673 lines
30 KiB
C++
673 lines
30 KiB
C++
#ifndef slic3r_3DScene_hpp_
|
|
#define slic3r_3DScene_hpp_
|
|
|
|
#include "libslic3r/libslic3r.h"
|
|
#include "libslic3r/Point.hpp"
|
|
#include "libslic3r/Line.hpp"
|
|
#include "libslic3r/TriangleMesh.hpp"
|
|
#include "libslic3r/Utils.hpp"
|
|
#include "libslic3r/Model.hpp"
|
|
#include "slic3r/GUI/GLCanvas3DManager.hpp"
|
|
|
|
namespace Slic3r {
|
|
|
|
class Print;
|
|
class PrintObject;
|
|
class SLAPrint;
|
|
class SLAPrintObject;
|
|
enum SLAPrintObjectStep : unsigned int;
|
|
class Model;
|
|
class ModelObject;
|
|
class DynamicPrintConfig;
|
|
class ExtrusionPath;
|
|
class ExtrusionMultiPath;
|
|
class ExtrusionLoop;
|
|
class ExtrusionEntity;
|
|
class ExtrusionEntityCollection;
|
|
|
|
// A container for interleaved arrays of 3D vertices and normals,
|
|
// possibly indexed by triangles and / or quads.
|
|
class GLIndexedVertexArray {
|
|
public:
|
|
GLIndexedVertexArray() :
|
|
vertices_and_normals_interleaved_VBO_id(0),
|
|
triangle_indices_VBO_id(0),
|
|
quad_indices_VBO_id(0)
|
|
{ this->setup_sizes(); }
|
|
GLIndexedVertexArray(const GLIndexedVertexArray &rhs) :
|
|
vertices_and_normals_interleaved(rhs.vertices_and_normals_interleaved),
|
|
triangle_indices(rhs.triangle_indices),
|
|
quad_indices(rhs.quad_indices),
|
|
vertices_and_normals_interleaved_VBO_id(0),
|
|
triangle_indices_VBO_id(0),
|
|
quad_indices_VBO_id(0)
|
|
{ this->setup_sizes(); }
|
|
GLIndexedVertexArray(GLIndexedVertexArray &&rhs) :
|
|
vertices_and_normals_interleaved(std::move(rhs.vertices_and_normals_interleaved)),
|
|
triangle_indices(std::move(rhs.triangle_indices)),
|
|
quad_indices(std::move(rhs.quad_indices)),
|
|
vertices_and_normals_interleaved_VBO_id(0),
|
|
triangle_indices_VBO_id(0),
|
|
quad_indices_VBO_id(0)
|
|
{ this->setup_sizes(); }
|
|
|
|
GLIndexedVertexArray& operator=(const GLIndexedVertexArray &rhs)
|
|
{
|
|
assert(vertices_and_normals_interleaved_VBO_id == 0);
|
|
assert(triangle_indices_VBO_id == 0);
|
|
assert(triangle_indices_VBO_id == 0);
|
|
this->vertices_and_normals_interleaved = rhs.vertices_and_normals_interleaved;
|
|
this->triangle_indices = rhs.triangle_indices;
|
|
this->quad_indices = rhs.quad_indices;
|
|
this->setup_sizes();
|
|
return *this;
|
|
}
|
|
|
|
GLIndexedVertexArray& operator=(GLIndexedVertexArray &&rhs)
|
|
{
|
|
assert(vertices_and_normals_interleaved_VBO_id == 0);
|
|
assert(triangle_indices_VBO_id == 0);
|
|
assert(triangle_indices_VBO_id == 0);
|
|
this->vertices_and_normals_interleaved = std::move(rhs.vertices_and_normals_interleaved);
|
|
this->triangle_indices = std::move(rhs.triangle_indices);
|
|
this->quad_indices = std::move(rhs.quad_indices);
|
|
this->setup_sizes();
|
|
return *this;
|
|
}
|
|
|
|
// Vertices and their normals, interleaved to be used by void glInterleavedArrays(GL_N3F_V3F, 0, x)
|
|
std::vector<float> vertices_and_normals_interleaved;
|
|
std::vector<int> triangle_indices;
|
|
std::vector<int> quad_indices;
|
|
|
|
// When the geometry data is loaded into the graphics card as Vertex Buffer Objects,
|
|
// the above mentioned std::vectors are cleared and the following variables keep their original length.
|
|
size_t vertices_and_normals_interleaved_size;
|
|
size_t triangle_indices_size;
|
|
size_t quad_indices_size;
|
|
|
|
// IDs of the Vertex Array Objects, into which the geometry has been loaded.
|
|
// Zero if the VBOs are not used.
|
|
unsigned int vertices_and_normals_interleaved_VBO_id;
|
|
unsigned int triangle_indices_VBO_id;
|
|
unsigned int quad_indices_VBO_id;
|
|
|
|
void load_mesh_flat_shading(const TriangleMesh &mesh);
|
|
void load_mesh_full_shading(const TriangleMesh &mesh);
|
|
|
|
inline bool has_VBOs() const { return vertices_and_normals_interleaved_VBO_id != 0; }
|
|
|
|
inline void reserve(size_t sz) {
|
|
this->vertices_and_normals_interleaved.reserve(sz * 6);
|
|
this->triangle_indices.reserve(sz * 3);
|
|
this->quad_indices.reserve(sz * 4);
|
|
}
|
|
|
|
inline void push_geometry(float x, float y, float z, float nx, float ny, float nz) {
|
|
if (this->vertices_and_normals_interleaved.size() + 6 > this->vertices_and_normals_interleaved.capacity())
|
|
this->vertices_and_normals_interleaved.reserve(next_highest_power_of_2(this->vertices_and_normals_interleaved.size() + 6));
|
|
this->vertices_and_normals_interleaved.push_back(nx);
|
|
this->vertices_and_normals_interleaved.push_back(ny);
|
|
this->vertices_and_normals_interleaved.push_back(nz);
|
|
this->vertices_and_normals_interleaved.push_back(x);
|
|
this->vertices_and_normals_interleaved.push_back(y);
|
|
this->vertices_and_normals_interleaved.push_back(z);
|
|
};
|
|
|
|
inline void push_geometry(double x, double y, double z, double nx, double ny, double nz) {
|
|
push_geometry(float(x), float(y), float(z), float(nx), float(ny), float(nz));
|
|
}
|
|
|
|
inline void push_geometry(const Vec3d& p, const Vec3d& n) {
|
|
push_geometry(p(0), p(1), p(2), n(0), n(1), n(2));
|
|
}
|
|
|
|
inline void push_triangle(int idx1, int idx2, int idx3) {
|
|
if (this->triangle_indices.size() + 3 > this->vertices_and_normals_interleaved.capacity())
|
|
this->triangle_indices.reserve(next_highest_power_of_2(this->triangle_indices.size() + 3));
|
|
this->triangle_indices.push_back(idx1);
|
|
this->triangle_indices.push_back(idx2);
|
|
this->triangle_indices.push_back(idx3);
|
|
};
|
|
|
|
inline void push_quad(int idx1, int idx2, int idx3, int idx4) {
|
|
if (this->quad_indices.size() + 4 > this->vertices_and_normals_interleaved.capacity())
|
|
this->quad_indices.reserve(next_highest_power_of_2(this->quad_indices.size() + 4));
|
|
this->quad_indices.push_back(idx1);
|
|
this->quad_indices.push_back(idx2);
|
|
this->quad_indices.push_back(idx3);
|
|
this->quad_indices.push_back(idx4);
|
|
};
|
|
|
|
// Finalize the initialization of the geometry & indices,
|
|
// upload the geometry and indices to OpenGL VBO objects
|
|
// and shrink the allocated data, possibly relasing it if it has been loaded into the VBOs.
|
|
void finalize_geometry(bool use_VBOs);
|
|
// Release the geometry data, release OpenGL VBOs.
|
|
void release_geometry();
|
|
// Render either using an immediate mode, or the VBOs.
|
|
void render() const;
|
|
void render(const std::pair<size_t, size_t> &tverts_range, const std::pair<size_t, size_t> &qverts_range) const;
|
|
|
|
// Is there any geometry data stored?
|
|
bool empty() const { return vertices_and_normals_interleaved_size == 0; }
|
|
|
|
// Is this object indexed, or is it just a set of triangles?
|
|
bool indexed() const { return ! this->empty() && this->triangle_indices_size + this->quad_indices_size > 0; }
|
|
|
|
void clear() {
|
|
this->vertices_and_normals_interleaved.clear();
|
|
this->triangle_indices.clear();
|
|
this->quad_indices.clear();
|
|
this->setup_sizes();
|
|
}
|
|
|
|
// Shrink the internal storage to tighly fit the data stored.
|
|
void shrink_to_fit() {
|
|
if (! this->has_VBOs())
|
|
this->setup_sizes();
|
|
this->vertices_and_normals_interleaved.shrink_to_fit();
|
|
this->triangle_indices.shrink_to_fit();
|
|
this->quad_indices.shrink_to_fit();
|
|
}
|
|
|
|
BoundingBoxf3 bounding_box() const {
|
|
BoundingBoxf3 bbox;
|
|
if (! this->vertices_and_normals_interleaved.empty()) {
|
|
bbox.defined = true;
|
|
bbox.min(0) = bbox.max(0) = this->vertices_and_normals_interleaved[3];
|
|
bbox.min(1) = bbox.max(1) = this->vertices_and_normals_interleaved[4];
|
|
bbox.min(2) = bbox.max(2) = this->vertices_and_normals_interleaved[5];
|
|
for (size_t i = 9; i < this->vertices_and_normals_interleaved.size(); i += 6) {
|
|
const float *verts = this->vertices_and_normals_interleaved.data() + i;
|
|
bbox.min(0) = std::min<coordf_t>(bbox.min(0), verts[0]);
|
|
bbox.min(1) = std::min<coordf_t>(bbox.min(1), verts[1]);
|
|
bbox.min(2) = std::min<coordf_t>(bbox.min(2), verts[2]);
|
|
bbox.max(0) = std::max<coordf_t>(bbox.max(0), verts[0]);
|
|
bbox.max(1) = std::max<coordf_t>(bbox.max(1), verts[1]);
|
|
bbox.max(2) = std::max<coordf_t>(bbox.max(2), verts[2]);
|
|
}
|
|
}
|
|
return bbox;
|
|
}
|
|
|
|
private:
|
|
inline void setup_sizes() {
|
|
vertices_and_normals_interleaved_size = this->vertices_and_normals_interleaved.size();
|
|
triangle_indices_size = this->triangle_indices.size();
|
|
quad_indices_size = this->quad_indices.size();
|
|
}
|
|
};
|
|
|
|
class LayersTexture
|
|
{
|
|
public:
|
|
LayersTexture() : width(0), height(0), levels(0), cells(0) {}
|
|
|
|
// Texture data
|
|
std::vector<char> data;
|
|
// Width of the texture, top level.
|
|
size_t width;
|
|
// Height of the texture, top level.
|
|
size_t height;
|
|
// For how many levels of detail is the data allocated?
|
|
size_t levels;
|
|
// Number of texture cells allocated for the height texture.
|
|
size_t cells;
|
|
};
|
|
|
|
class GLVolume {
|
|
struct LayerHeightTextureData
|
|
{
|
|
// ID of the layer height texture
|
|
unsigned int texture_id;
|
|
// ID of the shader used to render with the layer height texture
|
|
unsigned int shader_id;
|
|
// The print object to update when generating the layer height texture
|
|
const PrintObject* print_object;
|
|
|
|
float z_cursor_relative;
|
|
float edit_band_width;
|
|
|
|
LayerHeightTextureData() { reset(); }
|
|
|
|
void reset()
|
|
{
|
|
texture_id = 0;
|
|
shader_id = 0;
|
|
print_object = nullptr;
|
|
z_cursor_relative = 0.0f;
|
|
edit_band_width = 0.0f;
|
|
}
|
|
|
|
bool can_use() const { return (texture_id > 0) && (shader_id > 0) && (print_object != nullptr); }
|
|
};
|
|
|
|
public:
|
|
static const float SELECTED_COLOR[4];
|
|
static const float HOVER_COLOR[4];
|
|
static const float OUTSIDE_COLOR[4];
|
|
static const float SELECTED_OUTSIDE_COLOR[4];
|
|
static const float DISABLED_COLOR[4];
|
|
static const float SLA_SUPPORT_COLOR[4];
|
|
static const float SLA_PAD_COLOR[4];
|
|
|
|
GLVolume(float r = 1.f, float g = 1.f, float b = 1.f, float a = 1.f);
|
|
GLVolume(const float *rgba) : GLVolume(rgba[0], rgba[1], rgba[2], rgba[3]) {}
|
|
~GLVolume();
|
|
|
|
private:
|
|
Geometry::Transformation m_instance_transformation;
|
|
Geometry::Transformation m_volume_transformation;
|
|
|
|
// Shift in z required by sla supports+pad
|
|
double m_sla_shift_z;
|
|
// Bounding box of this volume, in unscaled coordinates.
|
|
mutable BoundingBoxf3 m_transformed_bounding_box;
|
|
// Whether or not is needed to recalculate the transformed bounding box.
|
|
mutable bool m_transformed_bounding_box_dirty;
|
|
// Pointer to convex hull of the original mesh, if any.
|
|
// This object may or may not own the convex hull instance based on m_convex_hull_owned
|
|
const TriangleMesh* m_convex_hull;
|
|
bool m_convex_hull_owned;
|
|
// Bounding box of this volume, in unscaled coordinates.
|
|
mutable BoundingBoxf3 m_transformed_convex_hull_bounding_box;
|
|
// Whether or not is needed to recalculate the transformed convex hull bounding box.
|
|
mutable bool m_transformed_convex_hull_bounding_box_dirty;
|
|
|
|
public:
|
|
// Bounding box of this volume, in unscaled coordinates.
|
|
BoundingBoxf3 bounding_box;
|
|
// Color of the triangles / quads held by this volume.
|
|
float color[4];
|
|
// Color used to render this volume.
|
|
float render_color[4];
|
|
struct CompositeID {
|
|
CompositeID(int object_id, int volume_id, int instance_id) : object_id(object_id), volume_id(volume_id), instance_id(instance_id) {}
|
|
CompositeID() : object_id(-1), volume_id(-1), instance_id(-1) {}
|
|
// Object ID, which is equal to the index of the respective ModelObject in Model.objects array.
|
|
int object_id;
|
|
// Volume ID, which is equal to the index of the respective ModelVolume in ModelObject.volumes array.
|
|
// If negative, it is an index of a geometry produced by the PrintObject for the respective ModelObject,
|
|
// and which has no associated ModelVolume in ModelObject.volumes. For example, SLA supports.
|
|
// Volume with a negative volume_id cannot be picked independently, it will pick the associated instance.
|
|
int volume_id;
|
|
// Instance ID, which is equal to the index of the respective ModelInstance in ModelObject.instances array.
|
|
int instance_id;
|
|
};
|
|
CompositeID composite_id;
|
|
// Fingerprint of the source geometry. For ModelVolumes, it is the ModelVolume::ID and ModelInstanceID,
|
|
// for generated volumes it is the timestamp generated by PrintState::invalidate() or PrintState::set_done(),
|
|
// and the associated ModelInstanceID.
|
|
// Valid geometry_id should always be positive.
|
|
std::pair<size_t, size_t> geometry_id;
|
|
// An ID containing the extruder ID (used to select color).
|
|
int extruder_id;
|
|
// Is this object selected?
|
|
bool selected;
|
|
// Is this object disabled from selection?
|
|
bool disabled;
|
|
// Whether or not this volume is active for rendering
|
|
bool is_active;
|
|
// Whether or not to use this volume when applying zoom_to_volumes()
|
|
bool zoom_to_volumes;
|
|
// Wheter or not this volume is enabled for outside print volume detection in shader.
|
|
bool shader_outside_printer_detection_enabled;
|
|
// Wheter or not this volume is outside print volume.
|
|
bool is_outside;
|
|
// Boolean: Is mouse over this object?
|
|
bool hover;
|
|
// Wheter or not this volume has been generated from a modifier
|
|
bool is_modifier;
|
|
// Wheter or not this volume has been generated from the wipe tower
|
|
bool is_wipe_tower;
|
|
// Wheter or not this volume has been generated from an extrusion path
|
|
bool is_extrusion_path;
|
|
|
|
// Interleaved triangles & normals with indexed triangles & quads.
|
|
GLIndexedVertexArray indexed_vertex_array;
|
|
// Ranges of triangle and quad indices to be rendered.
|
|
std::pair<size_t, size_t> tverts_range;
|
|
std::pair<size_t, size_t> qverts_range;
|
|
|
|
// If the qverts or tverts contain thick extrusions, then offsets keeps pointers of the starts
|
|
// of the extrusions per layer.
|
|
std::vector<coordf_t> print_zs;
|
|
// Offset into qverts & tverts, or offsets into indices stored into an OpenGL name_index_buffer.
|
|
std::vector<size_t> offsets;
|
|
|
|
void set_render_color(float r, float g, float b, float a);
|
|
void set_render_color(const float* rgba, unsigned int size);
|
|
// Sets render color in dependence of current state
|
|
void set_render_color();
|
|
// set color according to model volume
|
|
void set_color_from_model_volume(const ModelVolume *model_volume);
|
|
|
|
const Geometry::Transformation& get_instance_transformation() const { return m_instance_transformation; }
|
|
void set_instance_transformation(const Geometry::Transformation& transformation) { m_instance_transformation = transformation; set_bounding_boxes_as_dirty(); }
|
|
|
|
const Vec3d& get_instance_offset() const { return m_instance_transformation.get_offset(); }
|
|
double get_instance_offset(Axis axis) const { return m_instance_transformation.get_offset(axis); }
|
|
|
|
void set_instance_offset(const Vec3d& offset) { m_instance_transformation.set_offset(offset); set_bounding_boxes_as_dirty(); }
|
|
void set_instance_offset(Axis axis, double offset) { m_instance_transformation.set_offset(axis, offset); set_bounding_boxes_as_dirty(); }
|
|
|
|
const Vec3d& get_instance_rotation() const { return m_instance_transformation.get_rotation(); }
|
|
double get_instance_rotation(Axis axis) const { return m_instance_transformation.get_rotation(axis); }
|
|
|
|
void set_instance_rotation(const Vec3d& rotation) { m_instance_transformation.set_rotation(rotation); set_bounding_boxes_as_dirty(); }
|
|
void set_instance_rotation(Axis axis, double rotation) { m_instance_transformation.set_rotation(axis, rotation); set_bounding_boxes_as_dirty(); }
|
|
|
|
Vec3d get_instance_scaling_factor() const { return m_instance_transformation.get_scaling_factor(); }
|
|
double get_instance_scaling_factor(Axis axis) const { return m_instance_transformation.get_scaling_factor(axis); }
|
|
|
|
void set_instance_scaling_factor(const Vec3d& scaling_factor) { m_instance_transformation.set_scaling_factor(scaling_factor); set_bounding_boxes_as_dirty(); }
|
|
void set_instance_scaling_factor(Axis axis, double scaling_factor) { m_instance_transformation.set_scaling_factor(axis, scaling_factor); set_bounding_boxes_as_dirty(); }
|
|
|
|
const Vec3d& get_instance_mirror() const { return m_instance_transformation.get_mirror(); }
|
|
double get_instance_mirror(Axis axis) const { return m_instance_transformation.get_mirror(axis); }
|
|
|
|
void set_instance_mirror(const Vec3d& mirror) { m_instance_transformation.set_mirror(mirror); set_bounding_boxes_as_dirty(); }
|
|
void set_instance_mirror(Axis axis, double mirror) { m_instance_transformation.set_mirror(axis, mirror); set_bounding_boxes_as_dirty(); }
|
|
|
|
const Geometry::Transformation& get_volume_transformation() const { return m_volume_transformation; }
|
|
void set_volume_transformation(const Geometry::Transformation& transformation) { m_volume_transformation = transformation; set_bounding_boxes_as_dirty(); }
|
|
|
|
const Vec3d& get_volume_offset() const { return m_volume_transformation.get_offset(); }
|
|
double get_volume_offset(Axis axis) const { return m_volume_transformation.get_offset(axis); }
|
|
|
|
void set_volume_offset(const Vec3d& offset) { m_volume_transformation.set_offset(offset); set_bounding_boxes_as_dirty(); }
|
|
void set_volume_offset(Axis axis, double offset) { m_volume_transformation.set_offset(axis, offset); set_bounding_boxes_as_dirty(); }
|
|
|
|
const Vec3d& get_volume_rotation() const { return m_volume_transformation.get_rotation(); }
|
|
double get_volume_rotation(Axis axis) const { return m_volume_transformation.get_rotation(axis); }
|
|
|
|
void set_volume_rotation(const Vec3d& rotation) { m_volume_transformation.set_rotation(rotation); set_bounding_boxes_as_dirty(); }
|
|
void set_volume_rotation(Axis axis, double rotation) { m_volume_transformation.set_rotation(axis, rotation); set_bounding_boxes_as_dirty(); }
|
|
|
|
Vec3d get_volume_scaling_factor() const { return m_volume_transformation.get_scaling_factor(); }
|
|
double get_volume_scaling_factor(Axis axis) const { return m_volume_transformation.get_scaling_factor(axis); }
|
|
|
|
void set_volume_scaling_factor(const Vec3d& scaling_factor) { m_volume_transformation.set_scaling_factor(scaling_factor); set_bounding_boxes_as_dirty(); }
|
|
void set_volume_scaling_factor(Axis axis, double scaling_factor) { m_volume_transformation.set_scaling_factor(axis, scaling_factor); set_bounding_boxes_as_dirty(); }
|
|
|
|
const Vec3d& get_volume_mirror() const { return m_volume_transformation.get_mirror(); }
|
|
double get_volume_mirror(Axis axis) const { return m_volume_transformation.get_mirror(axis); }
|
|
|
|
void set_volume_mirror(const Vec3d& mirror) { m_volume_transformation.set_mirror(mirror); set_bounding_boxes_as_dirty(); }
|
|
void set_volume_mirror(Axis axis, double mirror) { m_volume_transformation.set_mirror(axis, mirror); set_bounding_boxes_as_dirty(); }
|
|
|
|
double get_sla_shift_z() const { return m_sla_shift_z; }
|
|
void set_sla_shift_z(double z) { m_sla_shift_z = z; }
|
|
|
|
void set_convex_hull(const TriangleMesh *convex_hull, bool owned);
|
|
|
|
int object_idx() const { return this->composite_id.object_id; }
|
|
int volume_idx() const { return this->composite_id.volume_id; }
|
|
int instance_idx() const { return this->composite_id.instance_id; }
|
|
|
|
Transform3d world_matrix() const;
|
|
|
|
const BoundingBoxf3& transformed_bounding_box() const;
|
|
const BoundingBoxf3& transformed_convex_hull_bounding_box() const;
|
|
|
|
bool empty() const { return this->indexed_vertex_array.empty(); }
|
|
bool indexed() const { return this->indexed_vertex_array.indexed(); }
|
|
|
|
void set_range(coordf_t low, coordf_t high);
|
|
void render() const;
|
|
void render_using_layer_height() const;
|
|
void render_VBOs(int color_id, int detection_id, int worldmatrix_id) const;
|
|
void render_legacy() const;
|
|
|
|
void finalize_geometry(bool use_VBOs) { this->indexed_vertex_array.finalize_geometry(use_VBOs); }
|
|
void release_geometry() { this->indexed_vertex_array.release_geometry(); }
|
|
|
|
/************************************************ Layer height texture ****************************************************/
|
|
std::shared_ptr<LayersTexture> layer_height_texture;
|
|
// Data to render this volume using the layer height texture
|
|
LayerHeightTextureData layer_height_texture_data;
|
|
|
|
bool has_layer_height_texture() const
|
|
{ return this->layer_height_texture.get() != nullptr; }
|
|
size_t layer_height_texture_width() const
|
|
{ return (this->layer_height_texture.get() == nullptr) ? 0 : this->layer_height_texture->width; }
|
|
size_t layer_height_texture_height() const
|
|
{ return (this->layer_height_texture.get() == nullptr) ? 0 : this->layer_height_texture->height; }
|
|
size_t layer_height_texture_cells() const
|
|
{ return (this->layer_height_texture.get() == nullptr) ? 0 : this->layer_height_texture->cells; }
|
|
void* layer_height_texture_data_ptr_level0() const {
|
|
return (layer_height_texture.get() == nullptr) ? 0 :
|
|
(void*)layer_height_texture->data.data();
|
|
}
|
|
void* layer_height_texture_data_ptr_level1() const {
|
|
return (layer_height_texture.get() == nullptr) ? 0 :
|
|
(void*)(layer_height_texture->data.data() + layer_height_texture->width * layer_height_texture->height * 4);
|
|
}
|
|
double layer_height_texture_z_to_row_id() const;
|
|
void generate_layer_height_texture(const PrintObject *print_object, bool force);
|
|
|
|
void set_layer_height_texture_data(unsigned int texture_id, unsigned int shader_id, const PrintObject* print_object, float z_cursor_relative, float edit_band_width)
|
|
{
|
|
layer_height_texture_data.texture_id = texture_id;
|
|
layer_height_texture_data.shader_id = shader_id;
|
|
layer_height_texture_data.print_object = print_object;
|
|
layer_height_texture_data.z_cursor_relative = z_cursor_relative;
|
|
layer_height_texture_data.edit_band_width = edit_band_width;
|
|
}
|
|
|
|
void reset_layer_height_texture_data() { layer_height_texture_data.reset(); }
|
|
|
|
void set_bounding_boxes_as_dirty() { m_transformed_bounding_box_dirty = true; m_transformed_convex_hull_bounding_box_dirty = true; }
|
|
};
|
|
|
|
typedef std::vector<GLVolume*> GLVolumePtrs;
|
|
|
|
class GLVolumeCollection
|
|
{
|
|
#if ENABLE_IMPROVED_TRANSPARENT_VOLUMES_RENDERING
|
|
public:
|
|
enum ERenderType : unsigned char
|
|
{
|
|
Opaque,
|
|
Transparent,
|
|
All
|
|
};
|
|
|
|
private:
|
|
#endif // ENABLE_IMPROVED_TRANSPARENT_VOLUMES_RENDERING
|
|
// min and max vertex of the print box volume
|
|
float print_box_min[3];
|
|
float print_box_max[3];
|
|
|
|
// z range for clipping in shaders
|
|
float z_range[2];
|
|
|
|
public:
|
|
GLVolumePtrs volumes;
|
|
|
|
GLVolumeCollection() {};
|
|
~GLVolumeCollection() { clear(); };
|
|
|
|
std::vector<int> load_object(
|
|
const ModelObject *model_object,
|
|
int obj_idx,
|
|
const std::vector<int> &instance_idxs,
|
|
const std::string &color_by,
|
|
bool use_VBOs);
|
|
|
|
int load_object_volume(
|
|
const ModelObject *model_object,
|
|
std::shared_ptr<LayersTexture> &layer_height_texture,
|
|
int obj_idx,
|
|
int volume_idx,
|
|
int instance_idx,
|
|
const std::string &color_by,
|
|
bool use_VBOs);
|
|
|
|
// Load SLA auxiliary GLVolumes (for support trees or pad).
|
|
void load_object_auxiliary(
|
|
const SLAPrintObject *print_object,
|
|
int obj_idx,
|
|
// pairs of <instance_idx, print_instance_idx>
|
|
const std::vector<std::pair<size_t, size_t>> &instances,
|
|
SLAPrintObjectStep milestone,
|
|
// Timestamp of the last change of the milestone
|
|
size_t timestamp,
|
|
bool use_VBOs);
|
|
|
|
int load_wipe_tower_preview(
|
|
int obj_idx, float pos_x, float pos_y, float width, float depth, float height, float rotation_angle, bool use_VBOs, bool size_unknown, float brim_width);
|
|
|
|
// Render the volumes by OpenGL.
|
|
#if ENABLE_IMPROVED_TRANSPARENT_VOLUMES_RENDERING
|
|
void render_VBOs(ERenderType type, bool disable_cullface) const;
|
|
void render_legacy(ERenderType type, bool disable_cullface) const;
|
|
#else
|
|
void render_VBOs() const;
|
|
void render_legacy() const;
|
|
#endif // ENABLE_IMPROVED_TRANSPARENT_VOLUMES_RENDERING
|
|
|
|
// Finalize the initialization of the geometry & indices,
|
|
// upload the geometry and indices to OpenGL VBO objects
|
|
// and shrink the allocated data, possibly relasing it if it has been loaded into the VBOs.
|
|
void finalize_geometry(bool use_VBOs) { for (auto *v : volumes) v->finalize_geometry(use_VBOs); }
|
|
// Release the geometry data assigned to the volumes.
|
|
// If OpenGL VBOs were allocated, an OpenGL context has to be active to release them.
|
|
void release_geometry() { for (auto *v : volumes) v->release_geometry(); }
|
|
// Clear the geometry
|
|
void clear() { for (auto *v : volumes) delete v; volumes.clear(); }
|
|
|
|
bool empty() const { return volumes.empty(); }
|
|
void set_range(double low, double high) { for (GLVolume *vol : this->volumes) vol->set_range(low, high); }
|
|
|
|
void set_print_box(float min_x, float min_y, float min_z, float max_x, float max_y, float max_z) {
|
|
print_box_min[0] = min_x; print_box_min[1] = min_y; print_box_min[2] = min_z;
|
|
print_box_max[0] = max_x; print_box_max[1] = max_y; print_box_max[2] = max_z;
|
|
}
|
|
|
|
void set_z_range(float min_z, float max_z) { z_range[0] = min_z; z_range[1] = max_z; }
|
|
|
|
// returns true if all the volumes are completely contained in the print volume
|
|
// returns the containment state in the given out_state, if non-null
|
|
bool check_outside_state(const DynamicPrintConfig* config, ModelInstance::EPrintVolumeState* out_state);
|
|
void reset_outside_state();
|
|
|
|
void update_colors_by_extruder(const DynamicPrintConfig* config);
|
|
|
|
// Returns a vector containing the sorted list of all the print_zs of the volumes contained in this collection
|
|
std::vector<double> get_current_print_zs(bool active_only) const;
|
|
|
|
private:
|
|
GLVolumeCollection(const GLVolumeCollection &other);
|
|
GLVolumeCollection& operator=(const GLVolumeCollection &);
|
|
};
|
|
|
|
#if ENABLE_SIDEBAR_VISUAL_HINTS
|
|
class GLModel
|
|
{
|
|
protected:
|
|
GLVolume m_volume;
|
|
bool m_useVBOs;
|
|
#if ENABLE_PRINT_BED_MODELS
|
|
std::string m_filename;
|
|
#endif // ENABLE_PRINT_BED_MODELS
|
|
|
|
public:
|
|
GLModel();
|
|
virtual ~GLModel();
|
|
|
|
bool init(bool useVBOs) { return on_init(useVBOs); }
|
|
#if ENABLE_PRINT_BED_MODELS
|
|
bool init_from_file(const std::string& filename, bool useVBOs) { return on_init_from_file(filename, useVBOs); }
|
|
|
|
void center_around(const Vec3d& center) { m_volume.set_volume_offset(center - m_volume.bounding_box.center()); }
|
|
#endif // ENABLE_PRINT_BED_MODELS
|
|
void set_color(const float* color, unsigned int size);
|
|
|
|
const Vec3d& get_offset() const;
|
|
void set_offset(const Vec3d& offset);
|
|
const Vec3d& get_rotation() const;
|
|
void set_rotation(const Vec3d& rotation);
|
|
const Vec3d& get_scale() const;
|
|
void set_scale(const Vec3d& scale);
|
|
|
|
#if ENABLE_PRINT_BED_MODELS
|
|
const std::string& get_filename() const { return m_filename; }
|
|
const BoundingBoxf3& get_bounding_box() const { return m_volume.bounding_box; }
|
|
|
|
void reset();
|
|
#endif // ENABLE_PRINT_BED_MODELS
|
|
|
|
void render() const;
|
|
|
|
protected:
|
|
#if ENABLE_PRINT_BED_MODELS
|
|
virtual bool on_init(bool useVBOs) { return false; }
|
|
virtual bool on_init_from_file(const std::string& filename, bool useVBOs) { return false; }
|
|
#else
|
|
virtual bool on_init(bool useVBOs) = 0;
|
|
#endif // ENABLE_PRINT_BED_MODELS
|
|
|
|
private:
|
|
void render_VBOs() const;
|
|
void render_legacy() const;
|
|
};
|
|
|
|
class GLArrow : public GLModel
|
|
{
|
|
protected:
|
|
virtual bool on_init(bool useVBOs);
|
|
};
|
|
|
|
class GLCurvedArrow : public GLModel
|
|
{
|
|
unsigned int m_resolution;
|
|
|
|
public:
|
|
explicit GLCurvedArrow(unsigned int resolution);
|
|
|
|
protected:
|
|
virtual bool on_init(bool useVBOs);
|
|
};
|
|
#endif // ENABLE_SIDEBAR_VISUAL_HINTS
|
|
|
|
#if ENABLE_PRINT_BED_MODELS
|
|
class GLBed : public GLModel
|
|
{
|
|
protected:
|
|
virtual bool on_init_from_file(const std::string& filename, bool useVBOs);
|
|
};
|
|
#endif // ENABLE_PRINT_BED_MODELS
|
|
|
|
class _3DScene
|
|
{
|
|
static GUI::GLCanvas3DManager s_canvas_mgr;
|
|
|
|
public:
|
|
static std::string get_gl_info(bool format_as_html, bool extensions);
|
|
|
|
static bool add_canvas(wxGLCanvas* canvas);
|
|
static bool remove_canvas(wxGLCanvas* canvas);
|
|
static void remove_all_canvases();
|
|
|
|
static bool init(wxGLCanvas* canvas);
|
|
|
|
static GUI::GLCanvas3D* get_canvas(wxGLCanvas* canvas);
|
|
|
|
static void thick_lines_to_verts(const Lines& lines, const std::vector<double>& widths, const std::vector<double>& heights, bool closed, double top_z, GLVolume& volume);
|
|
static void thick_lines_to_verts(const Lines3& lines, const std::vector<double>& widths, const std::vector<double>& heights, bool closed, GLVolume& volume);
|
|
static void extrusionentity_to_verts(const ExtrusionPath& extrusion_path, float print_z, GLVolume& volume);
|
|
static void extrusionentity_to_verts(const ExtrusionPath& extrusion_path, float print_z, const Point& copy, GLVolume& volume);
|
|
static void extrusionentity_to_verts(const ExtrusionLoop& extrusion_loop, float print_z, const Point& copy, GLVolume& volume);
|
|
static void extrusionentity_to_verts(const ExtrusionMultiPath& extrusion_multi_path, float print_z, const Point& copy, GLVolume& volume);
|
|
static void extrusionentity_to_verts(const ExtrusionEntityCollection& extrusion_entity_collection, float print_z, const Point& copy, GLVolume& volume);
|
|
static void extrusionentity_to_verts(const ExtrusionEntity* extrusion_entity, float print_z, const Point& copy, GLVolume& volume);
|
|
static void polyline3_to_verts(const Polyline3& polyline, double width, double height, GLVolume& volume);
|
|
static void point3_to_verts(const Vec3crd& point, double width, double height, GLVolume& volume);
|
|
};
|
|
|
|
}
|
|
|
|
#endif
|