PrusaSlicer-NonPlainar/src/libslic3r/Model.cpp

2023 lines
70 KiB
C++

#include "Model.hpp"
#include "ModelArrange.hpp"
#include "Geometry.hpp"
#include "MTUtils.hpp"
#include "Format/AMF.hpp"
#include "Format/OBJ.hpp"
#include "Format/PRUS.hpp"
#include "Format/STL.hpp"
#include "Format/3mf.hpp"
#include <float.h>
#include <boost/algorithm/string/predicate.hpp>
#include <boost/algorithm/string/replace.hpp>
#include <boost/filesystem.hpp>
#include <boost/log/trivial.hpp>
#include <boost/nowide/iostream.hpp>
#include "SVG.hpp"
#include <Eigen/Dense>
#include "GCodeWriter.hpp"
#include "GCode/PreviewData.hpp"
namespace Slic3r {
Model& Model::assign_copy(const Model &rhs)
{
this->copy_id(rhs);
// copy materials
this->clear_materials();
this->materials = rhs.materials;
for (std::pair<const t_model_material_id, ModelMaterial*> &m : this->materials) {
// Copy including the ID and m_model.
m.second = new ModelMaterial(*m.second);
m.second->set_model(this);
}
// copy objects
this->clear_objects();
this->objects.reserve(rhs.objects.size());
for (const ModelObject *model_object : rhs.objects) {
// Copy including the ID, leave ID set to invalid (zero).
auto mo = ModelObject::new_copy(*model_object);
mo->set_model(this);
this->objects.emplace_back(mo);
}
// copy custom code per height
this->custom_gcode_per_print_z = rhs.custom_gcode_per_print_z;
return *this;
}
Model& Model::assign_copy(Model &&rhs)
{
this->copy_id(rhs);
// Move materials, adjust the parent pointer.
this->clear_materials();
this->materials = std::move(rhs.materials);
for (std::pair<const t_model_material_id, ModelMaterial*> &m : this->materials)
m.second->set_model(this);
rhs.materials.clear();
// Move objects, adjust the parent pointer.
this->clear_objects();
this->objects = std::move(rhs.objects);
for (ModelObject *model_object : this->objects)
model_object->set_model(this);
rhs.objects.clear();
// copy custom code per height
this->custom_gcode_per_print_z = std::move(rhs.custom_gcode_per_print_z);
return *this;
}
void Model::assign_new_unique_ids_recursive()
{
this->set_new_unique_id();
for (std::pair<const t_model_material_id, ModelMaterial*> &m : this->materials)
m.second->assign_new_unique_ids_recursive();
for (ModelObject *model_object : this->objects)
model_object->assign_new_unique_ids_recursive();
}
void Model::update_links_bottom_up_recursive()
{
for (std::pair<const t_model_material_id, ModelMaterial*> &kvp : this->materials)
kvp.second->set_model(this);
for (ModelObject *model_object : this->objects) {
model_object->set_model(this);
for (ModelInstance *model_instance : model_object->instances)
model_instance->set_model_object(model_object);
for (ModelVolume *model_volume : model_object->volumes)
model_volume->set_model_object(model_object);
}
}
Model Model::read_from_file(const std::string& input_file, DynamicPrintConfig* config, bool add_default_instances, bool check_version)
{
Model model;
DynamicPrintConfig temp_config;
if (config == nullptr)
config = &temp_config;
bool result = false;
if (boost::algorithm::iends_with(input_file, ".stl"))
result = load_stl(input_file.c_str(), &model);
else if (boost::algorithm::iends_with(input_file, ".obj"))
result = load_obj(input_file.c_str(), &model);
else if (boost::algorithm::iends_with(input_file, ".amf") || boost::algorithm::iends_with(input_file, ".amf.xml"))
result = load_amf(input_file.c_str(), config, &model, check_version);
else if (boost::algorithm::iends_with(input_file, ".3mf"))
result = load_3mf(input_file.c_str(), config, &model, false);
else if (boost::algorithm::iends_with(input_file, ".prusa"))
result = load_prus(input_file.c_str(), &model);
else
throw std::runtime_error("Unknown file format. Input file must have .stl, .obj, .amf(.xml) or .prusa extension.");
if (! result)
throw std::runtime_error("Loading of a model file failed.");
if (model.objects.empty())
throw std::runtime_error("The supplied file couldn't be read because it's empty");
for (ModelObject *o : model.objects)
o->input_file = input_file;
if (add_default_instances)
model.add_default_instances();
CustomGCode::update_custom_gcode_per_print_z_from_config(model.custom_gcode_per_print_z, config);
CustomGCode::check_mode_for_custom_gcode_per_print_z(model.custom_gcode_per_print_z);
return model;
}
Model Model::read_from_archive(const std::string& input_file, DynamicPrintConfig* config, bool add_default_instances, bool check_version)
{
Model model;
bool result = false;
if (boost::algorithm::iends_with(input_file, ".3mf"))
result = load_3mf(input_file.c_str(), config, &model, check_version);
else if (boost::algorithm::iends_with(input_file, ".zip.amf"))
result = load_amf(input_file.c_str(), config, &model, check_version);
else
throw std::runtime_error("Unknown file format. Input file must have .3mf or .zip.amf extension.");
if (!result)
throw std::runtime_error("Loading of a model file failed.");
if (model.objects.empty())
throw std::runtime_error("The supplied file couldn't be read because it's empty");
for (ModelObject *o : model.objects)
{
// if (boost::algorithm::iends_with(input_file, ".zip.amf"))
// {
// // we remove the .zip part of the extension to avoid it be added to filenames when exporting
// o->input_file = boost::ireplace_last_copy(input_file, ".zip.", ".");
// }
// else
o->input_file = input_file;
}
if (add_default_instances)
model.add_default_instances();
CustomGCode::update_custom_gcode_per_print_z_from_config(model.custom_gcode_per_print_z, config);
CustomGCode::check_mode_for_custom_gcode_per_print_z(model.custom_gcode_per_print_z);
return model;
}
ModelObject* Model::add_object()
{
this->objects.emplace_back(new ModelObject(this));
return this->objects.back();
}
ModelObject* Model::add_object(const char *name, const char *path, const TriangleMesh &mesh)
{
ModelObject* new_object = new ModelObject(this);
this->objects.push_back(new_object);
new_object->name = name;
new_object->input_file = path;
ModelVolume *new_volume = new_object->add_volume(mesh);
new_volume->name = name;
new_volume->source.input_file = path;
new_volume->source.object_idx = (int)this->objects.size() - 1;
new_volume->source.volume_idx = (int)new_object->volumes.size() - 1;
new_object->invalidate_bounding_box();
return new_object;
}
ModelObject* Model::add_object(const char *name, const char *path, TriangleMesh &&mesh)
{
ModelObject* new_object = new ModelObject(this);
this->objects.push_back(new_object);
new_object->name = name;
new_object->input_file = path;
ModelVolume *new_volume = new_object->add_volume(std::move(mesh));
new_volume->name = name;
new_volume->source.input_file = path;
new_volume->source.object_idx = (int)this->objects.size() - 1;
new_volume->source.volume_idx = (int)new_object->volumes.size() - 1;
new_object->invalidate_bounding_box();
return new_object;
}
ModelObject* Model::add_object(const ModelObject &other)
{
ModelObject* new_object = ModelObject::new_clone(other);
new_object->set_model(this);
this->objects.push_back(new_object);
return new_object;
}
void Model::delete_object(size_t idx)
{
ModelObjectPtrs::iterator i = this->objects.begin() + idx;
delete *i;
this->objects.erase(i);
}
bool Model::delete_object(ModelObject* object)
{
if (object != nullptr) {
size_t idx = 0;
for (ModelObject *model_object : objects) {
if (model_object == object) {
delete model_object;
objects.erase(objects.begin() + idx);
return true;
}
++ idx;
}
}
return false;
}
bool Model::delete_object(ObjectID id)
{
if (id.id != 0) {
size_t idx = 0;
for (ModelObject *model_object : objects) {
if (model_object->id() == id) {
delete model_object;
objects.erase(objects.begin() + idx);
return true;
}
++ idx;
}
}
return false;
}
void Model::clear_objects()
{
for (ModelObject *o : this->objects)
delete o;
this->objects.clear();
}
void Model::delete_material(t_model_material_id material_id)
{
ModelMaterialMap::iterator i = this->materials.find(material_id);
if (i != this->materials.end()) {
delete i->second;
this->materials.erase(i);
}
}
void Model::clear_materials()
{
for (auto &m : this->materials)
delete m.second;
this->materials.clear();
}
ModelMaterial* Model::add_material(t_model_material_id material_id)
{
assert(! material_id.empty());
ModelMaterial* material = this->get_material(material_id);
if (material == nullptr)
material = this->materials[material_id] = new ModelMaterial(this);
return material;
}
ModelMaterial* Model::add_material(t_model_material_id material_id, const ModelMaterial &other)
{
assert(! material_id.empty());
// delete existing material if any
ModelMaterial* material = this->get_material(material_id);
delete material;
// set new material
material = new ModelMaterial(other);
material->set_model(this);
this->materials[material_id] = material;
return material;
}
// makes sure all objects have at least one instance
bool Model::add_default_instances()
{
// apply a default position to all objects not having one
for (ModelObject *o : this->objects)
if (o->instances.empty())
o->add_instance();
return true;
}
// this returns the bounding box of the *transformed* instances
BoundingBoxf3 Model::bounding_box() const
{
BoundingBoxf3 bb;
for (ModelObject *o : this->objects)
bb.merge(o->bounding_box());
return bb;
}
unsigned int Model::update_print_volume_state(const BoundingBoxf3 &print_volume)
{
unsigned int num_printable = 0;
for (ModelObject *model_object : this->objects)
num_printable += model_object->check_instances_print_volume_state(print_volume);
return num_printable;
}
bool Model::center_instances_around_point(const Vec2d &point)
{
BoundingBoxf3 bb;
for (ModelObject *o : this->objects)
for (size_t i = 0; i < o->instances.size(); ++ i)
bb.merge(o->instance_bounding_box(i, false));
Vec2d shift2 = point - to_2d(bb.center());
if (std::abs(shift2(0)) < EPSILON && std::abs(shift2(1)) < EPSILON)
// No significant shift, don't do anything.
return false;
Vec3d shift3 = Vec3d(shift2(0), shift2(1), 0.0);
for (ModelObject *o : this->objects) {
for (ModelInstance *i : o->instances)
i->set_offset(i->get_offset() + shift3);
o->invalidate_bounding_box();
}
return true;
}
// flattens everything to a single mesh
TriangleMesh Model::mesh() const
{
TriangleMesh mesh;
for (const ModelObject *o : this->objects)
mesh.merge(o->mesh());
return mesh;
}
void Model::duplicate_objects_grid(size_t x, size_t y, coordf_t dist)
{
if (this->objects.size() > 1) throw "Grid duplication is not supported with multiple objects";
if (this->objects.empty()) throw "No objects!";
ModelObject* object = this->objects.front();
object->clear_instances();
Vec3d ext_size = object->bounding_box().size() + dist * Vec3d::Ones();
for (size_t x_copy = 1; x_copy <= x; ++x_copy) {
for (size_t y_copy = 1; y_copy <= y; ++y_copy) {
ModelInstance* instance = object->add_instance();
instance->set_offset(Vec3d(ext_size(0) * (double)(x_copy - 1), ext_size(1) * (double)(y_copy - 1), 0.0));
}
}
}
bool Model::looks_like_multipart_object() const
{
if (this->objects.size() <= 1)
return false;
double zmin = std::numeric_limits<double>::max();
for (const ModelObject *obj : this->objects) {
if (obj->volumes.size() > 1 || obj->config.keys().size() > 1)
return false;
for (const ModelVolume *vol : obj->volumes) {
double zmin_this = vol->mesh().bounding_box().min(2);
if (zmin == std::numeric_limits<double>::max())
zmin = zmin_this;
else if (std::abs(zmin - zmin_this) > EPSILON)
// The volumes don't share zmin.
return true;
}
}
return false;
}
// Generate next extruder ID string, in the range of (1, max_extruders).
static inline std::string auto_extruder_id(unsigned int max_extruders, unsigned int &cntr)
{
char str_extruder[64];
sprintf(str_extruder, "%ud", cntr + 1);
if (++ cntr == max_extruders)
cntr = 0;
return str_extruder;
}
void Model::convert_multipart_object(unsigned int max_extruders)
{
assert(this->objects.size() >= 2);
if (this->objects.size() < 2)
return;
ModelObject* object = new ModelObject(this);
object->input_file = this->objects.front()->input_file;
object->name = this->objects.front()->name;
//FIXME copy the config etc?
unsigned int extruder_counter = 0;
for (const ModelObject* o : this->objects)
for (const ModelVolume* v : o->volumes) {
// If there are more than one object, put all volumes together
// Each object may contain any number of volumes and instances
// The volumes transformations are relative to the object containing them...
Geometry::Transformation trafo_volume = v->get_transformation();
// Revert the centering operation.
trafo_volume.set_offset(trafo_volume.get_offset() - o->origin_translation);
int counter = 1;
auto copy_volume = [o, max_extruders, &counter, &extruder_counter](ModelVolume *new_v) {
assert(new_v != nullptr);
new_v->name = o->name + "_" + std::to_string(counter++);
new_v->config.set_deserialize("extruder", auto_extruder_id(max_extruders, extruder_counter));
return new_v;
};
if (o->instances.empty()) {
copy_volume(object->add_volume(*v))->set_transformation(trafo_volume);
} else {
for (const ModelInstance* i : o->instances)
// ...so, transform everything to a common reference system (world)
copy_volume(object->add_volume(*v))->set_transformation(i->get_transformation() * trafo_volume);
}
}
// commented-out to fix #2868
// object->add_instance();
// object->instances[0]->set_offset(object->raw_mesh_bounding_box().center());
this->clear_objects();
this->objects.push_back(object);
}
bool Model::looks_like_imperial_units() const
{
if (this->objects.size() == 0)
return false;
stl_vertex size = this->objects[0]->get_object_stl_stats().size;
for (ModelObject* o : this->objects) {
auto sz = o->get_object_stl_stats().size;
if (size[0] < sz[0]) size[0] = sz[0];
if (size[1] < sz[1]) size[1] = sz[1];
if (size[2] < sz[2]) size[2] = sz[2];
}
return (size[0] < 3 && size[1] < 3 && size[2] < 3);
}
void Model::convert_from_imperial_units()
{
double in_to_mm = 25.4;
for (ModelObject* o : this->objects)
o->scale_mesh_after_creation(Vec3d(in_to_mm, in_to_mm, in_to_mm));
}
void Model::adjust_min_z()
{
if (objects.empty())
return;
if (bounding_box().min(2) < 0.0)
{
for (ModelObject* obj : objects)
{
if (obj != nullptr)
{
coordf_t obj_min_z = obj->bounding_box().min(2);
if (obj_min_z < 0.0)
obj->translate_instances(Vec3d(0.0, 0.0, -obj_min_z));
}
}
}
}
// Propose a filename including path derived from the ModelObject's input path.
// If object's name is filled in, use the object name, otherwise use the input name.
std::string Model::propose_export_file_name_and_path() const
{
std::string input_file;
for (const ModelObject *model_object : this->objects)
for (ModelInstance *model_instance : model_object->instances)
if (model_instance->is_printable()) {
input_file = model_object->get_export_filename();
if (!input_file.empty())
goto end;
// Other instances will produce the same name, skip them.
break;
}
end:
return input_file;
}
std::string Model::propose_export_file_name_and_path(const std::string &new_extension) const
{
return boost::filesystem::path(this->propose_export_file_name_and_path()).replace_extension(new_extension).string();
}
ModelObject::~ModelObject()
{
this->clear_volumes();
this->clear_instances();
}
// maintains the m_model pointer
ModelObject& ModelObject::assign_copy(const ModelObject &rhs)
{
assert(this->id().invalid() || this->id() == rhs.id());
assert(this->config.id().invalid() || this->config.id() == rhs.config.id());
this->copy_id(rhs);
this->name = rhs.name;
this->input_file = rhs.input_file;
// Copies the config's ID
this->config = rhs.config;
assert(this->config.id() == rhs.config.id());
this->sla_support_points = rhs.sla_support_points;
this->sla_points_status = rhs.sla_points_status;
this->sla_drain_holes = rhs.sla_drain_holes;
this->layer_config_ranges = rhs.layer_config_ranges; // #ys_FIXME_experiment
this->layer_height_profile = rhs.layer_height_profile;
this->printable = rhs.printable;
this->origin_translation = rhs.origin_translation;
m_bounding_box = rhs.m_bounding_box;
m_bounding_box_valid = rhs.m_bounding_box_valid;
m_raw_bounding_box = rhs.m_raw_bounding_box;
m_raw_bounding_box_valid = rhs.m_raw_bounding_box_valid;
m_raw_mesh_bounding_box = rhs.m_raw_mesh_bounding_box;
m_raw_mesh_bounding_box_valid = rhs.m_raw_mesh_bounding_box_valid;
this->clear_volumes();
this->volumes.reserve(rhs.volumes.size());
for (ModelVolume *model_volume : rhs.volumes) {
this->volumes.emplace_back(new ModelVolume(*model_volume));
this->volumes.back()->set_model_object(this);
}
this->clear_instances();
this->instances.reserve(rhs.instances.size());
for (const ModelInstance *model_instance : rhs.instances) {
this->instances.emplace_back(new ModelInstance(*model_instance));
this->instances.back()->set_model_object(this);
}
return *this;
}
// maintains the m_model pointer
ModelObject& ModelObject::assign_copy(ModelObject &&rhs)
{
assert(this->id().invalid());
this->copy_id(rhs);
this->name = std::move(rhs.name);
this->input_file = std::move(rhs.input_file);
// Moves the config's ID
this->config = std::move(rhs.config);
assert(this->config.id() == rhs.config.id());
this->sla_support_points = std::move(rhs.sla_support_points);
this->sla_points_status = std::move(rhs.sla_points_status);
this->sla_drain_holes = std::move(rhs.sla_drain_holes);
this->layer_config_ranges = std::move(rhs.layer_config_ranges); // #ys_FIXME_experiment
this->layer_height_profile = std::move(rhs.layer_height_profile);
this->origin_translation = std::move(rhs.origin_translation);
m_bounding_box = std::move(rhs.m_bounding_box);
m_bounding_box_valid = std::move(rhs.m_bounding_box_valid);
m_raw_bounding_box = rhs.m_raw_bounding_box;
m_raw_bounding_box_valid = rhs.m_raw_bounding_box_valid;
m_raw_mesh_bounding_box = rhs.m_raw_mesh_bounding_box;
m_raw_mesh_bounding_box_valid = rhs.m_raw_mesh_bounding_box_valid;
this->clear_volumes();
this->volumes = std::move(rhs.volumes);
rhs.volumes.clear();
for (ModelVolume *model_volume : this->volumes)
model_volume->set_model_object(this);
this->clear_instances();
this->instances = std::move(rhs.instances);
rhs.instances.clear();
for (ModelInstance *model_instance : this->instances)
model_instance->set_model_object(this);
return *this;
}
void ModelObject::assign_new_unique_ids_recursive()
{
this->set_new_unique_id();
for (ModelVolume *model_volume : this->volumes)
model_volume->assign_new_unique_ids_recursive();
for (ModelInstance *model_instance : this->instances)
model_instance->assign_new_unique_ids_recursive();
}
// Clone this ModelObject including its volumes and instances, keep the IDs of the copies equal to the original.
// Called by Print::apply() to clone the Model / ModelObject hierarchy to the back end for background processing.
//ModelObject* ModelObject::clone(Model *parent)
//{
// return new ModelObject(parent, *this, true);
//}
ModelVolume* ModelObject::add_volume(const TriangleMesh &mesh)
{
ModelVolume* v = new ModelVolume(this, mesh);
this->volumes.push_back(v);
v->center_geometry_after_creation();
this->invalidate_bounding_box();
return v;
}
ModelVolume* ModelObject::add_volume(TriangleMesh &&mesh)
{
ModelVolume* v = new ModelVolume(this, std::move(mesh));
this->volumes.push_back(v);
v->center_geometry_after_creation();
this->invalidate_bounding_box();
return v;
}
ModelVolume* ModelObject::add_volume(const ModelVolume &other)
{
ModelVolume* v = new ModelVolume(this, other);
this->volumes.push_back(v);
// The volume should already be centered at this point of time when copying shared pointers of the triangle mesh and convex hull.
// v->center_geometry_after_creation();
// this->invalidate_bounding_box();
return v;
}
ModelVolume* ModelObject::add_volume(const ModelVolume &other, TriangleMesh &&mesh)
{
ModelVolume* v = new ModelVolume(this, other, std::move(mesh));
this->volumes.push_back(v);
v->center_geometry_after_creation();
this->invalidate_bounding_box();
return v;
}
void ModelObject::delete_volume(size_t idx)
{
ModelVolumePtrs::iterator i = this->volumes.begin() + idx;
delete *i;
this->volumes.erase(i);
if (this->volumes.size() == 1)
{
// only one volume left
// we need to collapse the volume transform into the instances transforms because now when selecting this volume
// it will be seen as a single full instance ans so its volume transform may be ignored
ModelVolume* v = this->volumes.front();
Transform3d v_t = v->get_transformation().get_matrix();
for (ModelInstance* inst : this->instances)
{
inst->set_transformation(Geometry::Transformation(inst->get_transformation().get_matrix() * v_t));
}
Geometry::Transformation t;
v->set_transformation(t);
v->set_new_unique_id();
}
this->invalidate_bounding_box();
}
void ModelObject::clear_volumes()
{
for (ModelVolume *v : this->volumes)
delete v;
this->volumes.clear();
this->invalidate_bounding_box();
}
ModelInstance* ModelObject::add_instance()
{
ModelInstance* i = new ModelInstance(this);
this->instances.push_back(i);
this->invalidate_bounding_box();
return i;
}
ModelInstance* ModelObject::add_instance(const ModelInstance &other)
{
ModelInstance* i = new ModelInstance(this, other);
this->instances.push_back(i);
this->invalidate_bounding_box();
return i;
}
ModelInstance* ModelObject::add_instance(const Vec3d &offset, const Vec3d &scaling_factor, const Vec3d &rotation, const Vec3d &mirror)
{
auto *instance = add_instance();
instance->set_offset(offset);
instance->set_scaling_factor(scaling_factor);
instance->set_rotation(rotation);
instance->set_mirror(mirror);
return instance;
}
void ModelObject::delete_instance(size_t idx)
{
ModelInstancePtrs::iterator i = this->instances.begin() + idx;
delete *i;
this->instances.erase(i);
this->invalidate_bounding_box();
}
void ModelObject::delete_last_instance()
{
this->delete_instance(this->instances.size() - 1);
}
void ModelObject::clear_instances()
{
for (ModelInstance *i : this->instances)
delete i;
this->instances.clear();
this->invalidate_bounding_box();
}
// Returns the bounding box of the transformed instances.
// This bounding box is approximate and not snug.
const BoundingBoxf3& ModelObject::bounding_box() const
{
if (! m_bounding_box_valid) {
m_bounding_box_valid = true;
BoundingBoxf3 raw_bbox = this->raw_mesh_bounding_box();
m_bounding_box.reset();
for (const ModelInstance *i : this->instances)
m_bounding_box.merge(i->transform_bounding_box(raw_bbox));
}
return m_bounding_box;
}
// A mesh containing all transformed instances of this object.
TriangleMesh ModelObject::mesh() const
{
TriangleMesh mesh;
TriangleMesh raw_mesh = this->raw_mesh();
for (const ModelInstance *i : this->instances) {
TriangleMesh m = raw_mesh;
i->transform_mesh(&m);
mesh.merge(m);
}
return mesh;
}
// Non-transformed (non-rotated, non-scaled, non-translated) sum of non-modifier object volumes.
// Currently used by ModelObject::mesh(), to calculate the 2D envelope for 2D plater
// and to display the object statistics at ModelObject::print_info().
TriangleMesh ModelObject::raw_mesh() const
{
TriangleMesh mesh;
for (const ModelVolume *v : this->volumes)
if (v->is_model_part())
{
TriangleMesh vol_mesh(v->mesh());
vol_mesh.transform(v->get_matrix());
mesh.merge(vol_mesh);
}
return mesh;
}
// Non-transformed (non-rotated, non-scaled, non-translated) sum of all object volumes.
TriangleMesh ModelObject::full_raw_mesh() const
{
TriangleMesh mesh;
for (const ModelVolume *v : this->volumes)
{
TriangleMesh vol_mesh(v->mesh());
vol_mesh.transform(v->get_matrix());
mesh.merge(vol_mesh);
}
return mesh;
}
const BoundingBoxf3& ModelObject::raw_mesh_bounding_box() const
{
if (! m_raw_mesh_bounding_box_valid) {
m_raw_mesh_bounding_box_valid = true;
m_raw_mesh_bounding_box.reset();
for (const ModelVolume *v : this->volumes)
if (v->is_model_part())
m_raw_mesh_bounding_box.merge(v->mesh().transformed_bounding_box(v->get_matrix()));
}
return m_raw_mesh_bounding_box;
}
BoundingBoxf3 ModelObject::full_raw_mesh_bounding_box() const
{
BoundingBoxf3 bb;
for (const ModelVolume *v : this->volumes)
bb.merge(v->mesh().transformed_bounding_box(v->get_matrix()));
return bb;
}
// A transformed snug bounding box around the non-modifier object volumes, without the translation applied.
// This bounding box is only used for the actual slicing and for layer editing UI to calculate the layers.
const BoundingBoxf3& ModelObject::raw_bounding_box() const
{
if (! m_raw_bounding_box_valid) {
m_raw_bounding_box_valid = true;
m_raw_bounding_box.reset();
if (this->instances.empty())
throw std::invalid_argument("Can't call raw_bounding_box() with no instances");
const Transform3d& inst_matrix = this->instances.front()->get_transformation().get_matrix(true);
for (const ModelVolume *v : this->volumes)
if (v->is_model_part())
m_raw_bounding_box.merge(v->mesh().transformed_bounding_box(inst_matrix * v->get_matrix()));
}
return m_raw_bounding_box;
}
// This returns an accurate snug bounding box of the transformed object instance, without the translation applied.
BoundingBoxf3 ModelObject::instance_bounding_box(size_t instance_idx, bool dont_translate) const
{
BoundingBoxf3 bb;
const Transform3d& inst_matrix = this->instances[instance_idx]->get_transformation().get_matrix(dont_translate);
for (ModelVolume *v : this->volumes)
{
if (v->is_model_part())
bb.merge(v->mesh().transformed_bounding_box(inst_matrix * v->get_matrix()));
}
return bb;
}
// Calculate 2D convex hull of of a projection of the transformed printable volumes into the XY plane.
// This method is cheap in that it does not make any unnecessary copy of the volume meshes.
// This method is used by the auto arrange function.
Polygon ModelObject::convex_hull_2d(const Transform3d &trafo_instance) const
{
Points pts;
for (const ModelVolume *v : this->volumes)
if (v->is_model_part()) {
Transform3d trafo = trafo_instance * v->get_matrix();
const indexed_triangle_set &its = v->mesh().its;
if (its.vertices.empty()) {
// Using the STL faces.
const stl_file& stl = v->mesh().stl;
for (const stl_facet &facet : stl.facet_start)
for (size_t j = 0; j < 3; ++ j) {
Vec3d p = trafo * facet.vertex[j].cast<double>();
pts.emplace_back(coord_t(scale_(p.x())), coord_t(scale_(p.y())));
}
} else {
// Using the shared vertices should be a bit quicker than using the STL faces.
for (size_t i = 0; i < its.vertices.size(); ++ i) {
Vec3d p = trafo * its.vertices[i].cast<double>();
pts.emplace_back(coord_t(scale_(p.x())), coord_t(scale_(p.y())));
}
}
}
std::sort(pts.begin(), pts.end(), [](const Point& a, const Point& b) { return a(0) < b(0) || (a(0) == b(0) && a(1) < b(1)); });
pts.erase(std::unique(pts.begin(), pts.end(), [](const Point& a, const Point& b) { return a(0) == b(0) && a(1) == b(1); }), pts.end());
Polygon hull;
int n = (int)pts.size();
if (n >= 3) {
int k = 0;
hull.points.resize(2 * n);
// Build lower hull
for (int i = 0; i < n; ++ i) {
while (k >= 2 && pts[i].ccw(hull[k-2], hull[k-1]) <= 0)
-- k;
hull[k ++] = pts[i];
}
// Build upper hull
for (int i = n-2, t = k+1; i >= 0; i--) {
while (k >= t && pts[i].ccw(hull[k-2], hull[k-1]) <= 0)
-- k;
hull[k ++] = pts[i];
}
hull.points.resize(k);
assert(hull.points.front() == hull.points.back());
hull.points.pop_back();
}
return hull;
}
void ModelObject::center_around_origin(bool include_modifiers)
{
// calculate the displacements needed to
// center this object around the origin
BoundingBoxf3 bb = include_modifiers ? full_raw_mesh_bounding_box() : raw_mesh_bounding_box();
// Shift is the vector from the center of the bounding box to the origin
Vec3d shift = -bb.center();
this->translate(shift);
this->origin_translation += shift;
}
void ModelObject::ensure_on_bed()
{
translate_instances(Vec3d(0.0, 0.0, -get_min_z()));
}
void ModelObject::translate_instances(const Vec3d& vector)
{
for (size_t i = 0; i < instances.size(); ++i)
{
translate_instance(i, vector);
}
}
void ModelObject::translate_instance(size_t instance_idx, const Vec3d& vector)
{
ModelInstance* i = instances[instance_idx];
i->set_offset(i->get_offset() + vector);
invalidate_bounding_box();
}
void ModelObject::translate(double x, double y, double z)
{
for (ModelVolume *v : this->volumes)
{
v->translate(x, y, z);
}
if (m_bounding_box_valid)
m_bounding_box.translate(x, y, z);
}
void ModelObject::scale(const Vec3d &versor)
{
for (ModelVolume *v : this->volumes)
{
v->scale(versor);
}
this->invalidate_bounding_box();
}
void ModelObject::rotate(double angle, Axis axis)
{
for (ModelVolume *v : this->volumes)
{
v->rotate(angle, axis);
}
center_around_origin();
this->invalidate_bounding_box();
}
void ModelObject::rotate(double angle, const Vec3d& axis)
{
for (ModelVolume *v : this->volumes)
{
v->rotate(angle, axis);
}
center_around_origin();
this->invalidate_bounding_box();
}
void ModelObject::mirror(Axis axis)
{
for (ModelVolume *v : this->volumes)
{
v->mirror(axis);
}
this->invalidate_bounding_box();
}
// This method could only be called before the meshes of this ModelVolumes are not shared!
void ModelObject::scale_mesh_after_creation(const Vec3d &versor)
{
for (ModelVolume *v : this->volumes)
{
v->scale_geometry_after_creation(versor);
v->set_offset(versor.cwiseProduct(v->get_offset()));
}
this->invalidate_bounding_box();
}
void ModelObject::convert_units(ModelObjectPtrs& new_objects, bool from_imperial, std::vector<int> volume_idxs)
{
BOOST_LOG_TRIVIAL(trace) << "ModelObject::convert_units - start";
ModelObject* new_object = new_clone(*this);
double koef = from_imperial ? 25.4 : 0.0393700787;
const Vec3d versor = Vec3d(koef, koef, koef);
new_object->set_model(nullptr);
new_object->sla_support_points.clear();
new_object->sla_drain_holes.clear();
new_object->sla_points_status = sla::PointsStatus::NoPoints;
new_object->clear_volumes();
new_object->input_file.clear();
int vol_idx = 0;
for (ModelVolume* volume : volumes)
{
volume->m_supported_facets.clear();
if (!volume->mesh().empty()) {
TriangleMesh mesh(volume->mesh());
mesh.require_shared_vertices();
ModelVolume* vol = new_object->add_volume(mesh);
vol->name = volume->name;
// Don't copy the config's ID.
static_cast<DynamicPrintConfig&>(vol->config) = static_cast<const DynamicPrintConfig&>(volume->config);
assert(vol->config.id().valid());
assert(vol->config.id() != volume->config.id());
vol->set_material(volume->material_id(), *volume->material());
// Perform conversion
if (volume_idxs.empty() ||
std::find(volume_idxs.begin(), volume_idxs.end(), vol_idx) != volume_idxs.end()) {
vol->scale_geometry_after_creation(versor);
vol->set_offset(versor.cwiseProduct(vol->get_offset()));
}
else
vol->set_offset(volume->get_offset());
}
vol_idx ++;
}
new_object->invalidate_bounding_box();
new_objects.push_back(new_object);
BOOST_LOG_TRIVIAL(trace) << "ModelObject::convert_units - end";
}
size_t ModelObject::materials_count() const
{
std::set<t_model_material_id> material_ids;
for (const ModelVolume *v : this->volumes)
material_ids.insert(v->material_id());
return material_ids.size();
}
size_t ModelObject::facets_count() const
{
size_t num = 0;
for (const ModelVolume *v : this->volumes)
if (v->is_model_part())
num += v->mesh().stl.stats.number_of_facets;
return num;
}
bool ModelObject::needed_repair() const
{
for (const ModelVolume *v : this->volumes)
if (v->is_model_part() && v->mesh().needed_repair())
return true;
return false;
}
ModelObjectPtrs ModelObject::cut(size_t instance, coordf_t z, bool keep_upper, bool keep_lower, bool rotate_lower)
{
if (!keep_upper && !keep_lower) { return {}; }
BOOST_LOG_TRIVIAL(trace) << "ModelObject::cut - start";
// Clone the object to duplicate instances, materials etc.
ModelObject* upper = keep_upper ? ModelObject::new_clone(*this) : nullptr;
ModelObject* lower = keep_lower ? ModelObject::new_clone(*this) : nullptr;
if (keep_upper) {
upper->set_model(nullptr);
upper->sla_support_points.clear();
upper->sla_drain_holes.clear();
upper->sla_points_status = sla::PointsStatus::NoPoints;
upper->clear_volumes();
upper->input_file.clear();
}
if (keep_lower) {
lower->set_model(nullptr);
lower->sla_support_points.clear();
lower->sla_drain_holes.clear();
lower->sla_points_status = sla::PointsStatus::NoPoints;
lower->clear_volumes();
lower->input_file.clear();
}
// Because transformations are going to be applied to meshes directly,
// we reset transformation of all instances and volumes,
// except for translation and Z-rotation on instances, which are preserved
// in the transformation matrix and not applied to the mesh transform.
// const auto instance_matrix = instances[instance]->get_matrix(true);
const auto instance_matrix = Geometry::assemble_transform(
Vec3d::Zero(), // don't apply offset
instances[instance]->get_rotation().cwiseProduct(Vec3d(1.0, 1.0, 0.0)), // don't apply Z-rotation
instances[instance]->get_scaling_factor(),
instances[instance]->get_mirror()
);
z -= instances[instance]->get_offset()(2);
// Lower part per-instance bounding boxes
std::vector<BoundingBoxf3> lower_bboxes { instances.size() };
for (ModelVolume *volume : volumes) {
const auto volume_matrix = volume->get_matrix();
volume->m_supported_facets.clear();
if (! volume->is_model_part()) {
// Modifiers are not cut, but we still need to add the instance transformation
// to the modifier volume transformation to preserve their shape properly.
volume->set_transformation(Geometry::Transformation(instance_matrix * volume_matrix));
if (keep_upper) { upper->add_volume(*volume); }
if (keep_lower) { lower->add_volume(*volume); }
}
else if (! volume->mesh().empty()) {
TriangleMesh upper_mesh, lower_mesh;
// Transform the mesh by the combined transformation matrix.
// Flip the triangles in case the composite transformation is left handed.
TriangleMesh mesh(volume->mesh());
mesh.transform(instance_matrix * volume_matrix, true);
volume->reset_mesh();
mesh.require_shared_vertices();
// Perform cut
TriangleMeshSlicer tms(&mesh);
tms.cut(float(z), &upper_mesh, &lower_mesh);
// Reset volume transformation except for offset
const Vec3d offset = volume->get_offset();
volume->set_transformation(Geometry::Transformation());
volume->set_offset(offset);
if (keep_upper) {
upper_mesh.repair();
upper_mesh.reset_repair_stats();
}
if (keep_lower) {
lower_mesh.repair();
lower_mesh.reset_repair_stats();
}
if (keep_upper && upper_mesh.facets_count() > 0) {
ModelVolume* vol = upper->add_volume(upper_mesh);
vol->name = volume->name;
// Don't copy the config's ID.
static_cast<DynamicPrintConfig&>(vol->config) = static_cast<const DynamicPrintConfig&>(volume->config);
assert(vol->config.id().valid());
assert(vol->config.id() != volume->config.id());
vol->set_material(volume->material_id(), *volume->material());
}
if (keep_lower && lower_mesh.facets_count() > 0) {
ModelVolume* vol = lower->add_volume(lower_mesh);
vol->name = volume->name;
// Don't copy the config's ID.
static_cast<DynamicPrintConfig&>(vol->config) = static_cast<const DynamicPrintConfig&>(volume->config);
assert(vol->config.id().valid());
assert(vol->config.id() != volume->config.id());
vol->set_material(volume->material_id(), *volume->material());
// Compute the lower part instances' bounding boxes to figure out where to place
// the upper part
if (keep_upper) {
for (size_t i = 0; i < instances.size(); i++) {
lower_bboxes[i].merge(instances[i]->transform_mesh_bounding_box(lower_mesh, true));
}
}
}
}
}
ModelObjectPtrs res;
if (keep_upper && upper->volumes.size() > 0) {
upper->invalidate_bounding_box();
upper->center_around_origin();
// Reset instance transformation except offset and Z-rotation
for (size_t i = 0; i < instances.size(); i++) {
auto &instance = upper->instances[i];
const Vec3d offset = instance->get_offset();
const double rot_z = instance->get_rotation()(2);
// The upper part displacement is set to half of the lower part bounding box
// this is done in hope at least a part of the upper part will always be visible and draggable
const Vec3d displace = lower_bboxes[i].size().cwiseProduct(Vec3d(-0.5, -0.5, 0.0));
instance->set_transformation(Geometry::Transformation());
instance->set_offset(offset + displace);
instance->set_rotation(Vec3d(0.0, 0.0, rot_z));
}
res.push_back(upper);
}
if (keep_lower && lower->volumes.size() > 0) {
lower->invalidate_bounding_box();
lower->center_around_origin();
// Reset instance transformation except offset and Z-rotation
for (auto *instance : lower->instances) {
const Vec3d offset = instance->get_offset();
const double rot_z = instance->get_rotation()(2);
instance->set_transformation(Geometry::Transformation());
instance->set_offset(offset);
instance->set_rotation(Vec3d(rotate_lower ? Geometry::deg2rad(180.0) : 0.0, 0.0, rot_z));
}
res.push_back(lower);
}
BOOST_LOG_TRIVIAL(trace) << "ModelObject::cut - end";
return res;
}
void ModelObject::split(ModelObjectPtrs* new_objects)
{
if (this->volumes.size() > 1) {
// We can't split meshes if there's more than one volume, because
// we can't group the resulting meshes by object afterwards
new_objects->emplace_back(this);
return;
}
ModelVolume* volume = this->volumes.front();
TriangleMeshPtrs meshptrs = volume->mesh().split();
for (TriangleMesh *mesh : meshptrs) {
mesh->repair();
// XXX: this seems to be the only real usage of m_model, maybe refactor this so that it's not needed?
ModelObject* new_object = m_model->add_object();
new_object->name = this->name;
// Don't copy the config's ID.
static_cast<DynamicPrintConfig&>(new_object->config) = static_cast<const DynamicPrintConfig&>(this->config);
assert(new_object->config.id().valid());
assert(new_object->config.id() != this->config.id());
new_object->instances.reserve(this->instances.size());
for (const ModelInstance *model_instance : this->instances)
new_object->add_instance(*model_instance);
ModelVolume* new_vol = new_object->add_volume(*volume, std::move(*mesh));
for (ModelInstance* model_instance : new_object->instances)
{
Vec3d shift = model_instance->get_transformation().get_matrix(true) * new_vol->get_offset();
model_instance->set_offset(model_instance->get_offset() + shift);
}
new_vol->set_offset(Vec3d::Zero());
// reset the source to disable reload from disk
new_vol->source = ModelVolume::Source();
new_objects->emplace_back(new_object);
delete mesh;
}
return;
}
// Support for non-uniform scaling of instances. If an instance is rotated by angles, which are not multiples of ninety degrees,
// then the scaling in world coordinate system is not representable by the Geometry::Transformation structure.
// This situation is solved by baking in the instance transformation into the mesh vertices.
// Rotation and mirroring is being baked in. In case the instance scaling was non-uniform, it is baked in as well.
void ModelObject::bake_xy_rotation_into_meshes(size_t instance_idx)
{
assert(instance_idx < this->instances.size());
const Geometry::Transformation reference_trafo = this->instances[instance_idx]->get_transformation();
if (Geometry::is_rotation_ninety_degrees(reference_trafo.get_rotation()))
// nothing to do, scaling in the world coordinate space is possible in the representation of Geometry::Transformation.
return;
bool left_handed = reference_trafo.is_left_handed();
bool has_mirrorring = ! reference_trafo.get_mirror().isApprox(Vec3d(1., 1., 1.));
bool uniform_scaling = std::abs(reference_trafo.get_scaling_factor().x() - reference_trafo.get_scaling_factor().y()) < EPSILON &&
std::abs(reference_trafo.get_scaling_factor().x() - reference_trafo.get_scaling_factor().z()) < EPSILON;
double new_scaling_factor = uniform_scaling ? reference_trafo.get_scaling_factor().x() : 1.;
// Adjust the instances.
for (size_t i = 0; i < this->instances.size(); ++ i) {
ModelInstance &model_instance = *this->instances[i];
model_instance.set_rotation(Vec3d(0., 0., Geometry::rotation_diff_z(reference_trafo.get_rotation(), model_instance.get_rotation())));
model_instance.set_scaling_factor(Vec3d(new_scaling_factor, new_scaling_factor, new_scaling_factor));
model_instance.set_mirror(Vec3d(1., 1., 1.));
}
// Adjust the meshes.
// Transformation to be applied to the meshes.
Eigen::Matrix3d mesh_trafo_3x3 = reference_trafo.get_matrix(true, false, uniform_scaling, ! has_mirrorring).matrix().block<3, 3>(0, 0);
Transform3d volume_offset_correction = this->instances[instance_idx]->get_transformation().get_matrix().inverse() * reference_trafo.get_matrix();
for (ModelVolume *model_volume : this->volumes) {
const Geometry::Transformation volume_trafo = model_volume->get_transformation();
bool volume_left_handed = volume_trafo.is_left_handed();
bool volume_has_mirrorring = ! volume_trafo.get_mirror().isApprox(Vec3d(1., 1., 1.));
bool volume_uniform_scaling = std::abs(volume_trafo.get_scaling_factor().x() - volume_trafo.get_scaling_factor().y()) < EPSILON &&
std::abs(volume_trafo.get_scaling_factor().x() - volume_trafo.get_scaling_factor().z()) < EPSILON;
double volume_new_scaling_factor = volume_uniform_scaling ? volume_trafo.get_scaling_factor().x() : 1.;
// Transform the mesh.
Matrix3d volume_trafo_3x3 = volume_trafo.get_matrix(true, false, volume_uniform_scaling, !volume_has_mirrorring).matrix().block<3, 3>(0, 0);
// Following method creates a new shared_ptr<TriangleMesh>
model_volume->transform_this_mesh(mesh_trafo_3x3 * volume_trafo_3x3, left_handed != volume_left_handed);
// Reset the rotation, scaling and mirroring.
model_volume->set_rotation(Vec3d(0., 0., 0.));
model_volume->set_scaling_factor(Vec3d(volume_new_scaling_factor, volume_new_scaling_factor, volume_new_scaling_factor));
model_volume->set_mirror(Vec3d(1., 1., 1.));
// Move the reference point of the volume to compensate for the change of the instance trafo.
model_volume->set_offset(volume_offset_correction * volume_trafo.get_offset());
// reset the source to disable reload from disk
model_volume->source = ModelVolume::Source();
}
this->invalidate_bounding_box();
}
double ModelObject::get_min_z() const
{
if (instances.empty())
return 0.0;
else
{
double min_z = DBL_MAX;
for (size_t i = 0; i < instances.size(); ++i)
{
min_z = std::min(min_z, get_instance_min_z(i));
}
return min_z;
}
}
double ModelObject::get_instance_min_z(size_t instance_idx) const
{
double min_z = DBL_MAX;
ModelInstance* inst = instances[instance_idx];
const Transform3d& mi = inst->get_matrix(true);
for (const ModelVolume* v : volumes)
{
if (!v->is_model_part())
continue;
Transform3d mv = mi * v->get_matrix();
const TriangleMesh& hull = v->get_convex_hull();
for (const stl_facet &facet : hull.stl.facet_start)
for (int i = 0; i < 3; ++ i)
min_z = std::min(min_z, (mv * facet.vertex[i].cast<double>()).z());
}
return min_z + inst->get_offset(Z);
}
unsigned int ModelObject::check_instances_print_volume_state(const BoundingBoxf3& print_volume)
{
unsigned int num_printable = 0;
enum {
INSIDE = 1,
OUTSIDE = 2
};
for (ModelInstance *model_instance : this->instances) {
unsigned int inside_outside = 0;
for (const ModelVolume *vol : this->volumes)
if (vol->is_model_part()) {
BoundingBoxf3 bb = vol->get_convex_hull().transformed_bounding_box(model_instance->get_matrix() * vol->get_matrix());
if (print_volume.contains(bb))
inside_outside |= INSIDE;
else if (print_volume.intersects(bb))
inside_outside |= INSIDE | OUTSIDE;
else
inside_outside |= OUTSIDE;
}
model_instance->print_volume_state =
(inside_outside == (INSIDE | OUTSIDE)) ? ModelInstance::PVS_Partly_Outside :
(inside_outside == INSIDE) ? ModelInstance::PVS_Inside : ModelInstance::PVS_Fully_Outside;
if (inside_outside == INSIDE)
++ num_printable;
}
return num_printable;
}
void ModelObject::print_info() const
{
using namespace std;
cout << fixed;
boost::nowide::cout << "[" << boost::filesystem::path(this->input_file).filename().string() << "]" << endl;
TriangleMesh mesh = this->raw_mesh();
mesh.check_topology();
BoundingBoxf3 bb = mesh.bounding_box();
Vec3d size = bb.size();
cout << "size_x = " << size(0) << endl;
cout << "size_y = " << size(1) << endl;
cout << "size_z = " << size(2) << endl;
cout << "min_x = " << bb.min(0) << endl;
cout << "min_y = " << bb.min(1) << endl;
cout << "min_z = " << bb.min(2) << endl;
cout << "max_x = " << bb.max(0) << endl;
cout << "max_y = " << bb.max(1) << endl;
cout << "max_z = " << bb.max(2) << endl;
cout << "number_of_facets = " << mesh.stl.stats.number_of_facets << endl;
cout << "manifold = " << (mesh.is_manifold() ? "yes" : "no") << endl;
mesh.repair(); // this calculates number_of_parts
if (mesh.needed_repair()) {
mesh.repair();
if (mesh.stl.stats.degenerate_facets > 0)
cout << "degenerate_facets = " << mesh.stl.stats.degenerate_facets << endl;
if (mesh.stl.stats.edges_fixed > 0)
cout << "edges_fixed = " << mesh.stl.stats.edges_fixed << endl;
if (mesh.stl.stats.facets_removed > 0)
cout << "facets_removed = " << mesh.stl.stats.facets_removed << endl;
if (mesh.stl.stats.facets_added > 0)
cout << "facets_added = " << mesh.stl.stats.facets_added << endl;
if (mesh.stl.stats.facets_reversed > 0)
cout << "facets_reversed = " << mesh.stl.stats.facets_reversed << endl;
if (mesh.stl.stats.backwards_edges > 0)
cout << "backwards_edges = " << mesh.stl.stats.backwards_edges << endl;
}
cout << "number_of_parts = " << mesh.stl.stats.number_of_parts << endl;
cout << "volume = " << mesh.volume() << endl;
}
std::string ModelObject::get_export_filename() const
{
std::string ret = input_file;
if (!name.empty())
{
if (ret.empty())
// input_file was empty, just use name
ret = name;
else
{
// Replace file name in input_file with name, but keep the path and file extension.
ret = (boost::filesystem::path(name).parent_path().empty()) ?
(boost::filesystem::path(ret).parent_path() / name).make_preferred().string() : name;
}
}
return ret;
}
stl_stats ModelObject::get_object_stl_stats() const
{
if (this->volumes.size() == 1)
return this->volumes[0]->mesh().stl.stats;
stl_stats full_stats;
full_stats.volume = 0.f;
// fill full_stats from all objet's meshes
for (ModelVolume* volume : this->volumes)
{
if (volume->id() == this->volumes[0]->id())
continue;
const stl_stats& stats = volume->mesh().stl.stats;
// initialize full_stats (for repaired errors)
full_stats.degenerate_facets += stats.degenerate_facets;
full_stats.edges_fixed += stats.edges_fixed;
full_stats.facets_removed += stats.facets_removed;
full_stats.facets_added += stats.facets_added;
full_stats.facets_reversed += stats.facets_reversed;
full_stats.backwards_edges += stats.backwards_edges;
// another used satistics value
if (volume->is_model_part()) {
full_stats.volume += stats.volume;
full_stats.number_of_parts += stats.number_of_parts;
}
}
return full_stats;
}
int ModelObject::get_mesh_errors_count(const int vol_idx /*= -1*/) const
{
if (vol_idx >= 0)
return this->volumes[vol_idx]->get_mesh_errors_count();
const stl_stats& stats = get_object_stl_stats();
return stats.degenerate_facets + stats.edges_fixed + stats.facets_removed +
stats.facets_added + stats.facets_reversed + stats.backwards_edges;
}
void ModelVolume::set_material_id(t_model_material_id material_id)
{
m_material_id = material_id;
// ensure m_material_id references an existing material
if (! material_id.empty())
this->object->get_model()->add_material(material_id);
}
ModelMaterial* ModelVolume::material() const
{
return this->object->get_model()->get_material(m_material_id);
}
void ModelVolume::set_material(t_model_material_id material_id, const ModelMaterial &material)
{
m_material_id = material_id;
if (! material_id.empty())
this->object->get_model()->add_material(material_id, material);
}
// Extract the current extruder ID based on this ModelVolume's config and the parent ModelObject's config.
int ModelVolume::extruder_id() const
{
int extruder_id = -1;
if (this->is_model_part()) {
const ConfigOption *opt = this->config.option("extruder");
if ((opt == nullptr) || (opt->getInt() == 0))
opt = this->object->config.option("extruder");
extruder_id = (opt == nullptr) ? 0 : opt->getInt();
}
return extruder_id;
}
bool ModelVolume::is_splittable() const
{
// the call mesh.is_splittable() is expensive, so cache the value to calculate it only once
if (m_is_splittable == -1)
m_is_splittable = (int)this->mesh().is_splittable();
return m_is_splittable == 1;
}
void ModelVolume::center_geometry_after_creation(bool update_source_offset)
{
Vec3d shift = this->mesh().bounding_box().center();
if (!shift.isApprox(Vec3d::Zero()))
{
if (m_mesh)
const_cast<TriangleMesh*>(m_mesh.get())->translate(-(float)shift(0), -(float)shift(1), -(float)shift(2));
if (m_convex_hull)
const_cast<TriangleMesh*>(m_convex_hull.get())->translate(-(float)shift(0), -(float)shift(1), -(float)shift(2));
translate(shift);
}
if (update_source_offset)
source.mesh_offset = shift;
}
void ModelVolume::calculate_convex_hull()
{
m_convex_hull = std::make_shared<TriangleMesh>(this->mesh().convex_hull_3d());
}
int ModelVolume::get_mesh_errors_count() const
{
const stl_stats& stats = this->mesh().stl.stats;
return stats.degenerate_facets + stats.edges_fixed + stats.facets_removed +
stats.facets_added + stats.facets_reversed + stats.backwards_edges;
}
const TriangleMesh& ModelVolume::get_convex_hull() const
{
return *m_convex_hull.get();
}
ModelVolumeType ModelVolume::type_from_string(const std::string &s)
{
// Legacy support
if (s == "1")
return ModelVolumeType::PARAMETER_MODIFIER;
// New type (supporting the support enforcers & blockers)
if (s == "ModelPart")
return ModelVolumeType::MODEL_PART;
if (s == "ParameterModifier")
return ModelVolumeType::PARAMETER_MODIFIER;
if (s == "SupportEnforcer")
return ModelVolumeType::SUPPORT_ENFORCER;
if (s == "SupportBlocker")
return ModelVolumeType::SUPPORT_BLOCKER;
assert(s == "0");
// Default value if invalud type string received.
return ModelVolumeType::MODEL_PART;
}
std::string ModelVolume::type_to_string(const ModelVolumeType t)
{
switch (t) {
case ModelVolumeType::MODEL_PART: return "ModelPart";
case ModelVolumeType::PARAMETER_MODIFIER: return "ParameterModifier";
case ModelVolumeType::SUPPORT_ENFORCER: return "SupportEnforcer";
case ModelVolumeType::SUPPORT_BLOCKER: return "SupportBlocker";
default:
assert(false);
return "ModelPart";
}
}
// Split this volume, append the result to the object owning this volume.
// Return the number of volumes created from this one.
// This is useful to assign different materials to different volumes of an object.
size_t ModelVolume::split(unsigned int max_extruders)
{
TriangleMeshPtrs meshptrs = this->mesh().split();
if (meshptrs.size() <= 1) {
delete meshptrs.front();
return 1;
}
size_t idx = 0;
size_t ivolume = std::find(this->object->volumes.begin(), this->object->volumes.end(), this) - this->object->volumes.begin();
std::string name = this->name;
unsigned int extruder_counter = 0;
Vec3d offset = this->get_offset();
for (TriangleMesh *mesh : meshptrs) {
mesh->repair();
if (idx == 0)
{
this->set_mesh(std::move(*mesh));
this->calculate_convex_hull();
// Assign a new unique ID, so that a new GLVolume will be generated.
this->set_new_unique_id();
// reset the source to disable reload from disk
this->source = ModelVolume::Source();
}
else
this->object->volumes.insert(this->object->volumes.begin() + (++ivolume), new ModelVolume(object, *this, std::move(*mesh)));
this->object->volumes[ivolume]->set_offset(Vec3d::Zero());
this->object->volumes[ivolume]->center_geometry_after_creation();
this->object->volumes[ivolume]->translate(offset);
this->object->volumes[ivolume]->name = name + "_" + std::to_string(idx + 1);
this->object->volumes[ivolume]->config.set_deserialize("extruder", auto_extruder_id(max_extruders, extruder_counter));
delete mesh;
++ idx;
}
return idx;
}
void ModelVolume::translate(const Vec3d& displacement)
{
set_offset(get_offset() + displacement);
}
void ModelVolume::scale(const Vec3d& scaling_factors)
{
set_scaling_factor(get_scaling_factor().cwiseProduct(scaling_factors));
}
void ModelObject::scale_to_fit(const Vec3d &size)
{
/*
BoundingBoxf3 instance_bounding_box(size_t instance_idx, bool dont_translate = false) const;
Vec3d orig_size = this->bounding_box().size();
float factor = fminf(
size.x / orig_size.x,
fminf(
size.y / orig_size.y,
size.z / orig_size.z
)
);
this->scale(factor);
*/
}
void ModelVolume::rotate(double angle, Axis axis)
{
switch (axis)
{
case X: { rotate(angle, Vec3d::UnitX()); break; }
case Y: { rotate(angle, Vec3d::UnitY()); break; }
case Z: { rotate(angle, Vec3d::UnitZ()); break; }
default: break;
}
}
void ModelVolume::rotate(double angle, const Vec3d& axis)
{
set_rotation(get_rotation() + Geometry::extract_euler_angles(Eigen::Quaterniond(Eigen::AngleAxisd(angle, axis)).toRotationMatrix()));
}
void ModelVolume::mirror(Axis axis)
{
Vec3d mirror = get_mirror();
switch (axis)
{
case X: { mirror(0) *= -1.0; break; }
case Y: { mirror(1) *= -1.0; break; }
case Z: { mirror(2) *= -1.0; break; }
default: break;
}
set_mirror(mirror);
}
// This method could only be called before the meshes of this ModelVolumes are not shared!
void ModelVolume::scale_geometry_after_creation(const Vec3d& versor)
{
const_cast<TriangleMesh*>(m_mesh.get())->scale(versor);
const_cast<TriangleMesh*>(m_convex_hull.get())->scale(versor);
}
void ModelVolume::transform_this_mesh(const Transform3d &mesh_trafo, bool fix_left_handed)
{
TriangleMesh mesh = this->mesh();
mesh.transform(mesh_trafo, fix_left_handed);
this->set_mesh(std::move(mesh));
TriangleMesh convex_hull = this->get_convex_hull();
convex_hull.transform(mesh_trafo, fix_left_handed);
this->m_convex_hull = std::make_shared<TriangleMesh>(std::move(convex_hull));
// Let the rest of the application know that the geometry changed, so the meshes have to be reloaded.
this->set_new_unique_id();
}
void ModelVolume::transform_this_mesh(const Matrix3d &matrix, bool fix_left_handed)
{
TriangleMesh mesh = this->mesh();
mesh.transform(matrix, fix_left_handed);
this->set_mesh(std::move(mesh));
TriangleMesh convex_hull = this->get_convex_hull();
convex_hull.transform(matrix, fix_left_handed);
this->m_convex_hull = std::make_shared<TriangleMesh>(std::move(convex_hull));
// Let the rest of the application know that the geometry changed, so the meshes have to be reloaded.
this->set_new_unique_id();
}
void ModelInstance::transform_mesh(TriangleMesh* mesh, bool dont_translate) const
{
mesh->transform(get_matrix(dont_translate));
}
BoundingBoxf3 ModelInstance::transform_mesh_bounding_box(const TriangleMesh& mesh, bool dont_translate) const
{
// Rotate around mesh origin.
TriangleMesh copy(mesh);
copy.transform(get_matrix(true, false, true, true));
BoundingBoxf3 bbox = copy.bounding_box();
if (!empty(bbox)) {
// Scale the bounding box along the three axes.
for (unsigned int i = 0; i < 3; ++i)
{
if (std::abs(get_scaling_factor((Axis)i)-1.0) > EPSILON)
{
bbox.min(i) *= get_scaling_factor((Axis)i);
bbox.max(i) *= get_scaling_factor((Axis)i);
}
}
// Translate the bounding box.
if (! dont_translate) {
bbox.min += get_offset();
bbox.max += get_offset();
}
}
return bbox;
}
BoundingBoxf3 ModelInstance::transform_bounding_box(const BoundingBoxf3 &bbox, bool dont_translate) const
{
return bbox.transformed(get_matrix(dont_translate));
}
Vec3d ModelInstance::transform_vector(const Vec3d& v, bool dont_translate) const
{
return get_matrix(dont_translate) * v;
}
void ModelInstance::transform_polygon(Polygon* polygon) const
{
// CHECK_ME -> Is the following correct or it should take in account all three rotations ?
polygon->rotate(get_rotation(Z)); // rotate around polygon origin
// CHECK_ME -> Is the following correct ?
polygon->scale(get_scaling_factor(X), get_scaling_factor(Y)); // scale around polygon origin
}
arrangement::ArrangePolygon ModelInstance::get_arrange_polygon() const
{
static const double SIMPLIFY_TOLERANCE_MM = 0.1;
Vec3d rotation = get_rotation();
rotation.z() = 0.;
Transform3d trafo_instance =
Geometry::assemble_transform(Vec3d::Zero(), rotation,
get_scaling_factor(), get_mirror());
Polygon p = get_object()->convex_hull_2d(trafo_instance);
assert(!p.points.empty());
// this may happen for malformed models, see:
// https://github.com/prusa3d/PrusaSlicer/issues/2209
if (!p.points.empty()) {
Polygons pp{p};
pp = p.simplify(scaled<double>(SIMPLIFY_TOLERANCE_MM));
if (!pp.empty()) p = pp.front();
}
arrangement::ArrangePolygon ret;
ret.poly.contour = std::move(p);
ret.translation = Vec2crd{scaled(get_offset(X)), scaled(get_offset(Y))};
ret.rotation = get_rotation(Z);
return ret;
}
std::vector<int> FacetsAnnotation::get_facets(FacetSupportType type) const
{
std::vector<int> out;
for (auto& [facet_idx, this_type] : m_data)
if (this_type == type)
out.push_back(facet_idx);
return out;
}
void FacetsAnnotation::set_facet(int idx, FacetSupportType type)
{
bool changed = true;
if (type == FacetSupportType::NONE)
changed = m_data.erase(idx) != 0;
else
m_data[idx] = type;
if (changed)
update_timestamp();
}
void FacetsAnnotation::clear()
{
m_data.clear();
update_timestamp();
}
// Test whether the two models contain the same number of ModelObjects with the same set of IDs
// ordered in the same order. In that case it is not necessary to kill the background processing.
bool model_object_list_equal(const Model &model_old, const Model &model_new)
{
if (model_old.objects.size() != model_new.objects.size())
return false;
for (size_t i = 0; i < model_old.objects.size(); ++ i)
if (model_old.objects[i]->id() != model_new.objects[i]->id())
return false;
return true;
}
// Test whether the new model is just an extension of the old model (new objects were added
// to the end of the original list. In that case it is not necessary to kill the background processing.
bool model_object_list_extended(const Model &model_old, const Model &model_new)
{
if (model_old.objects.size() >= model_new.objects.size())
return false;
for (size_t i = 0; i < model_old.objects.size(); ++ i)
if (model_old.objects[i]->id() != model_new.objects[i]->id())
return false;
return true;
}
bool model_volume_list_changed(const ModelObject &model_object_old, const ModelObject &model_object_new, const ModelVolumeType type)
{
size_t i_old, i_new;
for (i_old = 0, i_new = 0; i_old < model_object_old.volumes.size() && i_new < model_object_new.volumes.size();) {
const ModelVolume &mv_old = *model_object_old.volumes[i_old];
const ModelVolume &mv_new = *model_object_new.volumes[i_new];
if (mv_old.type() != type) {
++ i_old;
continue;
}
if (mv_new.type() != type) {
++ i_new;
continue;
}
if (mv_old.id() != mv_new.id())
return true;
//FIXME test for the content of the mesh!
if (!mv_old.get_matrix().isApprox(mv_new.get_matrix()))
return true;
++ i_old;
++ i_new;
}
for (; i_old < model_object_old.volumes.size(); ++ i_old) {
const ModelVolume &mv_old = *model_object_old.volumes[i_old];
if (mv_old.type() == type)
// ModelVolume was deleted.
return true;
}
for (; i_new < model_object_new.volumes.size(); ++ i_new) {
const ModelVolume &mv_new = *model_object_new.volumes[i_new];
if (mv_new.type() == type)
// ModelVolume was added.
return true;
}
return false;
}
bool model_custom_supports_data_changed(const ModelObject& mo, const ModelObject& mo_new) {
assert(! model_volume_list_changed(mo, mo_new, ModelVolumeType::MODEL_PART));
assert(mo.volumes.size() == mo_new.volumes.size());
for (size_t i=0; i<mo.volumes.size(); ++i) {
if (! mo_new.volumes[i]->m_supported_facets.is_same_as(mo.volumes[i]->m_supported_facets))
return true;
}
return false;
};
extern bool model_has_multi_part_objects(const Model &model)
{
for (const ModelObject *model_object : model.objects)
if (model_object->volumes.size() != 1 || ! model_object->volumes.front()->is_model_part())
return true;
return false;
}
extern bool model_has_advanced_features(const Model &model)
{
auto config_is_advanced = [](const DynamicPrintConfig &config) {
return ! (config.empty() || (config.size() == 1 && config.cbegin()->first == "extruder"));
};
for (const ModelObject *model_object : model.objects) {
// Is there more than one instance or advanced config data?
if (model_object->instances.size() > 1 || config_is_advanced(model_object->config))
return true;
// Is there any modifier or advanced config data?
for (const ModelVolume* model_volume : model_object->volumes)
if (! model_volume->is_model_part() || config_is_advanced(model_volume->config))
return true;
}
return false;
}
#ifndef NDEBUG
// Verify whether the IDs of Model / ModelObject / ModelVolume / ModelInstance / ModelMaterial are valid and unique.
void check_model_ids_validity(const Model &model)
{
std::set<ObjectID> ids;
auto check = [&ids](ObjectID id) {
assert(id.valid());
assert(ids.find(id) == ids.end());
ids.insert(id);
};
for (const ModelObject *model_object : model.objects) {
check(model_object->id());
check(model_object->config.id());
for (const ModelVolume *model_volume : model_object->volumes) {
check(model_volume->id());
check(model_volume->config.id());
}
for (const ModelInstance *model_instance : model_object->instances)
check(model_instance->id());
}
for (const auto mm : model.materials) {
check(mm.second->id());
check(mm.second->config.id());
}
}
void check_model_ids_equal(const Model &model1, const Model &model2)
{
// Verify whether the IDs of model1 and model match.
assert(model1.objects.size() == model2.objects.size());
for (size_t idx_model = 0; idx_model < model2.objects.size(); ++ idx_model) {
const ModelObject &model_object1 = *model1.objects[idx_model];
const ModelObject &model_object2 = * model2.objects[idx_model];
assert(model_object1.id() == model_object2.id());
assert(model_object1.config.id() == model_object2.config.id());
assert(model_object1.volumes.size() == model_object2.volumes.size());
assert(model_object1.instances.size() == model_object2.instances.size());
for (size_t i = 0; i < model_object1.volumes.size(); ++ i) {
assert(model_object1.volumes[i]->id() == model_object2.volumes[i]->id());
assert(model_object1.volumes[i]->config.id() == model_object2.volumes[i]->config.id());
}
for (size_t i = 0; i < model_object1.instances.size(); ++ i)
assert(model_object1.instances[i]->id() == model_object2.instances[i]->id());
}
assert(model1.materials.size() == model2.materials.size());
{
auto it1 = model1.materials.begin();
auto it2 = model2.materials.begin();
for (; it1 != model1.materials.end(); ++ it1, ++ it2) {
assert(it1->first == it2->first); // compare keys
assert(it1->second->id() == it2->second->id());
assert(it1->second->config.id() == it2->second->config.id());
}
}
}
#endif /* NDEBUG */
}
#if 0
CEREAL_REGISTER_TYPE(Slic3r::ModelObject)
CEREAL_REGISTER_TYPE(Slic3r::ModelVolume)
CEREAL_REGISTER_TYPE(Slic3r::ModelInstance)
CEREAL_REGISTER_TYPE(Slic3r::Model)
CEREAL_REGISTER_POLYMORPHIC_RELATION(Slic3r::ObjectBase, Slic3r::ModelObject)
CEREAL_REGISTER_POLYMORPHIC_RELATION(Slic3r::ObjectBase, Slic3r::ModelVolume)
CEREAL_REGISTER_POLYMORPHIC_RELATION(Slic3r::ObjectBase, Slic3r::ModelInstance)
CEREAL_REGISTER_POLYMORPHIC_RELATION(Slic3r::ObjectBase, Slic3r::Model)
#endif