cbegin(), sample.cbegin()+4);
THEN("A center point of -6,0 is returned.") {
REQUIRE(is_approx(result_center, expected_center));
}
}
WHEN("Circle fit is called on the middle four points") {
Vec2d result_center(0,0);
result_center = Geometry::circle_center_taubin_newton(sample.cbegin()+2, sample.cbegin()+6);
THEN("A center point of -6,0 is returned.") {
REQUIRE(is_approx(result_center, expected_center));
}
}
}
GIVEN("A vector of Vec2ds arranged in a half-circle with approximately the same distance R from some point") {
Vec2d expected_center(-3, 9);
Vec2ds sample {Vec2d(6.0, 0), Vec2d(5.1961524, 3), Vec2d(3 ,5.1961524),
Vec2d(0, 6.0),
Vec2d(3, 5.1961524), Vec2d(-5.1961524, 3), Vec2d(-6.0, 0)};
std::transform(sample.begin(), sample.end(), sample.begin(), [expected_center] (const Vec2d& a) { return a + expected_center;});
WHEN("Circle fit is called on the entire array") {
Vec2d result_center(0,0);
result_center = Geometry::circle_center_taubin_newton(sample);
THEN("A center point of 3,9 is returned.") {
REQUIRE(is_approx(result_center, expected_center));
}
}
WHEN("Circle fit is called on the first four points") {
Vec2d result_center(0,0);
result_center = Geometry::circle_center_taubin_newton(sample.cbegin(), sample.cbegin()+4);
THEN("A center point of 3,9 is returned.") {
REQUIRE(is_approx(result_center, expected_center));
}
}
WHEN("Circle fit is called on the middle four points") {
Vec2d result_center(0,0);
result_center = Geometry::circle_center_taubin_newton(sample.cbegin()+2, sample.cbegin()+6);
THEN("A center point of 3,9 is returned.") {
REQUIRE(is_approx(result_center, expected_center));
}
}
}
GIVEN("A vector of Points arranged in a half-circle with approximately the same distance R from some point") {
Point expected_center { Point::new_scale(-3, 9)};
Points sample {Point::new_scale(6.0, 0), Point::new_scale(5.1961524, 3), Point::new_scale(3 ,5.1961524),
Point::new_scale(0, 6.0),
Point::new_scale(3, 5.1961524), Point::new_scale(-5.1961524, 3), Point::new_scale(-6.0, 0)};
std::transform(sample.begin(), sample.end(), sample.begin(), [expected_center] (const Point& a) { return a + expected_center;});
WHEN("Circle fit is called on the entire array") {
Point result_center(0,0);
result_center = Geometry::circle_center_taubin_newton(sample);
THEN("A center point of scaled 3,9 is returned.") {
REQUIRE(is_approx(result_center, expected_center));
}
}
WHEN("Circle fit is called on the first four points") {
Point result_center(0,0);
result_center = Geometry::circle_center_taubin_newton(sample.cbegin(), sample.cbegin()+4);
THEN("A center point of scaled 3,9 is returned.") {
REQUIRE(is_approx(result_center, expected_center));
}
}
WHEN("Circle fit is called on the middle four points") {
Point result_center(0,0);
result_center = Geometry::circle_center_taubin_newton(sample.cbegin()+2, sample.cbegin()+6);
THEN("A center point of scaled 3,9 is returned.") {
REQUIRE(is_approx(result_center, expected_center));
}
}
}
}
TEST_CASE("smallest_enclosing_circle_welzl", "[Geometry]") {
// Some random points in plane.
Points pts {
{ 89243, 4359 }, { 763465, 59687 }, { 3245, 734987 }, { 2459867, 987634 }, { 759866, 67843982 }, { 9754687, 9834658 }, { 87235089, 743984373 },
{ 65874456, 2987546 }, { 98234524, 657654873 }, { 786243598, 287934765 }, { 824356, 734265 }, { 82576449, 7864534 }, { 7826345, 3984765 }
};
const auto c = Slic3r::Geometry::smallest_enclosing_circle_welzl(pts);
// The radius returned is inflated by SCALED_EPSILON, thus all points should be inside.
bool all_inside = std::all_of(pts.begin(), pts.end(), [c](const Point &pt){ return c.contains(pt.cast<double>()); });
auto c2(c);
c2.radius -= SCALED_EPSILON * 2.1;
auto num_on_boundary = std::count_if(pts.begin(), pts.end(), [c2](const Point& pt) { return ! c2.contains(pt.cast<double>(), SCALED_EPSILON); });
REQUIRE(all_inside);
REQUIRE(num_on_boundary == 3);
}
SCENARIO("Path chaining", "[Geometry]") {
GIVEN("A path") {
std::vector<Point> points = { Point(26,26),Point(52,26),Point(0,26),Point(26,52),Point(26,0),Point(0,52),Point(52,52),Point(52,0) };
THEN("Chained with no diagonals (thus 26 units long)") {
std::vector<Points::size_type> indices = chain_points(points);
for (Points::size_type i = 0; i + 1 < indices.size(); ++ i) {
double dist = (points.at(indices.at(i)).cast<double>() - points.at(indices.at(i+1)).cast<double>()).norm();
REQUIRE(std::abs(dist-26) <= EPSILON);
}
}
}
GIVEN("Gyroid infill end points") {
Polylines polylines = {
{ {28122608, 3221037}, {27919139, 56036027} },
{ {33642863, 3400772}, {30875220, 56450360} },
{ {34579315, 3599827}, {35049758, 55971572} },
{ {26483070, 3374004}, {23971830, 55763598} },
{ {38931405, 4678879}, {38740053, 55077714} },
{ {20311895, 5015778}, {20079051, 54551952} },
{ {16463068, 6773342}, {18823514, 53992958} },
{ {44433771, 7424951}, {42629462, 53346059} },
{ {15697614, 7329492}, {15350896, 52089991} },
{ {48085792, 10147132}, {46435427, 50792118} },
{ {48828819, 10972330}, {49126582, 48368374} },
{ {9654526, 12656711}, {10264020, 47691584} },
{ {5726905, 18648632}, {8070762, 45082416} },
{ {54818187, 39579970}, {52974912, 43271272} },
{ {4464342, 37371742}, {5027890, 39106220} },
{ {54139746, 18417661}, {55177987, 38472580} },
{ {56527590, 32058461}, {56316456, 34067185} },
{ {3303988, 29215290}, {3569863, 32985633} },
{ {56255666, 25025857}, {56478310, 27144087} },
{ {4300034, 22805361}, {3667946, 25752601} },
{ {8266122, 14250611}, {6244813, 17751595} },
{ {12177955, 9886741}, {10703348, 11491900} }
};
Polylines chained = chain_polylines(polylines);
THEN("Chained taking the shortest path") {
double connection_length = 0.;
for (size_t i = 1; i < chained.size(); ++i) {
const Polyline &pl1 = chained[i - 1];
const Polyline &pl2 = chained[i];
connection_length += (pl2.first_point() - pl1.last_point()).cast<double>().norm();
}
REQUIRE(connection_length < 85206000.);
}
}
GIVEN("Loop pieces") {
Point a { 2185796, 19058485 };
Point b { 3957902, 18149382 };
Point c { 2912841, 18790564 };
Point d { 2831848, 18832390 };
Point e { 3179601, 18627769 };
Point f { 3137952, 18653370 };
Polylines polylines = { { a, b },
{ c, d },
{ e, f },
{ d, a },
{ f, c },
{ b, e } };
Polylines chained = chain_polylines(polylines, &a);
THEN("Connected without a gap") {
for (size_t i = 0; i < chained.size(); ++i) {
const Polyline &pl1 = (i == 0) ? chained.back() : chained[i - 1];
const Polyline &pl2 = chained[i];
REQUIRE(pl1.points.back() == pl2.points.front());
}
}
}
}
SCENARIO("Line distances", "[Geometry]"){
GIVEN("A line"){
Line line(Point(0, 0), Point(20, 0));
THEN("Points on the line segment have 0 distance"){
REQUIRE(line.distance_to(Point(0, 0)) == 0);
REQUIRE(line.distance_to(Point(20, 0)) == 0);
REQUIRE(line.distance_to(Point(10, 0)) == 0);
}
THEN("Points off the line have the appropriate distance"){
REQUIRE(line.distance_to(Point(10, 10)) == 10);
REQUIRE(line.distance_to(Point(50, 0)) == 30);
}
}
}
SCENARIO("Polygon convex/concave detection", "[Geometry]"){
GIVEN(("A Square with dimension 100")){
auto square = Slic3r::Polygon /*new_scale*/(std::vector<Point>({
Point(100,100),
Point(200,100),
Point(200,200),
Point(100,200)}));
THEN("It has 4 convex points counterclockwise"){
REQUIRE(square.concave_points(PI*4/3).size() == 0);
REQUIRE(square.convex_points(PI*2/3).size() == 4);
}
THEN("It has 4 concave points clockwise"){
square.make_clockwise();
REQUIRE(square.concave_points(PI*4/3).size() == 4);
REQUIRE(square.convex_points(PI*2/3).size() == 0);
}
}
GIVEN("A Square with an extra colinearvertex"){
auto square = Slic3r::Polygon /*new_scale*/(std::vector<Point>({
Point(150,100),
Point(200,100),
Point(200,200),
Point(100,200),
Point(100,100)}));
THEN("It has 4 convex points counterclockwise"){
REQUIRE(square.concave_points(PI*4/3).size() == 0);
REQUIRE(square.convex_points(PI*2/3).size() == 4);
}
}
GIVEN("A Square with an extra collinear vertex in different order"){
auto square = Slic3r::Polygon /*new_scale*/(std::vector<Point>({
Point(200,200),
Point(100,200),
Point(100,100),
Point(150,100),
Point(200,100)}));
THEN("It has 4 convex points counterclockwise"){
REQUIRE(square.concave_points(PI*4/3).size() == 0);
REQUIRE(square.convex_points(PI*2/3).size() == 4);
}
}
GIVEN("A triangle"){
auto triangle = Slic3r::Polygon(std::vector<Point>({
Point(16000170,26257364),
Point(714223,461012),
Point(31286371,461008)
}));
THEN("it has three convex vertices"){
REQUIRE(triangle.concave_points(PI*4/3).size() == 0);
REQUIRE(triangle.convex_points(PI*2/3).size() == 3);
}
}
GIVEN("A triangle with an extra collinear point"){
auto triangle = Slic3r::Polygon(std::vector<Point>({
Point(16000170,26257364),
Point(714223,461012),
Point(20000000,461012),
Point(31286371,461012)
}));
THEN("it has three convex vertices"){
REQUIRE(triangle.concave_points(PI*4/3).size() == 0);
REQUIRE(triangle.convex_points(PI*2/3).size() == 3);
}
}
GIVEN("A polygon with concave vertices with angles of specifically 4/3pi"){
// Two concave vertices of this polygon have angle = PI*4/3, so this test fails
// if epsilon is not used.
auto polygon = Slic3r::Polygon(std::vector<Point>({
Point(60246458,14802768),Point(64477191,12360001),
Point(63727343,11060995),Point(64086449,10853608),
Point(66393722,14850069),Point(66034704,15057334),
Point(65284646,13758387),Point(61053864,16200839),
Point(69200258,30310849),Point(62172547,42483120),
Point(61137680,41850279),Point(67799985,30310848),
Point(51399866,1905506),Point(38092663,1905506),
Point(38092663,692699),Point(52100125,692699)
}));
THEN("the correct number of points are detected"){
REQUIRE(polygon.concave_points(PI*4/3).size() == 6);
REQUIRE(polygon.convex_points(PI*2/3).size() == 10);
}
}
}
TEST_CASE("Triangle Simplification does not result in less than 3 points", "[Geometry]"){
auto triangle = Slic3r::Polygon(std::vector<Point>({
Point(16000170,26257364), Point(714223,461012), Point(31286371,461008)
}));
REQUIRE(triangle.simplify(250000).at(0).points.size() == 3);
}
SCENARIO("Ported from xs/t/14_geometry.t", "[Geometry]"){
GIVEN(("square")){
Slic3r::Points points { { 100, 100 }, {100, 200 }, { 200, 200 }, { 200, 100 }, { 150, 150 } };
Slic3r::Polygon hull = Slic3r::Geometry::convex_hull(points);
SECTION("convex hull returns the correct number of points") { REQUIRE(hull.points.size() == 4); }
}
SECTION("arrange returns expected number of positions") {
Pointfs positions;
Slic3r::Geometry::arrange(4, Vec2d(20, 20), 5, nullptr, positions);
REQUIRE(positions.size() == 4);
}
SECTION("directions_parallel") {
REQUIRE(Slic3r::Geometry::directions_parallel(0, 0, 0));
REQUIRE(Slic3r::Geometry::directions_parallel(0, M_PI, 0));
REQUIRE(Slic3r::Geometry::directions_parallel(0, 0, M_PI / 180));
REQUIRE(Slic3r::Geometry::directions_parallel(0, M_PI, M_PI / 180));
REQUIRE(! Slic3r::Geometry::directions_parallel(M_PI /2, M_PI, 0));
REQUIRE(! Slic3r::Geometry::directions_parallel(M_PI /2, PI, M_PI /180));
}
}
TEST_CASE("Convex polygon intersection on two disjoint squares", "[Geometry][Rotcalip]") {
Polygon A{{0, 0}, {10, 0}, {10, 10}, {0, 10}};
A.scale(1. / SCALING_FACTOR);
Polygon B = A;
B.translate(20 / SCALING_FACTOR, 0);
bool is_inters = Geometry::convex_polygons_intersect(A, B);
REQUIRE(is_inters == false);
}
TEST_CASE("Convex polygon intersection on two intersecting squares", "[Geometry][Rotcalip]") {
Polygon A{{0, 0}, {10, 0}, {10, 10}, {0, 10}};
A.scale(1. / SCALING_FACTOR);
Polygon B = A;
B.translate(5 / SCALING_FACTOR, 5 / SCALING_FACTOR);
bool is_inters = Geometry::convex_polygons_intersect(A, B);
REQUIRE(is_inters == true);
}
TEST_CASE("Convex polygon intersection on two squares touching one edge", "[Geometry][Rotcalip]") {
Polygon A{{0, 0}, {10, 0}, {10, 10}, {0, 10}};
A.scale(1. / SCALING_FACTOR);
Polygon B = A;
B.translate(10 / SCALING_FACTOR, 0);
bool is_inters = Geometry::convex_polygons_intersect(A, B);
REQUIRE(is_inters == false);
}
TEST_CASE("Convex polygon intersection on two squares touching one vertex", "[Geometry][Rotcalip]") {
Polygon A{{0, 0}, {10, 0}, {10, 10}, {0, 10}};
A.scale(1. / SCALING_FACTOR);
Polygon B = A;
B.translate(10 / SCALING_FACTOR, 10 / SCALING_FACTOR);
SVG svg{std::string("one_vertex_touch") + ".svg"};
svg.draw(A, "blue");
svg.draw(B, "green");
svg.Close();
bool is_inters = Geometry::convex_polygons_intersect(A, B);
REQUIRE(is_inters == false);
}
TEST_CASE("Convex polygon intersection on two overlapping squares", "[Geometry][Rotcalip]") {
Polygon A{{0, 0}, {10, 0}, {10, 10}, {0, 10}};
A.scale(1. / SCALING_FACTOR);
Polygon B = A;
bool is_inters = Geometry::convex_polygons_intersect(A, B);
REQUIRE(is_inters == true);
}
//// Only for benchmarking
//static Polygon gen_convex_poly(std::mt19937_64 &rg, size_t point_cnt)
//{
// std::uniform_int_distribution<coord_t> dist(0, 100);
// Polygon out;
// out.points.reserve(point_cnt);
// coord_t tr = dist(rg) * 2 / SCALING_FACTOR;
// for (size_t i = 0; i < point_cnt; ++i)
// out.points.emplace_back(tr + dist(rg) / SCALING_FACTOR,
// tr + dist(rg) / SCALING_FACTOR);
// return Geometry::convex_hull(out.points);
//}
//TEST_CASE("Convex polygon intersection test on random polygons", "[Geometry]") {
// constexpr size_t TEST_CNT = 1000;
// constexpr size_t POINT_CNT = 1000;
// auto seed = std::random_device{}();
//// unsigned long seed = 2525634386;
// std::mt19937_64 rg{seed};
// Benchmark bench;
// auto tests = reserve_vector<std::pair<Polygon, Polygon>>(TEST_CNT);
// auto results = reserve_vector<bool>(TEST_CNT);
// auto expects = reserve_vector<bool>(TEST_CNT);
// for (size_t i = 0; i < TEST_CNT; ++i) {
// tests.emplace_back(gen_convex_poly(rg, POINT_CNT), gen_convex_poly(rg, POINT_CNT));
// }
// bench.start();
// for (const auto &test : tests)
// results.emplace_back(Geometry::convex_polygons_intersect(test.first, test.second));
// bench.stop();
// std::cout << "Test time: " << bench.getElapsedSec() << std::endl;
// bench.start();
// for (const auto &test : tests)
// expects.emplace_back(!intersection(test.first, test.second).empty());
// bench.stop();
// std::cout << "Clipper time: " << bench.getElapsedSec() << std::endl;
// REQUIRE(results.size() == expects.size());
// auto seedstr = std::to_string(seed);
// for (size_t i = 0; i < results.size(); ++i) {
// // std::cout << expects[i] << " ";
// if (results[i] != expects[i]) {
// SVG svg{std::string("fail_seed") + seedstr + "_" + std::to_string(i) + ".svg"};
// svg.draw(tests[i].first, "blue");
// svg.draw(tests[i].second, "green");
// svg.Close();
// // std::cout << std::endl;
// }
// REQUIRE(results[i] == expects[i]);
// }
// std::cout << std::endl;
//}
struct Pair
{
size_t first, second;
bool operator==(const Pair &b) const { return first == b.first && second == b.second; }
};
template<> struct std::hash<Pair> {
size_t operator()(const Pair &c) const
{
return c.first * PRINTER_PART_POLYGONS.size() + c.second;
}
};
TEST_CASE("Convex polygon intersection test prusa polygons", "[Geometry][Rotcalip]") {
// Overlap of the same polygon should always be an intersection
for (size_t i = 0; i < PRINTER_PART_POLYGONS.size(); ++i) {
Polygon P = PRINTER_PART_POLYGONS[i];
P = Geometry::convex_hull(P.points);
bool res = Geometry::convex_polygons_intersect(P, P);
if (!res) {
SVG svg{std::string("fail_self") + std::to_string(i) + ".svg"};
svg.draw(P, "green");
svg.Close();
}
REQUIRE(res == true);
}
std::unordered_set<Pair> combos;
for (size_t i = 0; i < PRINTER_PART_POLYGONS.size(); ++i) {
for (size_t j = 0; j < PRINTER_PART_POLYGONS.size(); ++j) {
if (i != j) {
size_t a = std::min(i, j), b = std::max(i, j);
combos.insert(Pair{a, b});
}
}
}
// All disjoint
for (const auto &combo : combos) {
Polygon A = PRINTER_PART_POLYGONS[combo.first], B = PRINTER_PART_POLYGONS[combo.second];
A = Geometry::convex_hull(A.points);
B = Geometry::convex_hull(B.points);
auto bba = A.bounding_box();
auto bbb = B.bounding_box();
A.translate(-bba.center());
B.translate(-bbb.center());
B.translate(bba.size() + bbb.size());
bool res = Geometry::convex_polygons_intersect(A, B);
bool ref = !intersection(A, B).empty();
if (res != ref) {
SVG svg{std::string("fail") + std::to_string(combo.first) + "_" + std::to_string(combo.second) + ".svg"};
svg.draw(A, "blue");
svg.draw(B, "green");
svg.Close();
}
REQUIRE(res == ref);
}
// All intersecting
for (const auto &combo : combos) {
Polygon A = PRINTER_PART_POLYGONS[combo.first], B = PRINTER_PART_POLYGONS[combo.second];
A = Geometry::convex_hull(A.points);
B = Geometry::convex_hull(B.points);
auto bba = A.bounding_box();
auto bbb = B.bounding_box();
A.translate(-bba.center());
B.translate(-bbb.center());
bool res = Geometry::convex_polygons_intersect(A, B);
bool ref = !intersection(A, B).empty();
if (res != ref) {
SVG svg{std::string("fail") + std::to_string(combo.first) + "_" + std::to_string(combo.second) + ".svg"};
svg.draw(A, "blue");
svg.draw(B, "green");
svg.Close();
}
REQUIRE(res == ref);
}
}