PrusaSlicer-NonPlainar/xs/src/libslic3r/Print.hpp
bubnikv b1f5e7e8fa Removed the GCodePreviewData from the Print class, it does not belong here,
as the GCode is generated outside of the Print class.
Exported the GCodePreviewData as GCode::PreviewData to Perl.
When exporting the G-code with a command line Slic3r,
the GCodeAnalyzer is now supressed for performance reasons.
Removed obsolete Perl module Slic3r::GUI::Plater::3DToolpaths.
2018-02-14 20:35:59 +01:00

330 lines
13 KiB
C++

#ifndef slic3r_Print_hpp_
#define slic3r_Print_hpp_
#include "libslic3r.h"
#include <set>
#include <vector>
#include <string>
#include "BoundingBox.hpp"
#include "Flow.hpp"
#include "PrintConfig.hpp"
#include "Point.hpp"
#include "Layer.hpp"
#include "Model.hpp"
#include "PlaceholderParser.hpp"
#include "Slicing.hpp"
#include "GCode/ToolOrdering.hpp"
#include "GCode/WipeTower.hpp"
#include "tbb/atomic.h"
namespace Slic3r {
class Print;
class PrintObject;
class ModelObject;
// Print step IDs for keeping track of the print state.
enum PrintStep {
psSkirt, psBrim, psWipeTower, psCount,
};
enum PrintObjectStep {
posSlice, posPerimeters, posPrepareInfill,
posInfill, posSupportMaterial, posCount,
};
// To be instantiated over PrintStep or PrintObjectStep enums.
template <class StepType, size_t COUNT>
class PrintState
{
public:
PrintState() { memset(state, 0, sizeof(state)); }
enum State {
INVALID,
STARTED,
DONE,
};
State state[COUNT];
bool is_started(StepType step) const { return this->state[step] == STARTED; }
bool is_done(StepType step) const { return this->state[step] == DONE; }
void set_started(StepType step) { this->state[step] = STARTED; }
void set_done(StepType step) { this->state[step] = DONE; }
bool invalidate(StepType step) {
bool invalidated = this->state[step] != INVALID;
this->state[step] = INVALID;
return invalidated;
}
bool invalidate_all() {
bool invalidated = false;
for (size_t i = 0; i < COUNT; ++ i)
if (this->state[i] != INVALID) {
invalidated = true;
break;
}
memset(state, 0, sizeof(state));
return invalidated;
}
};
// A PrintRegion object represents a group of volumes to print
// sharing the same config (including the same assigned extruder(s))
class PrintRegion
{
friend class Print;
public:
PrintRegionConfig config;
Print* print() { return this->_print; }
Flow flow(FlowRole role, double layer_height, bool bridge, bool first_layer, double width, const PrintObject &object) const;
coordf_t nozzle_dmr_avg(const PrintConfig &print_config) const;
private:
Print* _print;
PrintRegion(Print* print) : _print(print) {}
~PrintRegion() {}
};
typedef std::vector<Layer*> LayerPtrs;
typedef std::vector<SupportLayer*> SupportLayerPtrs;
class BoundingBoxf3; // TODO: for temporary constructor parameter
class PrintObject
{
friend class Print;
public:
// vector of (vectors of volume ids), indexed by region_id
std::vector<std::vector<int>> region_volumes;
PrintObjectConfig config;
t_layer_height_ranges layer_height_ranges;
// Profile of increasing z to a layer height, to be linearly interpolated when calculating the layers.
// The pairs of <z, layer_height> are packed into a 1D array to simplify handling by the Perl XS.
// layer_height_profile must not be set by the background thread.
std::vector<coordf_t> layer_height_profile;
// There is a layer_height_profile at both PrintObject and ModelObject. The layer_height_profile at the ModelObject
// is used for interactive editing and for loading / storing into a project file (AMF file as of today).
// This flag indicates that the layer_height_profile at the UI has been updated, therefore the backend needs to get it.
// This flag is necessary as we cannot safely clear the layer_height_profile if the background calculation is running.
bool layer_height_profile_valid;
// this is set to true when LayerRegion->slices is split in top/internal/bottom
// so that next call to make_perimeters() performs a union() before computing loops
bool typed_slices;
Point3 size; // XYZ in scaled coordinates
// scaled coordinates to add to copies (to compensate for the alignment
// operated when creating the object but still preserving a coherent API
// for external callers)
Point _copies_shift;
// Slic3r::Point objects in scaled G-code coordinates in our coordinates
Points _shifted_copies;
LayerPtrs layers;
SupportLayerPtrs support_layers;
PrintState<PrintObjectStep, posCount> state;
Print* print() { return this->_print; }
const Print* print() const { return this->_print; }
ModelObject* model_object() { return this->_model_object; }
const ModelObject* model_object() const { return this->_model_object; }
const Points& copies() const { return this->_copies; }
bool add_copy(const Pointf &point);
bool delete_last_copy();
bool delete_all_copies() { return this->set_copies(Points()); }
bool set_copies(const Points &points);
bool reload_model_instances();
// since the object is aligned to origin, bounding box coincides with size
BoundingBox bounding_box() const { return BoundingBox(Point(0,0), this->size); }
// adds region_id, too, if necessary
void add_region_volume(unsigned int region_id, int volume_id) {
if (region_id >= region_volumes.size())
region_volumes.resize(region_id + 1);
region_volumes[region_id].push_back(volume_id);
}
// This is the *total* layer count (including support layers)
// this value is not supposed to be compared with Layer::id
// since they have different semantics.
size_t total_layer_count() const { return this->layer_count() + this->support_layer_count(); }
size_t layer_count() const { return this->layers.size(); }
void clear_layers();
Layer* get_layer(int idx) { return this->layers.at(idx); }
const Layer* get_layer(int idx) const { return this->layers.at(idx); }
// print_z: top of the layer; slice_z: center of the layer.
Layer* add_layer(int id, coordf_t height, coordf_t print_z, coordf_t slice_z);
size_t support_layer_count() const { return this->support_layers.size(); }
void clear_support_layers();
SupportLayer* get_support_layer(int idx) { return this->support_layers.at(idx); }
SupportLayer* add_support_layer(int id, coordf_t height, coordf_t print_z);
void delete_support_layer(int idx);
// methods for handling state
bool invalidate_state_by_config_options(const std::vector<t_config_option_key> &opt_keys);
bool invalidate_step(PrintObjectStep step);
bool invalidate_all_steps() { return this->state.invalidate_all(); }
// To be used over the layer_height_profile of both the PrintObject and ModelObject
// to initialize the height profile with the height ranges.
bool update_layer_height_profile(std::vector<coordf_t> &layer_height_profile) const;
// Process layer_height_ranges, the raft layers and first layer thickness into layer_height_profile.
// The layer_height_profile may be later modified interactively by the user to refine layers at sloping surfaces.
bool update_layer_height_profile();
void reset_layer_height_profile();
// Collect the slicing parameters, to be used by variable layer thickness algorithm,
// by the interactive layer height editor and by the printing process itself.
// The slicing parameters are dependent on various configuration values
// (layer height, first layer height, raft settings, print nozzle diameter etc).
SlicingParameters slicing_parameters() const;
void _slice();
std::string _fix_slicing_errors();
void _simplify_slices(double distance);
void _prepare_infill();
bool has_support_material() const;
void detect_surfaces_type();
void process_external_surfaces();
void discover_vertical_shells();
void bridge_over_infill();
void _make_perimeters();
void _infill();
void clip_fill_surfaces();
void discover_horizontal_shells();
void combine_infill();
void _generate_support_material();
private:
Print* _print;
ModelObject* _model_object;
Points _copies; // Slic3r::Point objects in scaled G-code coordinates
// TODO: call model_object->get_bounding_box() instead of accepting
// parameter
PrintObject(Print* print, ModelObject* model_object, const BoundingBoxf3 &modobj_bbox);
~PrintObject() {}
std::vector<ExPolygons> _slice_region(size_t region_id, const std::vector<float> &z, bool modifier);
};
typedef std::vector<PrintObject*> PrintObjectPtrs;
typedef std::vector<PrintRegion*> PrintRegionPtrs;
// The complete print tray with possibly multiple objects.
class Print
{
public:
PrintConfig config;
PrintObjectConfig default_object_config;
PrintRegionConfig default_region_config;
PrintObjectPtrs objects;
PrintRegionPtrs regions;
PlaceholderParser placeholder_parser;
// TODO: status_cb
std::string estimated_print_time;
double total_used_filament, total_extruded_volume, total_cost, total_weight;
std::map<size_t, float> filament_stats;
PrintState<PrintStep, psCount> state;
// ordered collections of extrusion paths to build skirt loops and brim
ExtrusionEntityCollection skirt, brim;
Print() : total_used_filament(0), total_extruded_volume(0) { restart(); }
~Print() { clear_objects(); }
// methods for handling objects
void clear_objects();
PrintObject* get_object(size_t idx) { return objects.at(idx); }
const PrintObject* get_object(size_t idx) const { return objects.at(idx); }
void delete_object(size_t idx);
void reload_object(size_t idx);
bool reload_model_instances();
// methods for handling regions
PrintRegion* get_region(size_t idx) { return regions.at(idx); }
const PrintRegion* get_region(size_t idx) const { return regions.at(idx); }
PrintRegion* add_region();
// methods for handling state
bool invalidate_step(PrintStep step);
bool invalidate_all_steps() { return this->state.invalidate_all(); }
bool step_done(PrintObjectStep step) const;
void add_model_object(ModelObject* model_object, int idx = -1);
bool apply_config(DynamicPrintConfig config);
bool has_infinite_skirt() const;
bool has_skirt() const;
// Returns an empty string if valid, otherwise returns an error message.
std::string validate() const;
BoundingBox bounding_box() const;
BoundingBox total_bounding_box() const;
double skirt_first_layer_height() const;
Flow brim_flow() const;
Flow skirt_flow() const;
std::vector<unsigned int> object_extruders() const;
std::vector<unsigned int> support_material_extruders() const;
std::vector<unsigned int> extruders() const;
void _simplify_slices(double distance);
double max_allowed_layer_height() const;
bool has_support_material() const;
void auto_assign_extruders(ModelObject* model_object) const;
void _make_skirt();
void _make_brim();
// Wipe tower support.
bool has_wipe_tower() const;
void _clear_wipe_tower();
void _make_wipe_tower();
// Tool ordering of a non-sequential print has to be known to calculate the wipe tower.
// Cache it here, so it does not need to be recalculated during the G-code generation.
ToolOrdering m_tool_ordering;
// Cache of tool changes per print layer.
std::unique_ptr<WipeTower::ToolChangeResult> m_wipe_tower_priming;
std::vector<std::vector<WipeTower::ToolChangeResult>> m_wipe_tower_tool_changes;
std::unique_ptr<WipeTower::ToolChangeResult> m_wipe_tower_final_purge;
std::string output_filename();
std::string output_filepath(const std::string &path);
// Calls a registered callback to update the status.
void set_status(int percent, const std::string &message);
// Cancel the running computation. Stop execution of all the background threads.
void cancel() { m_canceled = true; }
// Cancel the running computation. Stop execution of all the background threads.
void restart() { m_canceled = false; }
// Has the calculation been canceled?
bool canceled() { return m_canceled; }
private:
bool invalidate_state_by_config_options(const std::vector<t_config_option_key> &opt_keys);
PrintRegionConfig _region_config_from_model_volume(const ModelVolume &volume);
// Has the calculation been canceled?
tbb::atomic<bool> m_canceled;
};
#define FOREACH_BASE(type, container, iterator) for (type::const_iterator iterator = (container).begin(); iterator != (container).end(); ++iterator)
#define FOREACH_REGION(print, region) FOREACH_BASE(PrintRegionPtrs, (print)->regions, region)
#define FOREACH_OBJECT(print, object) FOREACH_BASE(PrintObjectPtrs, (print)->objects, object)
#define FOREACH_LAYER(object, layer) FOREACH_BASE(LayerPtrs, (object)->layers, layer)
#define FOREACH_LAYERREGION(layer, layerm) FOREACH_BASE(LayerRegionPtrs, (layer)->regions, layerm)
}
#endif