cd82b03a0e
+ new POT
278 lines
11 KiB
C++
278 lines
11 KiB
C++
#include <algorithm>
|
|
#include <wx/dcbuffer.h>
|
|
|
|
#include "RammingChart.hpp"
|
|
#include "GUI.hpp"
|
|
#include "I18N.hpp"
|
|
|
|
wxDEFINE_EVENT(EVT_WIPE_TOWER_CHART_CHANGED, wxCommandEvent);
|
|
|
|
|
|
void Chart::draw() {
|
|
wxAutoBufferedPaintDC dc(this); // unbuffered DC caused flickering on win
|
|
|
|
dc.SetBrush(GetBackgroundColour());
|
|
dc.SetPen(GetBackgroundColour());
|
|
dc.DrawRectangle(GetClientRect()); // otherwise the background would end up black on windows
|
|
|
|
dc.SetPen(*wxBLACK_PEN);
|
|
dc.SetBrush(*wxWHITE_BRUSH);
|
|
dc.DrawRectangle(m_rect);
|
|
|
|
if (visible_area.m_width < 0.499) {
|
|
dc.DrawText(_(L("NO RAMMING AT ALL")),wxPoint(m_rect.GetLeft()+m_rect.GetWidth()/2-legend_side,m_rect.GetBottom()-m_rect.GetHeight()/2));
|
|
return;
|
|
}
|
|
|
|
|
|
if (!m_line_to_draw.empty()) {
|
|
for (unsigned int i=0;i<m_line_to_draw.size()-2;++i) {
|
|
int color = 510*((m_rect.GetBottom()-(m_line_to_draw)[i])/double(m_rect.GetHeight()));
|
|
dc.SetPen( wxPen( wxColor(std::min(255,color),255-std::max(color-255,0),0), 1 ) );
|
|
dc.DrawLine(m_rect.GetLeft()+1+i,(m_line_to_draw)[i],m_rect.GetLeft()+1+i,m_rect.GetBottom());
|
|
}
|
|
dc.SetPen( wxPen( wxColor(0,0,0), 1 ) );
|
|
for (unsigned int i=0;i<m_line_to_draw.size()-2;++i) {
|
|
if (splines)
|
|
dc.DrawLine(m_rect.GetLeft()+i,(m_line_to_draw)[i],m_rect.GetLeft()+i+1,(m_line_to_draw)[i+1]);
|
|
else {
|
|
dc.DrawLine(m_rect.GetLeft()+i,(m_line_to_draw)[i],m_rect.GetLeft()+i+1,(m_line_to_draw)[i]);
|
|
dc.DrawLine(m_rect.GetLeft()+i+1,(m_line_to_draw)[i],m_rect.GetLeft()+i+1,(m_line_to_draw)[i+1]);
|
|
}
|
|
}
|
|
}
|
|
|
|
// draw draggable buttons
|
|
dc.SetBrush(*wxBLUE_BRUSH);
|
|
dc.SetPen( wxPen( wxColor(0,0,0), 1 ) );
|
|
for (auto& button : m_buttons)
|
|
//dc.DrawRectangle(math_to_screen(button.get_pos())-wxPoint(side/2.,side/2.), wxSize(side,side));
|
|
dc.DrawCircle(math_to_screen(button.get_pos()),side/2.);
|
|
//dc.DrawRectangle(math_to_screen(button.get_pos()-wxPoint2DDouble(0.125,0))-wxPoint(0,5),wxSize(50,10));
|
|
|
|
// draw x-axis:
|
|
float last_mark = -10000;
|
|
for (float math_x=int(visible_area.m_x*10)/10 ; math_x < (visible_area.m_x+visible_area.m_width) ; math_x+=0.1f) {
|
|
int x = math_to_screen(wxPoint2DDouble(math_x,visible_area.m_y)).x;
|
|
int y = m_rect.GetBottom();
|
|
if (x-last_mark < legend_side) continue;
|
|
dc.DrawLine(x,y+3,x,y-3);
|
|
dc.DrawText(wxString().Format(wxT("%.1f"), math_x),wxPoint(x-scale_unit,y+0.5*scale_unit));
|
|
last_mark = x;
|
|
}
|
|
|
|
// draw y-axis:
|
|
last_mark=10000;
|
|
for (int math_y=visible_area.m_y ; math_y < (visible_area.m_y+visible_area.m_height) ; math_y+=1) {
|
|
int y = math_to_screen(wxPoint2DDouble(visible_area.m_x,math_y)).y;
|
|
int x = m_rect.GetLeft();
|
|
if (last_mark-y < legend_side) continue;
|
|
dc.DrawLine(x-3,y,x+3,y);
|
|
dc.DrawText(wxString()<<math_y,wxPoint(x-2*scale_unit,y-0.5*scale_unit));
|
|
last_mark = y;
|
|
}
|
|
|
|
// axis labels:
|
|
wxString label = _(L("Time")) + " ("+_(L("s"))+")";
|
|
int text_width = 0;
|
|
int text_height = 0;
|
|
dc.GetTextExtent(label,&text_width,&text_height);
|
|
dc.DrawText(label,wxPoint(0.5*(m_rect.GetRight()+m_rect.GetLeft())-text_width/2.f, m_rect.GetBottom()+0.5*legend_side));
|
|
label = _(L("Volumetric speed")) + " (" + _(L("mm³/s")) + ")";
|
|
dc.GetTextExtent(label,&text_width,&text_height);
|
|
dc.DrawRotatedText(label,wxPoint(0,0.5*(m_rect.GetBottom()+m_rect.GetTop())+text_width/2.f),90);
|
|
}
|
|
|
|
void Chart::mouse_right_button_clicked(wxMouseEvent& event) {
|
|
if (!manual_points_manipulation)
|
|
return;
|
|
wxPoint point = event.GetPosition();
|
|
int button_index = which_button_is_clicked(point);
|
|
if (button_index != -1 && m_buttons.size()>2) {
|
|
m_buttons.erase(m_buttons.begin()+button_index);
|
|
recalculate_line();
|
|
}
|
|
}
|
|
|
|
|
|
|
|
void Chart::mouse_clicked(wxMouseEvent& event) {
|
|
wxPoint point = event.GetPosition();
|
|
int button_index = which_button_is_clicked(point);
|
|
if ( button_index != -1) {
|
|
m_dragged = &m_buttons[button_index];
|
|
m_previous_mouse = point;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
void Chart::mouse_moved(wxMouseEvent& event) {
|
|
if (!event.Dragging() || !m_dragged) return;
|
|
wxPoint pos = event.GetPosition();
|
|
wxRect rect = m_rect;
|
|
rect.Deflate(side/2.);
|
|
if (!(rect.Contains(pos))) { // the mouse left chart area
|
|
mouse_left_window(event);
|
|
return;
|
|
}
|
|
int delta_x = pos.x - m_previous_mouse.x;
|
|
int delta_y = pos.y - m_previous_mouse.y;
|
|
m_dragged->move(fixed_x?0:double(delta_x)/m_rect.GetWidth() * visible_area.m_width,-double(delta_y)/m_rect.GetHeight() * visible_area.m_height);
|
|
m_previous_mouse = pos;
|
|
recalculate_line();
|
|
}
|
|
|
|
|
|
|
|
void Chart::mouse_double_clicked(wxMouseEvent& event) {
|
|
if (!manual_points_manipulation)
|
|
return;
|
|
wxPoint point = event.GetPosition();
|
|
if (!m_rect.Contains(point)) // the click is outside the chart
|
|
return;
|
|
m_buttons.push_back(screen_to_math(point));
|
|
std::sort(m_buttons.begin(),m_buttons.end());
|
|
recalculate_line();
|
|
return;
|
|
}
|
|
|
|
|
|
|
|
|
|
void Chart::recalculate_line() {
|
|
m_line_to_draw.clear();
|
|
m_total_volume = 0.f;
|
|
|
|
std::vector<wxPoint> points;
|
|
for (auto& but : m_buttons) {
|
|
points.push_back(wxPoint(math_to_screen(but.get_pos())));
|
|
if (points.size()>1 && points.back().x==points[points.size()-2].x) points.pop_back();
|
|
if (points.size()>1 && points.back().x > m_rect.GetRight()) {
|
|
points.pop_back();
|
|
break;
|
|
}
|
|
}
|
|
|
|
// The calculation wouldn't work in case the ramming is to be turned off completely.
|
|
if (points.size()>1) {
|
|
std::sort(points.begin(),points.end(),[](wxPoint& a,wxPoint& b) { return a.x < b.x; });
|
|
|
|
// Cubic spline interpolation: see https://en.wikiversity.org/wiki/Cubic_Spline_Interpolation#Methods
|
|
const bool boundary_first_derivative = true; // true - first derivative is 0 at the leftmost and rightmost point
|
|
// false - second ---- || -------
|
|
const int N = points.size()-1; // last point can be accessed as N, we have N+1 total points
|
|
std::vector<float> diag(N+1);
|
|
std::vector<float> mu(N+1);
|
|
std::vector<float> lambda(N+1);
|
|
std::vector<float> h(N+1);
|
|
std::vector<float> rhs(N+1);
|
|
|
|
// let's fill in inner equations
|
|
for (int i=1;i<=N;++i) h[i] = points[i].x-points[i-1].x;
|
|
std::fill(diag.begin(),diag.end(),2.f);
|
|
for (int i=1;i<=N-1;++i) {
|
|
mu[i] = h[i]/(h[i]+h[i+1]);
|
|
lambda[i] = 1.f - mu[i];
|
|
rhs[i] = 6 * ( float(points[i+1].y-points[i].y )/(h[i+1]*(points[i+1].x-points[i-1].x)) -
|
|
float(points[i].y -points[i-1].y)/(h[i] *(points[i+1].x-points[i-1].x)) );
|
|
}
|
|
|
|
// now fill in the first and last equations, according to boundary conditions:
|
|
if (boundary_first_derivative) {
|
|
const float endpoints_derivative = 0;
|
|
lambda[0] = 1;
|
|
mu[N] = 1;
|
|
rhs[0] = (6.f/h[1]) * (float(points[0].y-points[1].y)/(points[0].x-points[1].x) - endpoints_derivative);
|
|
rhs[N] = (6.f/h[N]) * (endpoints_derivative - float(points[N-1].y-points[N].y)/(points[N-1].x-points[N].x));
|
|
}
|
|
else {
|
|
lambda[0] = 0;
|
|
mu[N] = 0;
|
|
rhs[0] = 0;
|
|
rhs[N] = 0;
|
|
}
|
|
|
|
// the trilinear system is ready to be solved:
|
|
for (int i=1;i<=N;++i) {
|
|
float multiple = mu[i]/diag[i-1]; // let's subtract proper multiple of above equation
|
|
diag[i]-= multiple * lambda[i-1];
|
|
rhs[i] -= multiple * rhs[i-1];
|
|
}
|
|
// now the back substitution (vector mu contains invalid values from now on):
|
|
rhs[N] = rhs[N]/diag[N];
|
|
for (int i=N-1;i>=0;--i)
|
|
rhs[i] = (rhs[i]-lambda[i]*rhs[i+1])/diag[i];
|
|
|
|
unsigned int i=1;
|
|
float y=0.f;
|
|
for (int x=m_rect.GetLeft(); x<=m_rect.GetRight() ; ++x) {
|
|
if (splines) {
|
|
if (i<points.size()-1 && points[i].x < x ) {
|
|
++i;
|
|
}
|
|
if (points[0].x > x)
|
|
y = points[0].y;
|
|
else
|
|
if (points[N].x < x)
|
|
y = points[N].y;
|
|
else
|
|
y = (rhs[i-1]*pow(points[i].x-x,3)+rhs[i]*pow(x-points[i-1].x,3)) / (6*h[i]) +
|
|
(points[i-1].y-rhs[i-1]*h[i]*h[i]/6.f) * (points[i].x-x)/h[i] +
|
|
(points[i].y -rhs[i] *h[i]*h[i]/6.f) * (x-points[i-1].x)/h[i];
|
|
m_line_to_draw.push_back(y);
|
|
}
|
|
else {
|
|
float x_math = screen_to_math(wxPoint(x,0)).m_x;
|
|
if (i+2<=points.size() && m_buttons[i+1].get_pos().m_x-0.125 < x_math)
|
|
++i;
|
|
m_line_to_draw.push_back(math_to_screen(wxPoint2DDouble(x_math,m_buttons[i].get_pos().m_y)).y);
|
|
}
|
|
|
|
m_line_to_draw.back() = std::max(m_line_to_draw.back(), m_rect.GetTop()-1);
|
|
m_line_to_draw.back() = std::min(m_line_to_draw.back(), m_rect.GetBottom()-1);
|
|
m_total_volume += (m_rect.GetBottom() - m_line_to_draw.back()) * (visible_area.m_width / m_rect.GetWidth()) * (visible_area.m_height / m_rect.GetHeight());
|
|
}
|
|
}
|
|
|
|
wxPostEvent(this->GetParent(), wxCommandEvent(EVT_WIPE_TOWER_CHART_CHANGED));
|
|
Refresh();
|
|
}
|
|
|
|
|
|
|
|
std::vector<float> Chart::get_ramming_speed(float sampling) const {
|
|
std::vector<float> speeds_out;
|
|
|
|
const int number_of_samples = std::round( visible_area.m_width / sampling);
|
|
if (number_of_samples>0) {
|
|
const int dx = (m_line_to_draw.size()-1) / number_of_samples;
|
|
for (int j=0;j<number_of_samples;++j) {
|
|
float left = screen_to_math(wxPoint(0,m_line_to_draw[j*dx])).m_y;
|
|
float right = screen_to_math(wxPoint(0,m_line_to_draw[(j+1)*dx])).m_y;
|
|
speeds_out.push_back((left+right)/2.f);
|
|
}
|
|
}
|
|
return speeds_out;
|
|
}
|
|
|
|
|
|
std::vector<std::pair<float,float>> Chart::get_buttons() const {
|
|
std::vector<std::pair<float, float>> buttons_out;
|
|
for (const auto& button : m_buttons)
|
|
buttons_out.push_back(std::make_pair(float(button.get_pos().m_x),float(button.get_pos().m_y)));
|
|
return buttons_out;
|
|
}
|
|
|
|
|
|
|
|
|
|
BEGIN_EVENT_TABLE(Chart, wxWindow)
|
|
EVT_MOTION(Chart::mouse_moved)
|
|
EVT_LEFT_DOWN(Chart::mouse_clicked)
|
|
EVT_LEFT_UP(Chart::mouse_released)
|
|
EVT_LEFT_DCLICK(Chart::mouse_double_clicked)
|
|
EVT_RIGHT_DOWN(Chart::mouse_right_button_clicked)
|
|
EVT_LEAVE_WINDOW(Chart::mouse_left_window)
|
|
EVT_PAINT(Chart::paint_event)
|
|
END_EVENT_TABLE()
|