PrusaSlicer-NonPlainar/src/libslic3r/Config.hpp
bubnikv 8d7f88b381 Imported error reporting when loading presets with option keys
or option values that our poor software does not understand.
This applies to configs added by some forks of slic3r, for example
slic3r++
PrusaSlicer has encountered an error: Failed loading the preset file: #3909
2020-03-25 16:04:11 +01:00

1845 lines
83 KiB
C++

#ifndef slic3r_Config_hpp_
#define slic3r_Config_hpp_
#include <assert.h>
#include <map>
#include <climits>
#include <cstdio>
#include <cstdlib>
#include <functional>
#include <iostream>
#include <stdexcept>
#include <string>
#include <vector>
#include "libslic3r.h"
#include "clonable_ptr.hpp"
#include "Point.hpp"
#include <boost/algorithm/string/trim.hpp>
#include <boost/format/format_fwd.hpp>
#include <boost/property_tree/ptree_fwd.hpp>
#include <cereal/access.hpp>
#include <cereal/types/base_class.hpp>
namespace Slic3r {
// Name of the configuration option.
typedef std::string t_config_option_key;
typedef std::vector<std::string> t_config_option_keys;
extern std::string escape_string_cstyle(const std::string &str);
extern std::string escape_strings_cstyle(const std::vector<std::string> &strs);
extern bool unescape_string_cstyle(const std::string &str, std::string &out);
extern bool unescape_strings_cstyle(const std::string &str, std::vector<std::string> &out);
/// Specialization of std::exception to indicate that an unknown config option has been encountered.
class UnknownOptionException : public std::runtime_error {
public:
UnknownOptionException() :
std::runtime_error("Unknown option exception") {}
UnknownOptionException(const std::string &opt_key) :
std::runtime_error(std::string("Unknown option exception: ") + opt_key) {}
};
/// Indicate that the ConfigBase derived class does not provide config definition (the method def() returns null).
class NoDefinitionException : public std::runtime_error
{
public:
NoDefinitionException() :
std::runtime_error("No definition exception") {}
NoDefinitionException(const std::string &opt_key) :
std::runtime_error(std::string("No definition exception: ") + opt_key) {}
};
/// Indicate that an unsupported accessor was called on a config option.
class BadOptionTypeException : public std::runtime_error
{
public:
BadOptionTypeException() : std::runtime_error("Bad option type exception") {}
BadOptionTypeException(const std::string &message) : std::runtime_error(message) {}
BadOptionTypeException(const char* message) : std::runtime_error(message) {}
};
// Type of a configuration value.
enum ConfigOptionType {
coVectorType = 0x4000,
coNone = 0,
// single float
coFloat = 1,
// vector of floats
coFloats = coFloat + coVectorType,
// single int
coInt = 2,
// vector of ints
coInts = coInt + coVectorType,
// single string
coString = 3,
// vector of strings
coStrings = coString + coVectorType,
// percent value. Currently only used for infill.
coPercent = 4,
// percents value. Currently used for retract before wipe only.
coPercents = coPercent + coVectorType,
// a fraction or an absolute value
coFloatOrPercent = 5,
// single 2d point (Point2f). Currently not used.
coPoint = 6,
// vector of 2d points (Point2f). Currently used for the definition of the print bed and for the extruder offsets.
coPoints = coPoint + coVectorType,
coPoint3 = 7,
// coPoint3s = coPoint3 + coVectorType,
// single boolean value
coBool = 8,
// vector of boolean values
coBools = coBool + coVectorType,
// a generic enum
coEnum = 9,
};
enum ConfigOptionMode {
comSimple = 0,
comAdvanced,
comExpert
};
enum PrinterTechnology : unsigned char
{
// Fused Filament Fabrication
ptFFF,
// Stereolitography
ptSLA,
// Unknown, useful for command line processing
ptUnknown,
// Any technology, useful for parameters compatible with both ptFFF and ptSLA
ptAny
};
// A generic value of a configuration option.
class ConfigOption {
public:
virtual ~ConfigOption() {}
virtual ConfigOptionType type() const = 0;
virtual std::string serialize() const = 0;
virtual bool deserialize(const std::string &str, bool append = false) = 0;
virtual ConfigOption* clone() const = 0;
// Set a value from a ConfigOption. The two options should be compatible.
virtual void set(const ConfigOption *option) = 0;
virtual int getInt() const { throw BadOptionTypeException("Calling ConfigOption::getInt on a non-int ConfigOption"); }
virtual double getFloat() const { throw BadOptionTypeException("Calling ConfigOption::getFloat on a non-float ConfigOption"); }
virtual bool getBool() const { throw BadOptionTypeException("Calling ConfigOption::getBool on a non-boolean ConfigOption"); }
virtual void setInt(int /* val */) { throw BadOptionTypeException("Calling ConfigOption::setInt on a non-int ConfigOption"); }
virtual bool operator==(const ConfigOption &rhs) const = 0;
bool operator!=(const ConfigOption &rhs) const { return ! (*this == rhs); }
bool is_scalar() const { return (int(this->type()) & int(coVectorType)) == 0; }
bool is_vector() const { return ! this->is_scalar(); }
// If this option is nullable, then it may have its value or values set to nil.
virtual bool nullable() const { return false; }
// A scalar is nil, or all values of a vector are nil.
virtual bool is_nil() const { return false; }
// Is this option overridden by another option?
// An option overrides another option if it is not nil and not equal.
virtual bool overriden_by(const ConfigOption *rhs) const {
assert(! this->nullable() && ! rhs->nullable());
return *this != *rhs;
}
// Apply an override option, possibly a nullable one.
virtual bool apply_override(const ConfigOption *rhs) {
if (*this == *rhs)
return false;
*this = *rhs;
return true;
}
};
typedef ConfigOption* ConfigOptionPtr;
typedef const ConfigOption* ConfigOptionConstPtr;
// Value of a single valued option (bool, int, float, string, point, enum)
template <class T>
class ConfigOptionSingle : public ConfigOption {
public:
T value;
explicit ConfigOptionSingle(T value) : value(value) {}
operator T() const { return this->value; }
void set(const ConfigOption *rhs) override
{
if (rhs->type() != this->type())
throw std::runtime_error("ConfigOptionSingle: Assigning an incompatible type");
assert(dynamic_cast<const ConfigOptionSingle<T>*>(rhs));
this->value = static_cast<const ConfigOptionSingle<T>*>(rhs)->value;
}
bool operator==(const ConfigOption &rhs) const override
{
if (rhs.type() != this->type())
throw std::runtime_error("ConfigOptionSingle: Comparing incompatible types");
assert(dynamic_cast<const ConfigOptionSingle<T>*>(&rhs));
return this->value == static_cast<const ConfigOptionSingle<T>*>(&rhs)->value;
}
bool operator==(const T &rhs) const { return this->value == rhs; }
bool operator!=(const T &rhs) const { return this->value != rhs; }
private:
friend class cereal::access;
template<class Archive> void serialize(Archive & ar) { ar(this->value); }
};
// Value of a vector valued option (bools, ints, floats, strings, points)
class ConfigOptionVectorBase : public ConfigOption {
public:
// Currently used only to initialize the PlaceholderParser.
virtual std::vector<std::string> vserialize() const = 0;
// Set from a vector of ConfigOptions.
// If the rhs ConfigOption is scalar, then its value is used,
// otherwise for each of rhs, the first value of a vector is used.
// This function is useful to collect values for multiple extrder / filament settings.
virtual void set(const std::vector<const ConfigOption*> &rhs) = 0;
// Set a single vector item from either a scalar option or the first value of a vector option.vector of ConfigOptions.
// This function is useful to split values from multiple extrder / filament settings into separate configurations.
virtual void set_at(const ConfigOption *rhs, size_t i, size_t j) = 0;
// Resize the vector of values, copy the newly added values from opt_default if provided.
virtual void resize(size_t n, const ConfigOption *opt_default = nullptr) = 0;
// Clear the values vector.
virtual void clear() = 0;
// Get size of this vector.
virtual size_t size() const = 0;
// Is this vector empty?
virtual bool empty() const = 0;
// Is the value nil? That should only be possible if this->nullable().
virtual bool is_nil(size_t idx) const = 0;
// We just overloaded and hid two base class virtual methods.
// Let's show it was intentional (warnings).
using ConfigOption::set;
using ConfigOption::is_nil;
protected:
// Used to verify type compatibility when assigning to / from a scalar ConfigOption.
ConfigOptionType scalar_type() const { return static_cast<ConfigOptionType>(this->type() - coVectorType); }
};
// Value of a vector valued option (bools, ints, floats, strings, points), template
template <class T>
class ConfigOptionVector : public ConfigOptionVectorBase
{
public:
ConfigOptionVector() {}
explicit ConfigOptionVector(size_t n, const T &value) : values(n, value) {}
explicit ConfigOptionVector(std::initializer_list<T> il) : values(std::move(il)) {}
explicit ConfigOptionVector(const std::vector<T> &values) : values(values) {}
explicit ConfigOptionVector(std::vector<T> &&values) : values(std::move(values)) {}
std::vector<T> values;
void set(const ConfigOption *rhs) override
{
if (rhs->type() != this->type())
throw std::runtime_error("ConfigOptionVector: Assigning an incompatible type");
assert(dynamic_cast<const ConfigOptionVector<T>*>(rhs));
this->values = static_cast<const ConfigOptionVector<T>*>(rhs)->values;
}
// Set from a vector of ConfigOptions.
// If the rhs ConfigOption is scalar, then its value is used,
// otherwise for each of rhs, the first value of a vector is used.
// This function is useful to collect values for multiple extrder / filament settings.
void set(const std::vector<const ConfigOption*> &rhs) override
{
this->values.clear();
this->values.reserve(rhs.size());
for (const ConfigOption *opt : rhs) {
if (opt->type() == this->type()) {
auto other = static_cast<const ConfigOptionVector<T>*>(opt);
if (other->values.empty())
throw std::runtime_error("ConfigOptionVector::set(): Assigning from an empty vector");
this->values.emplace_back(other->values.front());
} else if (opt->type() == this->scalar_type())
this->values.emplace_back(static_cast<const ConfigOptionSingle<T>*>(opt)->value);
else
throw std::runtime_error("ConfigOptionVector::set():: Assigning an incompatible type");
}
}
// Set a single vector item from either a scalar option or the first value of a vector option.vector of ConfigOptions.
// This function is useful to split values from multiple extrder / filament settings into separate configurations.
void set_at(const ConfigOption *rhs, size_t i, size_t j) override
{
// It is expected that the vector value has at least one value, which is the default, if not overwritten.
assert(! this->values.empty());
if (this->values.size() <= i) {
// Resize this vector, fill in the new vector fields with the copy of the first field.
T v = this->values.front();
this->values.resize(i + 1, v);
}
if (rhs->type() == this->type()) {
// Assign the first value of the rhs vector.
auto other = static_cast<const ConfigOptionVector<T>*>(rhs);
if (other->values.empty())
throw std::runtime_error("ConfigOptionVector::set_at(): Assigning from an empty vector");
this->values[i] = other->get_at(j);
} else if (rhs->type() == this->scalar_type())
this->values[i] = static_cast<const ConfigOptionSingle<T>*>(rhs)->value;
else
throw std::runtime_error("ConfigOptionVector::set_at(): Assigning an incompatible type");
}
const T& get_at(size_t i) const
{
assert(! this->values.empty());
return (i < this->values.size()) ? this->values[i] : this->values.front();
}
T& get_at(size_t i) { return const_cast<T&>(std::as_const(*this).get_at(i)); }
// Resize this vector by duplicating the /*last*/first value.
// If the current vector is empty, the default value is used instead.
void resize(size_t n, const ConfigOption *opt_default = nullptr) override
{
assert(opt_default == nullptr || opt_default->is_vector());
// assert(opt_default == nullptr || dynamic_cast<ConfigOptionVector<T>>(opt_default));
assert(! this->values.empty() || opt_default != nullptr);
if (n == 0)
this->values.clear();
else if (n < this->values.size())
this->values.erase(this->values.begin() + n, this->values.end());
else if (n > this->values.size()) {
if (this->values.empty()) {
if (opt_default == nullptr)
throw std::runtime_error("ConfigOptionVector::resize(): No default value provided.");
if (opt_default->type() != this->type())
throw std::runtime_error("ConfigOptionVector::resize(): Extending with an incompatible type.");
this->values.resize(n, static_cast<const ConfigOptionVector<T>*>(opt_default)->values.front());
} else {
// Resize by duplicating the last value.
this->values.resize(n, this->values./*back*/front());
}
}
}
// Clear the values vector.
void clear() override { this->values.clear(); }
size_t size() const override { return this->values.size(); }
bool empty() const override { return this->values.empty(); }
bool operator==(const ConfigOption &rhs) const override
{
if (rhs.type() != this->type())
throw std::runtime_error("ConfigOptionVector: Comparing incompatible types");
assert(dynamic_cast<const ConfigOptionVector<T>*>(&rhs));
return this->values == static_cast<const ConfigOptionVector<T>*>(&rhs)->values;
}
bool operator==(const std::vector<T> &rhs) const { return this->values == rhs; }
bool operator!=(const std::vector<T> &rhs) const { return this->values != rhs; }
// Is this option overridden by another option?
// An option overrides another option if it is not nil and not equal.
bool overriden_by(const ConfigOption *rhs) const override {
if (this->nullable())
throw std::runtime_error("Cannot override a nullable ConfigOption.");
if (rhs->type() != this->type())
throw std::runtime_error("ConfigOptionVector.overriden_by() applied to different types.");
auto rhs_vec = static_cast<const ConfigOptionVector<T>*>(rhs);
if (! rhs->nullable())
// Overridding a non-nullable object with another non-nullable object.
return this->values != rhs_vec->values;
size_t i = 0;
size_t cnt = std::min(this->size(), rhs_vec->size());
for (; i < cnt; ++ i)
if (! rhs_vec->is_nil(i) && this->values[i] != rhs_vec->values[i])
return true;
for (; i < rhs_vec->size(); ++ i)
if (! rhs_vec->is_nil(i))
return true;
return false;
}
// Apply an override option, possibly a nullable one.
bool apply_override(const ConfigOption *rhs) override {
if (this->nullable())
throw std::runtime_error("Cannot override a nullable ConfigOption.");
if (rhs->type() != this->type())
throw std::runtime_error("ConfigOptionVector.apply_override() applied to different types.");
auto rhs_vec = static_cast<const ConfigOptionVector<T>*>(rhs);
if (! rhs->nullable()) {
// Overridding a non-nullable object with another non-nullable object.
if (this->values != rhs_vec->values) {
this->values = rhs_vec->values;
return true;
}
return false;
}
size_t i = 0;
size_t cnt = std::min(this->size(), rhs_vec->size());
bool modified = false;
for (; i < cnt; ++ i)
if (! rhs_vec->is_nil(i) && this->values[i] != rhs_vec->values[i]) {
this->values[i] = rhs_vec->values[i];
modified = true;
}
for (; i < rhs_vec->size(); ++ i)
if (! rhs_vec->is_nil(i)) {
if (this->values.empty())
this->values.resize(i + 1);
else
this->values.resize(i + 1, this->values.front());
this->values[i] = rhs_vec->values[i];
modified = true;
}
return modified;
}
private:
friend class cereal::access;
template<class Archive> void serialize(Archive & ar) { ar(this->values); }
};
class ConfigOptionFloat : public ConfigOptionSingle<double>
{
public:
ConfigOptionFloat() : ConfigOptionSingle<double>(0) {}
explicit ConfigOptionFloat(double _value) : ConfigOptionSingle<double>(_value) {}
static ConfigOptionType static_type() { return coFloat; }
ConfigOptionType type() const override { return static_type(); }
double getFloat() const override { return this->value; }
ConfigOption* clone() const override { return new ConfigOptionFloat(*this); }
bool operator==(const ConfigOptionFloat &rhs) const { return this->value == rhs.value; }
std::string serialize() const override
{
std::ostringstream ss;
ss << this->value;
return ss.str();
}
bool deserialize(const std::string &str, bool append = false) override
{
UNUSED(append);
std::istringstream iss(str);
iss >> this->value;
return !iss.fail();
}
ConfigOptionFloat& operator=(const ConfigOption *opt)
{
this->set(opt);
return *this;
}
private:
friend class cereal::access;
template<class Archive> void serialize(Archive &ar) { ar(cereal::base_class<ConfigOptionSingle<double>>(this)); }
};
template<bool NULLABLE>
class ConfigOptionFloatsTempl : public ConfigOptionVector<double>
{
public:
ConfigOptionFloatsTempl() : ConfigOptionVector<double>() {}
explicit ConfigOptionFloatsTempl(size_t n, double value) : ConfigOptionVector<double>(n, value) {}
explicit ConfigOptionFloatsTempl(std::initializer_list<double> il) : ConfigOptionVector<double>(std::move(il)) {}
explicit ConfigOptionFloatsTempl(const std::vector<double> &vec) : ConfigOptionVector<double>(vec) {}
explicit ConfigOptionFloatsTempl(std::vector<double> &&vec) : ConfigOptionVector<double>(std::move(vec)) {}
static ConfigOptionType static_type() { return coFloats; }
ConfigOptionType type() const override { return static_type(); }
ConfigOption* clone() const override { return new ConfigOptionFloatsTempl(*this); }
bool operator==(const ConfigOptionFloatsTempl &rhs) const { return vectors_equal(this->values, rhs.values); }
bool operator==(const ConfigOption &rhs) const override {
if (rhs.type() != this->type())
throw std::runtime_error("ConfigOptionFloatsTempl: Comparing incompatible types");
assert(dynamic_cast<const ConfigOptionVector<double>*>(&rhs));
return vectors_equal(this->values, static_cast<const ConfigOptionVector<double>*>(&rhs)->values);
}
// Could a special "nil" value be stored inside the vector, indicating undefined value?
bool nullable() const override { return NULLABLE; }
// Special "nil" value to be stored into the vector if this->supports_nil().
static double nil_value() { return std::numeric_limits<double>::quiet_NaN(); }
// A scalar is nil, or all values of a vector are nil.
bool is_nil() const override { for (auto v : this->values) if (! std::isnan(v)) return false; return true; }
bool is_nil(size_t idx) const override { return std::isnan(this->values[idx]); }
std::string serialize() const override
{
std::ostringstream ss;
for (const double &v : this->values) {
if (&v != &this->values.front())
ss << ",";
serialize_single_value(ss, v);
}
return ss.str();
}
std::vector<std::string> vserialize() const override
{
std::vector<std::string> vv;
vv.reserve(this->values.size());
for (const double v : this->values) {
std::ostringstream ss;
serialize_single_value(ss, v);
vv.push_back(ss.str());
}
return vv;
}
bool deserialize(const std::string &str, bool append = false) override
{
if (! append)
this->values.clear();
std::istringstream is(str);
std::string item_str;
while (std::getline(is, item_str, ',')) {
boost::trim(item_str);
if (item_str == "nil") {
if (NULLABLE)
this->values.push_back(nil_value());
else
throw std::runtime_error("Deserializing nil into a non-nullable object");
} else {
std::istringstream iss(item_str);
double value;
iss >> value;
this->values.push_back(value);
}
}
return true;
}
ConfigOptionFloatsTempl& operator=(const ConfigOption *opt)
{
this->set(opt);
return *this;
}
protected:
void serialize_single_value(std::ostringstream &ss, const double v) const {
if (std::isfinite(v))
ss << v;
else if (std::isnan(v)) {
if (NULLABLE)
ss << "nil";
else
throw std::runtime_error("Serializing NaN");
} else
throw std::runtime_error("Serializing invalid number");
}
static bool vectors_equal(const std::vector<double> &v1, const std::vector<double> &v2) {
if (NULLABLE) {
if (v1.size() != v2.size())
return false;
for (auto it1 = v1.begin(), it2 = v2.begin(); it1 != v1.end(); ++ it1, ++ it2)
if (! ((std::isnan(*it1) && std::isnan(*it2)) || *it1 == *it2))
return false;
return true;
} else
// Not supporting nullable values, the default vector compare is cheaper.
return v1 == v2;
}
private:
friend class cereal::access;
template<class Archive> void serialize(Archive &ar) { ar(cereal::base_class<ConfigOptionVector<double>>(this)); }
};
using ConfigOptionFloats = ConfigOptionFloatsTempl<false>;
using ConfigOptionFloatsNullable = ConfigOptionFloatsTempl<true>;
class ConfigOptionInt : public ConfigOptionSingle<int>
{
public:
ConfigOptionInt() : ConfigOptionSingle<int>(0) {}
explicit ConfigOptionInt(int value) : ConfigOptionSingle<int>(value) {}
explicit ConfigOptionInt(double _value) : ConfigOptionSingle<int>(int(floor(_value + 0.5))) {}
static ConfigOptionType static_type() { return coInt; }
ConfigOptionType type() const override { return static_type(); }
int getInt() const override { return this->value; }
void setInt(int val) override { this->value = val; }
ConfigOption* clone() const override { return new ConfigOptionInt(*this); }
bool operator==(const ConfigOptionInt &rhs) const { return this->value == rhs.value; }
std::string serialize() const override
{
std::ostringstream ss;
ss << this->value;
return ss.str();
}
bool deserialize(const std::string &str, bool append = false) override
{
UNUSED(append);
std::istringstream iss(str);
iss >> this->value;
return !iss.fail();
}
ConfigOptionInt& operator=(const ConfigOption *opt)
{
this->set(opt);
return *this;
}
private:
friend class cereal::access;
template<class Archive> void serialize(Archive &ar) { ar(cereal::base_class<ConfigOptionSingle<int>>(this)); }
};
template<bool NULLABLE>
class ConfigOptionIntsTempl : public ConfigOptionVector<int>
{
public:
ConfigOptionIntsTempl() : ConfigOptionVector<int>() {}
explicit ConfigOptionIntsTempl(size_t n, int value) : ConfigOptionVector<int>(n, value) {}
explicit ConfigOptionIntsTempl(std::initializer_list<int> il) : ConfigOptionVector<int>(std::move(il)) {}
static ConfigOptionType static_type() { return coInts; }
ConfigOptionType type() const override { return static_type(); }
ConfigOption* clone() const override { return new ConfigOptionIntsTempl(*this); }
ConfigOptionIntsTempl& operator=(const ConfigOption *opt) { this->set(opt); return *this; }
bool operator==(const ConfigOptionIntsTempl &rhs) const { return this->values == rhs.values; }
// Could a special "nil" value be stored inside the vector, indicating undefined value?
bool nullable() const override { return NULLABLE; }
// Special "nil" value to be stored into the vector if this->supports_nil().
static int nil_value() { return std::numeric_limits<int>::max(); }
// A scalar is nil, or all values of a vector are nil.
bool is_nil() const override { for (auto v : this->values) if (v != nil_value()) return false; return true; }
bool is_nil(size_t idx) const override { return this->values[idx] == nil_value(); }
std::string serialize() const override
{
std::ostringstream ss;
for (const int &v : this->values) {
if (&v != &this->values.front())
ss << ",";
serialize_single_value(ss, v);
}
return ss.str();
}
std::vector<std::string> vserialize() const override
{
std::vector<std::string> vv;
vv.reserve(this->values.size());
for (const int v : this->values) {
std::ostringstream ss;
serialize_single_value(ss, v);
vv.push_back(ss.str());
}
return vv;
}
bool deserialize(const std::string &str, bool append = false) override
{
if (! append)
this->values.clear();
std::istringstream is(str);
std::string item_str;
while (std::getline(is, item_str, ',')) {
boost::trim(item_str);
if (item_str == "nil") {
if (NULLABLE)
this->values.push_back(nil_value());
else
throw std::runtime_error("Deserializing nil into a non-nullable object");
} else {
std::istringstream iss(item_str);
int value;
iss >> value;
this->values.push_back(value);
}
}
return true;
}
private:
void serialize_single_value(std::ostringstream &ss, const int v) const {
if (v == nil_value()) {
if (NULLABLE)
ss << "nil";
else
throw std::runtime_error("Serializing NaN");
} else
ss << v;
}
friend class cereal::access;
template<class Archive> void serialize(Archive &ar) { ar(cereal::base_class<ConfigOptionVector<int>>(this)); }
};
using ConfigOptionInts = ConfigOptionIntsTempl<false>;
using ConfigOptionIntsNullable = ConfigOptionIntsTempl<true>;
class ConfigOptionString : public ConfigOptionSingle<std::string>
{
public:
ConfigOptionString() : ConfigOptionSingle<std::string>("") {}
explicit ConfigOptionString(const std::string &value) : ConfigOptionSingle<std::string>(value) {}
static ConfigOptionType static_type() { return coString; }
ConfigOptionType type() const override { return static_type(); }
ConfigOption* clone() const override { return new ConfigOptionString(*this); }
ConfigOptionString& operator=(const ConfigOption *opt) { this->set(opt); return *this; }
bool operator==(const ConfigOptionString &rhs) const { return this->value == rhs.value; }
bool empty() const { return this->value.empty(); }
std::string serialize() const override
{
return escape_string_cstyle(this->value);
}
bool deserialize(const std::string &str, bool append = false) override
{
UNUSED(append);
return unescape_string_cstyle(str, this->value);
}
private:
friend class cereal::access;
template<class Archive> void serialize(Archive &ar) { ar(cereal::base_class<ConfigOptionSingle<std::string>>(this)); }
};
// semicolon-separated strings
class ConfigOptionStrings : public ConfigOptionVector<std::string>
{
public:
ConfigOptionStrings() : ConfigOptionVector<std::string>() {}
explicit ConfigOptionStrings(size_t n, const std::string &value) : ConfigOptionVector<std::string>(n, value) {}
explicit ConfigOptionStrings(const std::vector<std::string> &values) : ConfigOptionVector<std::string>(values) {}
explicit ConfigOptionStrings(std::vector<std::string> &&values) : ConfigOptionVector<std::string>(std::move(values)) {}
explicit ConfigOptionStrings(std::initializer_list<std::string> il) : ConfigOptionVector<std::string>(std::move(il)) {}
static ConfigOptionType static_type() { return coStrings; }
ConfigOptionType type() const override { return static_type(); }
ConfigOption* clone() const override { return new ConfigOptionStrings(*this); }
ConfigOptionStrings& operator=(const ConfigOption *opt) { this->set(opt); return *this; }
bool operator==(const ConfigOptionStrings &rhs) const { return this->values == rhs.values; }
bool is_nil(size_t) const override { return false; }
std::string serialize() const override
{
return escape_strings_cstyle(this->values);
}
std::vector<std::string> vserialize() const override
{
return this->values;
}
bool deserialize(const std::string &str, bool append = false) override
{
if (! append)
this->values.clear();
return unescape_strings_cstyle(str, this->values);
}
private:
friend class cereal::access;
template<class Archive> void serialize(Archive &ar) { ar(cereal::base_class<ConfigOptionVector<std::string>>(this)); }
};
class ConfigOptionPercent : public ConfigOptionFloat
{
public:
ConfigOptionPercent() : ConfigOptionFloat(0) {}
explicit ConfigOptionPercent(double _value) : ConfigOptionFloat(_value) {}
static ConfigOptionType static_type() { return coPercent; }
ConfigOptionType type() const override { return static_type(); }
ConfigOption* clone() const override { return new ConfigOptionPercent(*this); }
ConfigOptionPercent& operator=(const ConfigOption *opt) { this->set(opt); return *this; }
bool operator==(const ConfigOptionPercent &rhs) const { return this->value == rhs.value; }
double get_abs_value(double ratio_over) const { return ratio_over * this->value / 100; }
std::string serialize() const override
{
std::ostringstream ss;
ss << this->value;
std::string s(ss.str());
s += "%";
return s;
}
bool deserialize(const std::string &str, bool append = false) override
{
UNUSED(append);
// don't try to parse the trailing % since it's optional
std::istringstream iss(str);
iss >> this->value;
return !iss.fail();
}
private:
friend class cereal::access;
template<class Archive> void serialize(Archive &ar) { ar(cereal::base_class<ConfigOptionFloat>(this)); }
};
template<bool NULLABLE>
class ConfigOptionPercentsTempl : public ConfigOptionFloatsTempl<NULLABLE>
{
public:
ConfigOptionPercentsTempl() : ConfigOptionFloatsTempl<NULLABLE>() {}
explicit ConfigOptionPercentsTempl(size_t n, double value) : ConfigOptionFloatsTempl<NULLABLE>(n, value) {}
explicit ConfigOptionPercentsTempl(std::initializer_list<double> il) : ConfigOptionFloatsTempl<NULLABLE>(std::move(il)) {}
explicit ConfigOptionPercentsTempl(const std::vector<double>& vec) : ConfigOptionFloatsTempl<NULLABLE>(vec) {}
explicit ConfigOptionPercentsTempl(std::vector<double>&& vec) : ConfigOptionFloatsTempl<NULLABLE>(std::move(vec)) {}
static ConfigOptionType static_type() { return coPercents; }
ConfigOptionType type() const override { return static_type(); }
ConfigOption* clone() const override { return new ConfigOptionPercentsTempl(*this); }
ConfigOptionPercentsTempl& operator=(const ConfigOption *opt) { this->set(opt); return *this; }
bool operator==(const ConfigOptionPercentsTempl &rhs) const { return this->values == rhs.values; }
std::string serialize() const override
{
std::ostringstream ss;
for (const double &v : this->values) {
if (&v != &this->values.front())
ss << ",";
this->serialize_single_value(ss, v);
if (! std::isnan(v))
ss << "%";
}
std::string str = ss.str();
return str;
}
std::vector<std::string> vserialize() const override
{
std::vector<std::string> vv;
vv.reserve(this->values.size());
for (const double v : this->values) {
std::ostringstream ss;
this->serialize_single_value(ss, v);
if (! std::isnan(v))
ss << "%";
vv.push_back(ss.str());
}
return vv;
}
// The float's deserialize function shall ignore the trailing optional %.
// bool deserialize(const std::string &str, bool append = false) override;
private:
friend class cereal::access;
template<class Archive> void serialize(Archive &ar) { ar(cereal::base_class<ConfigOptionFloatsTempl<NULLABLE>>(this)); }
};
using ConfigOptionPercents = ConfigOptionPercentsTempl<false>;
using ConfigOptionPercentsNullable = ConfigOptionPercentsTempl<true>;
class ConfigOptionFloatOrPercent : public ConfigOptionPercent
{
public:
bool percent;
ConfigOptionFloatOrPercent() : ConfigOptionPercent(0), percent(false) {}
explicit ConfigOptionFloatOrPercent(double _value, bool _percent) : ConfigOptionPercent(_value), percent(_percent) {}
static ConfigOptionType static_type() { return coFloatOrPercent; }
ConfigOptionType type() const override { return static_type(); }
ConfigOption* clone() const override { return new ConfigOptionFloatOrPercent(*this); }
ConfigOptionFloatOrPercent& operator=(const ConfigOption *opt) { this->set(opt); return *this; }
bool operator==(const ConfigOption &rhs) const override
{
if (rhs.type() != this->type())
throw std::runtime_error("ConfigOptionFloatOrPercent: Comparing incompatible types");
assert(dynamic_cast<const ConfigOptionFloatOrPercent*>(&rhs));
return *this == *static_cast<const ConfigOptionFloatOrPercent*>(&rhs);
}
bool operator==(const ConfigOptionFloatOrPercent &rhs) const
{ return this->value == rhs.value && this->percent == rhs.percent; }
double get_abs_value(double ratio_over) const
{ return this->percent ? (ratio_over * this->value / 100) : this->value; }
void set(const ConfigOption *rhs) override {
if (rhs->type() != this->type())
throw std::runtime_error("ConfigOptionFloatOrPercent: Assigning an incompatible type");
assert(dynamic_cast<const ConfigOptionFloatOrPercent*>(rhs));
*this = *static_cast<const ConfigOptionFloatOrPercent*>(rhs);
}
std::string serialize() const override
{
std::ostringstream ss;
ss << this->value;
std::string s(ss.str());
if (this->percent) s += "%";
return s;
}
bool deserialize(const std::string &str, bool append = false) override
{
UNUSED(append);
this->percent = str.find_first_of("%") != std::string::npos;
std::istringstream iss(str);
iss >> this->value;
return !iss.fail();
}
private:
friend class cereal::access;
template<class Archive> void serialize(Archive &ar) { ar(cereal::base_class<ConfigOptionPercent>(this), percent); }
};
class ConfigOptionPoint : public ConfigOptionSingle<Vec2d>
{
public:
ConfigOptionPoint() : ConfigOptionSingle<Vec2d>(Vec2d(0,0)) {}
explicit ConfigOptionPoint(const Vec2d &value) : ConfigOptionSingle<Vec2d>(value) {}
static ConfigOptionType static_type() { return coPoint; }
ConfigOptionType type() const override { return static_type(); }
ConfigOption* clone() const override { return new ConfigOptionPoint(*this); }
ConfigOptionPoint& operator=(const ConfigOption *opt) { this->set(opt); return *this; }
bool operator==(const ConfigOptionPoint &rhs) const { return this->value == rhs.value; }
std::string serialize() const override
{
std::ostringstream ss;
ss << this->value(0);
ss << ",";
ss << this->value(1);
return ss.str();
}
bool deserialize(const std::string &str, bool append = false) override
{
UNUSED(append);
char dummy;
return sscanf(str.data(), " %lf , %lf %c", &this->value(0), &this->value(1), &dummy) == 2 ||
sscanf(str.data(), " %lf x %lf %c", &this->value(0), &this->value(1), &dummy) == 2;
}
private:
friend class cereal::access;
template<class Archive> void serialize(Archive &ar) { ar(cereal::base_class<ConfigOptionSingle<Vec2d>>(this)); }
};
class ConfigOptionPoints : public ConfigOptionVector<Vec2d>
{
public:
ConfigOptionPoints() : ConfigOptionVector<Vec2d>() {}
explicit ConfigOptionPoints(size_t n, const Vec2d &value) : ConfigOptionVector<Vec2d>(n, value) {}
explicit ConfigOptionPoints(std::initializer_list<Vec2d> il) : ConfigOptionVector<Vec2d>(std::move(il)) {}
explicit ConfigOptionPoints(const std::vector<Vec2d> &values) : ConfigOptionVector<Vec2d>(values) {}
static ConfigOptionType static_type() { return coPoints; }
ConfigOptionType type() const override { return static_type(); }
ConfigOption* clone() const override { return new ConfigOptionPoints(*this); }
ConfigOptionPoints& operator=(const ConfigOption *opt) { this->set(opt); return *this; }
bool operator==(const ConfigOptionPoints &rhs) const { return this->values == rhs.values; }
bool is_nil(size_t) const override { return false; }
std::string serialize() const override
{
std::ostringstream ss;
for (Pointfs::const_iterator it = this->values.begin(); it != this->values.end(); ++it) {
if (it - this->values.begin() != 0) ss << ",";
ss << (*it)(0);
ss << "x";
ss << (*it)(1);
}
return ss.str();
}
std::vector<std::string> vserialize() const override
{
std::vector<std::string> vv;
for (Pointfs::const_iterator it = this->values.begin(); it != this->values.end(); ++it) {
std::ostringstream ss;
ss << *it;
vv.push_back(ss.str());
}
return vv;
}
bool deserialize(const std::string &str, bool append = false) override
{
if (! append)
this->values.clear();
std::istringstream is(str);
std::string point_str;
while (std::getline(is, point_str, ',')) {
Vec2d point(Vec2d::Zero());
std::istringstream iss(point_str);
std::string coord_str;
if (std::getline(iss, coord_str, 'x')) {
std::istringstream(coord_str) >> point(0);
if (std::getline(iss, coord_str, 'x')) {
std::istringstream(coord_str) >> point(1);
}
}
this->values.push_back(point);
}
return true;
}
private:
friend class cereal::access;
template<class Archive> void save(Archive& archive) const {
size_t cnt = this->values.size();
archive(cnt);
archive.saveBinary((const char*)this->values.data(), sizeof(Vec2d) * cnt);
}
template<class Archive> void load(Archive& archive) {
size_t cnt;
archive(cnt);
this->values.assign(cnt, Vec2d());
archive.loadBinary((char*)this->values.data(), sizeof(Vec2d) * cnt);
}
};
class ConfigOptionPoint3 : public ConfigOptionSingle<Vec3d>
{
public:
ConfigOptionPoint3() : ConfigOptionSingle<Vec3d>(Vec3d(0,0,0)) {}
explicit ConfigOptionPoint3(const Vec3d &value) : ConfigOptionSingle<Vec3d>(value) {}
static ConfigOptionType static_type() { return coPoint3; }
ConfigOptionType type() const override { return static_type(); }
ConfigOption* clone() const override { return new ConfigOptionPoint3(*this); }
ConfigOptionPoint3& operator=(const ConfigOption *opt) { this->set(opt); return *this; }
bool operator==(const ConfigOptionPoint3 &rhs) const { return this->value == rhs.value; }
std::string serialize() const override
{
std::ostringstream ss;
ss << this->value(0);
ss << ",";
ss << this->value(1);
ss << ",";
ss << this->value(2);
return ss.str();
}
bool deserialize(const std::string &str, bool append = false) override
{
UNUSED(append);
char dummy;
return sscanf(str.data(), " %lf , %lf , %lf %c", &this->value(0), &this->value(1), &this->value(2), &dummy) == 2 ||
sscanf(str.data(), " %lf x %lf x %lf %c", &this->value(0), &this->value(1), &this->value(2), &dummy) == 2;
}
private:
friend class cereal::access;
template<class Archive> void serialize(Archive &ar) { ar(cereal::base_class<ConfigOptionSingle<Vec3d>>(this)); }
};
class ConfigOptionBool : public ConfigOptionSingle<bool>
{
public:
ConfigOptionBool() : ConfigOptionSingle<bool>(false) {}
explicit ConfigOptionBool(bool _value) : ConfigOptionSingle<bool>(_value) {}
static ConfigOptionType static_type() { return coBool; }
ConfigOptionType type() const override { return static_type(); }
bool getBool() const override { return this->value; }
ConfigOption* clone() const override { return new ConfigOptionBool(*this); }
ConfigOptionBool& operator=(const ConfigOption *opt) { this->set(opt); return *this; }
bool operator==(const ConfigOptionBool &rhs) const { return this->value == rhs.value; }
std::string serialize() const override
{
return std::string(this->value ? "1" : "0");
}
bool deserialize(const std::string &str, bool append = false) override
{
UNUSED(append);
this->value = (str.compare("1") == 0);
return true;
}
private:
friend class cereal::access;
template<class Archive> void serialize(Archive &ar) { ar(cereal::base_class<ConfigOptionSingle<bool>>(this)); }
};
template<bool NULLABLE>
class ConfigOptionBoolsTempl : public ConfigOptionVector<unsigned char>
{
public:
ConfigOptionBoolsTempl() : ConfigOptionVector<unsigned char>() {}
explicit ConfigOptionBoolsTempl(size_t n, bool value) : ConfigOptionVector<unsigned char>(n, (unsigned char)value) {}
explicit ConfigOptionBoolsTempl(std::initializer_list<bool> il) { values.reserve(il.size()); for (bool b : il) values.emplace_back((unsigned char)b); }
explicit ConfigOptionBoolsTempl(std::initializer_list<unsigned char> il) { values.reserve(il.size()); for (unsigned char b : il) values.emplace_back(b); }
explicit ConfigOptionBoolsTempl(const std::vector<unsigned char>& vec) : ConfigOptionVector<unsigned char>(vec) {}
explicit ConfigOptionBoolsTempl(std::vector<unsigned char>&& vec) : ConfigOptionVector<unsigned char>(std::move(vec)) {}
static ConfigOptionType static_type() { return coBools; }
ConfigOptionType type() const override { return static_type(); }
ConfigOption* clone() const override { return new ConfigOptionBoolsTempl(*this); }
ConfigOptionBoolsTempl& operator=(const ConfigOption *opt) { this->set(opt); return *this; }
bool operator==(const ConfigOptionBoolsTempl &rhs) const { return this->values == rhs.values; }
// Could a special "nil" value be stored inside the vector, indicating undefined value?
bool nullable() const override { return NULLABLE; }
// Special "nil" value to be stored into the vector if this->supports_nil().
static unsigned char nil_value() { return std::numeric_limits<unsigned char>::max(); }
// A scalar is nil, or all values of a vector are nil.
bool is_nil() const override { for (auto v : this->values) if (v != nil_value()) return false; return true; }
bool is_nil(size_t idx) const override { return this->values[idx] == nil_value(); }
bool& get_at(size_t i) {
assert(! this->values.empty());
return *reinterpret_cast<bool*>(&((i < this->values.size()) ? this->values[i] : this->values.front()));
}
//FIXME this smells, the parent class has the method declared returning (unsigned char&).
bool get_at(size_t i) const { return ((i < this->values.size()) ? this->values[i] : this->values.front()) != 0; }
std::string serialize() const override
{
std::ostringstream ss;
for (const unsigned char &v : this->values) {
if (&v != &this->values.front())
ss << ",";
this->serialize_single_value(ss, v);
}
return ss.str();
}
std::vector<std::string> vserialize() const override
{
std::vector<std::string> vv;
for (const unsigned char v : this->values) {
std::ostringstream ss;
this->serialize_single_value(ss, v);
vv.push_back(ss.str());
}
return vv;
}
bool deserialize(const std::string &str, bool append = false) override
{
if (! append)
this->values.clear();
std::istringstream is(str);
std::string item_str;
while (std::getline(is, item_str, ',')) {
boost::trim(item_str);
if (item_str == "nil") {
if (NULLABLE)
this->values.push_back(nil_value());
else
throw std::runtime_error("Deserializing nil into a non-nullable object");
} else
this->values.push_back(item_str.compare("1") == 0);
}
return true;
}
protected:
void serialize_single_value(std::ostringstream &ss, const unsigned char v) const {
if (v == nil_value()) {
if (NULLABLE)
ss << "nil";
else
throw std::runtime_error("Serializing NaN");
} else
ss << (v ? "1" : "0");
}
private:
friend class cereal::access;
template<class Archive> void serialize(Archive &ar) { ar(cereal::base_class<ConfigOptionVector<unsigned char>>(this)); }
};
using ConfigOptionBools = ConfigOptionBoolsTempl<false>;
using ConfigOptionBoolsNullable = ConfigOptionBoolsTempl<true>;
// Map from an enum integer value to an enum name.
typedef std::vector<std::string> t_config_enum_names;
// Map from an enum name to an enum integer value.
typedef std::map<std::string,int> t_config_enum_values;
template <class T>
class ConfigOptionEnum : public ConfigOptionSingle<T>
{
public:
// by default, use the first value (0) of the T enum type
ConfigOptionEnum() : ConfigOptionSingle<T>(static_cast<T>(0)) {}
explicit ConfigOptionEnum(T _value) : ConfigOptionSingle<T>(_value) {}
static ConfigOptionType static_type() { return coEnum; }
ConfigOptionType type() const override { return static_type(); }
ConfigOption* clone() const override { return new ConfigOptionEnum<T>(*this); }
ConfigOptionEnum<T>& operator=(const ConfigOption *opt) { this->set(opt); return *this; }
bool operator==(const ConfigOptionEnum<T> &rhs) const { return this->value == rhs.value; }
int getInt() const override { return (int)this->value; }
bool operator==(const ConfigOption &rhs) const override
{
if (rhs.type() != this->type())
throw std::runtime_error("ConfigOptionEnum<T>: Comparing incompatible types");
// rhs could be of the following type: ConfigOptionEnumGeneric or ConfigOptionEnum<T>
return this->value == (T)rhs.getInt();
}
void set(const ConfigOption *rhs) override {
if (rhs->type() != this->type())
throw std::runtime_error("ConfigOptionEnum<T>: Assigning an incompatible type");
// rhs could be of the following type: ConfigOptionEnumGeneric or ConfigOptionEnum<T>
this->value = (T)rhs->getInt();
}
std::string serialize() const override
{
const t_config_enum_names& names = ConfigOptionEnum<T>::get_enum_names();
assert(static_cast<int>(this->value) < int(names.size()));
return names[static_cast<int>(this->value)];
}
bool deserialize(const std::string &str, bool append = false) override
{
UNUSED(append);
return from_string(str, this->value);
}
static bool has(T value)
{
for (const std::pair<std::string, int> &kvp : ConfigOptionEnum<T>::get_enum_values())
if (kvp.second == value)
return true;
return false;
}
// Map from an enum name to an enum integer value.
static const t_config_enum_names& get_enum_names()
{
static t_config_enum_names names;
if (names.empty()) {
// Initialize the map.
const t_config_enum_values &enum_keys_map = ConfigOptionEnum<T>::get_enum_values();
int cnt = 0;
for (const std::pair<std::string, int> &kvp : enum_keys_map)
cnt = std::max(cnt, kvp.second);
cnt += 1;
names.assign(cnt, "");
for (const std::pair<std::string, int> &kvp : enum_keys_map)
names[kvp.second] = kvp.first;
}
return names;
}
// Map from an enum name to an enum integer value.
static const t_config_enum_values& get_enum_values();
static bool from_string(const std::string &str, T &value)
{
const t_config_enum_values &enum_keys_map = ConfigOptionEnum<T>::get_enum_values();
auto it = enum_keys_map.find(str);
if (it == enum_keys_map.end())
return false;
value = static_cast<T>(it->second);
return true;
}
};
// Generic enum configuration value.
// We use this one in DynamicConfig objects when creating a config value object for ConfigOptionType == coEnum.
// In the StaticConfig, it is better to use the specialized ConfigOptionEnum<T> containers.
class ConfigOptionEnumGeneric : public ConfigOptionInt
{
public:
ConfigOptionEnumGeneric(const t_config_enum_values* keys_map = nullptr) : keys_map(keys_map) {}
explicit ConfigOptionEnumGeneric(const t_config_enum_values* keys_map, int value) : ConfigOptionInt(value), keys_map(keys_map) {}
const t_config_enum_values* keys_map;
static ConfigOptionType static_type() { return coEnum; }
ConfigOptionType type() const override { return static_type(); }
ConfigOption* clone() const override { return new ConfigOptionEnumGeneric(*this); }
ConfigOptionEnumGeneric& operator=(const ConfigOption *opt) { this->set(opt); return *this; }
bool operator==(const ConfigOptionEnumGeneric &rhs) const { return this->value == rhs.value; }
bool operator==(const ConfigOption &rhs) const override
{
if (rhs.type() != this->type())
throw std::runtime_error("ConfigOptionEnumGeneric: Comparing incompatible types");
// rhs could be of the following type: ConfigOptionEnumGeneric or ConfigOptionEnum<T>
return this->value == rhs.getInt();
}
void set(const ConfigOption *rhs) override {
if (rhs->type() != this->type())
throw std::runtime_error("ConfigOptionEnumGeneric: Assigning an incompatible type");
// rhs could be of the following type: ConfigOptionEnumGeneric or ConfigOptionEnum<T>
this->value = rhs->getInt();
}
std::string serialize() const override
{
for (const auto &kvp : *this->keys_map)
if (kvp.second == this->value)
return kvp.first;
return std::string();
}
bool deserialize(const std::string &str, bool append = false) override
{
UNUSED(append);
auto it = this->keys_map->find(str);
if (it == this->keys_map->end())
return false;
this->value = it->second;
return true;
}
private:
friend class cereal::access;
template<class Archive> void serialize(Archive& ar) { ar(cereal::base_class<ConfigOptionInt>(this)); }
};
// Definition of a configuration value for the purpose of GUI presentation, editing, value mapping and config file handling.
class ConfigOptionDef
{
public:
// Identifier of this option. It is stored here so that it is accessible through the by_serialization_key_ordinal map.
t_config_option_key opt_key;
// What type? bool, int, string etc.
ConfigOptionType type = coNone;
// If a type is nullable, then it accepts a "nil" value (scalar) or "nil" values (vector).
bool nullable = false;
// Default value of this option. The default value object is owned by ConfigDef, it is released in its destructor.
Slic3r::clonable_ptr<const ConfigOption> default_value;
void set_default_value(const ConfigOption* ptr) { this->default_value = Slic3r::clonable_ptr<const ConfigOption>(ptr); }
template<typename T> const T* get_default_value() const { return static_cast<const T*>(this->default_value.get()); }
// Create an empty option to be used as a base for deserialization of DynamicConfig.
ConfigOption* create_empty_option() const;
// Create a default option to be inserted into a DynamicConfig.
ConfigOption* create_default_option() const;
template<class Archive> ConfigOption* load_option_from_archive(Archive &archive) const {
if (this->nullable) {
switch (this->type) {
case coFloats: { auto opt = new ConfigOptionFloatsNullable(); archive(*opt); return opt; }
case coInts: { auto opt = new ConfigOptionIntsNullable(); archive(*opt); return opt; }
case coPercents: { auto opt = new ConfigOptionPercentsNullable();archive(*opt); return opt; }
case coBools: { auto opt = new ConfigOptionBoolsNullable(); archive(*opt); return opt; }
default: throw std::runtime_error(std::string("ConfigOptionDef::load_option_from_archive(): Unknown nullable option type for option ") + this->opt_key);
}
} else {
switch (this->type) {
case coFloat: { auto opt = new ConfigOptionFloat(); archive(*opt); return opt; }
case coFloats: { auto opt = new ConfigOptionFloats(); archive(*opt); return opt; }
case coInt: { auto opt = new ConfigOptionInt(); archive(*opt); return opt; }
case coInts: { auto opt = new ConfigOptionInts(); archive(*opt); return opt; }
case coString: { auto opt = new ConfigOptionString(); archive(*opt); return opt; }
case coStrings: { auto opt = new ConfigOptionStrings(); archive(*opt); return opt; }
case coPercent: { auto opt = new ConfigOptionPercent(); archive(*opt); return opt; }
case coPercents: { auto opt = new ConfigOptionPercents(); archive(*opt); return opt; }
case coFloatOrPercent: { auto opt = new ConfigOptionFloatOrPercent(); archive(*opt); return opt; }
case coPoint: { auto opt = new ConfigOptionPoint(); archive(*opt); return opt; }
case coPoints: { auto opt = new ConfigOptionPoints(); archive(*opt); return opt; }
case coPoint3: { auto opt = new ConfigOptionPoint3(); archive(*opt); return opt; }
case coBool: { auto opt = new ConfigOptionBool(); archive(*opt); return opt; }
case coBools: { auto opt = new ConfigOptionBools(); archive(*opt); return opt; }
case coEnum: { auto opt = new ConfigOptionEnumGeneric(this->enum_keys_map); archive(*opt); return opt; }
default: throw std::runtime_error(std::string("ConfigOptionDef::load_option_from_archive(): Unknown option type for option ") + this->opt_key);
}
}
}
template<class Archive> ConfigOption* save_option_to_archive(Archive &archive, const ConfigOption *opt) const {
if (this->nullable) {
switch (this->type) {
case coFloats: archive(*static_cast<const ConfigOptionFloatsNullable*>(opt)); break;
case coInts: archive(*static_cast<const ConfigOptionIntsNullable*>(opt)); break;
case coPercents: archive(*static_cast<const ConfigOptionPercentsNullable*>(opt));break;
case coBools: archive(*static_cast<const ConfigOptionBoolsNullable*>(opt)); break;
default: throw std::runtime_error(std::string("ConfigOptionDef::save_option_to_archive(): Unknown nullable option type for option ") + this->opt_key);
}
} else {
switch (this->type) {
case coFloat: archive(*static_cast<const ConfigOptionFloat*>(opt)); break;
case coFloats: archive(*static_cast<const ConfigOptionFloats*>(opt)); break;
case coInt: archive(*static_cast<const ConfigOptionInt*>(opt)); break;
case coInts: archive(*static_cast<const ConfigOptionInts*>(opt)); break;
case coString: archive(*static_cast<const ConfigOptionString*>(opt)); break;
case coStrings: archive(*static_cast<const ConfigOptionStrings*>(opt)); break;
case coPercent: archive(*static_cast<const ConfigOptionPercent*>(opt)); break;
case coPercents: archive(*static_cast<const ConfigOptionPercents*>(opt)); break;
case coFloatOrPercent: archive(*static_cast<const ConfigOptionFloatOrPercent*>(opt)); break;
case coPoint: archive(*static_cast<const ConfigOptionPoint*>(opt)); break;
case coPoints: archive(*static_cast<const ConfigOptionPoints*>(opt)); break;
case coPoint3: archive(*static_cast<const ConfigOptionPoint3*>(opt)); break;
case coBool: archive(*static_cast<const ConfigOptionBool*>(opt)); break;
case coBools: archive(*static_cast<const ConfigOptionBools*>(opt)); break;
case coEnum: archive(*static_cast<const ConfigOptionEnumGeneric*>(opt)); break;
default: throw std::runtime_error(std::string("ConfigOptionDef::save_option_to_archive(): Unknown option type for option ") + this->opt_key);
}
}
// Make the compiler happy, shut up the warnings.
return nullptr;
}
// Usually empty.
// Special values - "i_enum_open", "f_enum_open" to provide combo box for int or float selection,
// "select_open" - to open a selection dialog (currently only a serial port selection).
std::string gui_type;
// Usually empty. Otherwise "serialized" or "show_value"
// The flags may be combined.
// "serialized" - vector valued option is entered in a single edit field. Values are separated by a semicolon.
// "show_value" - even if enum_values / enum_labels are set, still display the value, not the enum label.
std::string gui_flags;
// Label of the GUI input field.
// In case the GUI input fields are grouped in some views, the label defines a short label of a grouped value,
// while full_label contains a label of a stand-alone field.
// The full label is shown, when adding an override parameter for an object or a modified object.
std::string label;
std::string full_label;
// With which printer technology is this configuration valid?
PrinterTechnology printer_technology = ptUnknown;
// Category of a configuration field, from the GUI perspective.
// One of: "Layers and Perimeters", "Infill", "Support material", "Speed", "Extruders", "Advanced", "Extrusion Width"
std::string category;
// A tooltip text shown in the GUI.
std::string tooltip;
// Text right from the input field, usually a unit of measurement.
std::string sidetext;
// Format of this parameter on a command line.
std::string cli;
// Set for type == coFloatOrPercent.
// It provides a link to a configuration value, of which this option provides a ratio.
// For example,
// For example external_perimeter_speed may be defined as a fraction of perimeter_speed.
t_config_option_key ratio_over;
// True for multiline strings.
bool multiline = false;
// For text input: If true, the GUI text box spans the complete page width.
bool full_width = false;
// Not editable. Currently only used for the display of the number of threads.
bool readonly = false;
// Height of a multiline GUI text box.
int height = -1;
// Optional width of an input field.
int width = -1;
// <min, max> limit of a numeric input.
// If not set, the <min, max> is set to <INT_MIN, INT_MAX>
// By setting min=0, only nonnegative input is allowed.
int min = INT_MIN;
int max = INT_MAX;
ConfigOptionMode mode = comSimple;
// Legacy names for this configuration option.
// Used when parsing legacy configuration file.
std::vector<t_config_option_key> aliases;
// Sometimes a single value may well define multiple values in a "beginner" mode.
// Currently used for aliasing "solid_layers" to "top_solid_layers", "bottom_solid_layers".
std::vector<t_config_option_key> shortcut;
// Definition of values / labels for a combo box.
// Mostly used for enums (when type == coEnum), but may be used for ints resp. floats, if gui_type is set to "i_enum_open" resp. "f_enum_open".
std::vector<std::string> enum_values;
std::vector<std::string> enum_labels;
// For enums (when type == coEnum). Maps enum_values to enums.
// Initialized by ConfigOptionEnum<xxx>::get_enum_values()
const t_config_enum_values *enum_keys_map = nullptr;
bool has_enum_value(const std::string &value) const {
for (const std::string &v : enum_values)
if (v == value)
return true;
return false;
}
// 0 is an invalid key.
size_t serialization_key_ordinal = 0;
// Returns the alternative CLI arguments for the given option.
// If there are no cli arguments defined, use the key and replace underscores with dashes.
std::vector<std::string> cli_args(const std::string &key) const;
// Assign this key to cli to disable CLI for this option.
static const constexpr char *nocli = "~~~noCLI";
};
// Map from a config option name to its definition.
// The definition does not carry an actual value of the config option, only its constant default value.
// t_config_option_key is std::string
typedef std::map<t_config_option_key, ConfigOptionDef> t_optiondef_map;
// Definition of configuration values for the purpose of GUI presentation, editing, value mapping and config file handling.
// The configuration definition is static: It does not carry the actual configuration values,
// but it carries the defaults of the configuration values.
class ConfigDef
{
public:
t_optiondef_map options;
std::map<size_t, const ConfigOptionDef*> by_serialization_key_ordinal;
bool has(const t_config_option_key &opt_key) const { return this->options.count(opt_key) > 0; }
const ConfigOptionDef* get(const t_config_option_key &opt_key) const {
t_optiondef_map::iterator it = const_cast<ConfigDef*>(this)->options.find(opt_key);
return (it == this->options.end()) ? nullptr : &it->second;
}
std::vector<std::string> keys() const {
std::vector<std::string> out;
out.reserve(options.size());
for(auto const& kvp : options)
out.push_back(kvp.first);
return out;
}
/// Iterate through all of the CLI options and write them to a stream.
std::ostream& print_cli_help(
std::ostream& out, bool show_defaults,
std::function<bool(const ConfigOptionDef &)> filter = [](const ConfigOptionDef &){ return true; }) const;
protected:
ConfigOptionDef* add(const t_config_option_key &opt_key, ConfigOptionType type);
ConfigOptionDef* add_nullable(const t_config_option_key &opt_key, ConfigOptionType type);
};
// A pure interface to resolving ConfigOptions.
// This pure interface is useful as a base of ConfigBase, also it may be overriden to combine
// various config sources.
class ConfigOptionResolver
{
public:
ConfigOptionResolver() {}
virtual ~ConfigOptionResolver() {}
// Find a ConfigOption instance for a given name.
virtual const ConfigOption* optptr(const t_config_option_key &opt_key) const = 0;
bool has(const t_config_option_key &opt_key) const { return this->optptr(opt_key) != nullptr; }
const ConfigOption* option(const t_config_option_key &opt_key) const { return this->optptr(opt_key); }
template<typename TYPE>
const TYPE* option(const t_config_option_key& opt_key) const
{
const ConfigOption* opt = this->optptr(opt_key);
return (opt == nullptr || opt->type() != TYPE::static_type()) ? nullptr : static_cast<const TYPE*>(opt);
}
const ConfigOption* option_throw(const t_config_option_key& opt_key) const
{
const ConfigOption* opt = this->optptr(opt_key);
if (opt == nullptr)
throw UnknownOptionException(opt_key);
return opt;
}
template<typename TYPE>
const TYPE* option_throw(const t_config_option_key& opt_key) const
{
const ConfigOption* opt = this->option_throw(opt_key);
if (opt->type() != TYPE::static_type())
throw BadOptionTypeException("Conversion to a wrong type");
return static_cast<TYPE*>(opt);
}
};
// An abstract configuration store.
class ConfigBase : public ConfigOptionResolver
{
public:
// Definition of configuration values for the purpose of GUI presentation, editing, value mapping and config file handling.
// The configuration definition is static: It does not carry the actual configuration values,
// but it carries the defaults of the configuration values.
ConfigBase() {}
~ConfigBase() override {}
// Virtual overridables:
public:
// Static configuration definition. Any value stored into this ConfigBase shall have its definition here.
virtual const ConfigDef* def() const = 0;
// Find ando/or create a ConfigOption instance for a given name.
virtual ConfigOption* optptr(const t_config_option_key &opt_key, bool create = false) = 0;
// Collect names of all configuration values maintained by this configuration store.
virtual t_config_option_keys keys() const = 0;
protected:
// Verify whether the opt_key has not been obsoleted or renamed.
// Both opt_key and value may be modified by handle_legacy().
// If the opt_key is no more valid in this version of Slic3r, opt_key is cleared by handle_legacy().
// handle_legacy() is called internally by set_deserialize().
virtual void handle_legacy(t_config_option_key &/*opt_key*/, std::string &/*value*/) const {}
public:
using ConfigOptionResolver::option;
using ConfigOptionResolver::option_throw;
// Non-virtual methods:
ConfigOption* option(const t_config_option_key &opt_key, bool create = false)
{ return this->optptr(opt_key, create); }
template<typename TYPE>
TYPE* option(const t_config_option_key &opt_key, bool create = false)
{
ConfigOption *opt = this->optptr(opt_key, create);
return (opt == nullptr || opt->type() != TYPE::static_type()) ? nullptr : static_cast<TYPE*>(opt);
}
ConfigOption* option_throw(const t_config_option_key &opt_key, bool create = false)
{
ConfigOption *opt = this->optptr(opt_key, create);
if (opt == nullptr)
throw UnknownOptionException(opt_key);
return opt;
}
template<typename TYPE>
TYPE* option_throw(const t_config_option_key &opt_key, bool create = false)
{
ConfigOption *opt = this->option_throw(opt_key, create);
if (opt->type() != TYPE::static_type())
throw BadOptionTypeException("Conversion to a wrong type");
return static_cast<TYPE*>(opt);
}
// Apply all keys of other ConfigBase defined by this->def() to this ConfigBase.
// An UnknownOptionException is thrown in case some option keys of other are not defined by this->def(),
// or this ConfigBase is of a StaticConfig type and it does not support some of the keys, and ignore_nonexistent is not set.
void apply(const ConfigBase &other, bool ignore_nonexistent = false) { this->apply_only(other, other.keys(), ignore_nonexistent); }
// Apply explicitely enumerated keys of other ConfigBase defined by this->def() to this ConfigBase.
// An UnknownOptionException is thrown in case some option keys are not defined by this->def(),
// or this ConfigBase is of a StaticConfig type and it does not support some of the keys, and ignore_nonexistent is not set.
void apply_only(const ConfigBase &other, const t_config_option_keys &keys, bool ignore_nonexistent = false);
bool equals(const ConfigBase &other) const { return this->diff(other).empty(); }
t_config_option_keys diff(const ConfigBase &other) const;
t_config_option_keys equal(const ConfigBase &other) const;
std::string opt_serialize(const t_config_option_key &opt_key) const;
// Set a value. Convert numeric types using a C style implicit conversion / promotion model.
// Throw if option is not avaiable and create is not enabled,
// or if the conversion is not possible.
// Conversion to string is always possible.
void set(const std::string &opt_key, bool value, bool create = false)
{ this->option_throw<ConfigOptionBool>(opt_key, create)->value = value; }
void set(const std::string &opt_key, int value, bool create = false);
void set(const std::string &opt_key, double value, bool create = false);
void set(const std::string &opt_key, const char *value, bool create = false)
{ this->option_throw<ConfigOptionString>(opt_key, create)->value = value; }
void set(const std::string &opt_key, const std::string &value, bool create = false)
{ this->option_throw<ConfigOptionString>(opt_key, create)->value = value; }
// Set a configuration value from a string, it will call an overridable handle_legacy()
// to resolve renamed and removed configuration keys.
bool set_deserialize_nothrow(const t_config_option_key &opt_key_src, const std::string &value_src, bool append = false);
// May throw BadOptionTypeException() if the operation fails.
void set_deserialize(const t_config_option_key &opt_key, const std::string &str, bool append = false);
struct SetDeserializeItem {
SetDeserializeItem(const char *opt_key, const char *opt_value, bool append = false) : opt_key(opt_key), opt_value(opt_value), append(append) {}
SetDeserializeItem(const std::string &opt_key, const std::string &opt_value, bool append = false) : opt_key(opt_key), opt_value(opt_value), append(append) {}
SetDeserializeItem(const char *opt_key, const bool value, bool append = false) : opt_key(opt_key), opt_value(value ? "1" : "0"), append(append) {}
SetDeserializeItem(const std::string &opt_key, const bool value, bool append = false) : opt_key(opt_key), opt_value(value ? "1" : "0"), append(append) {}
SetDeserializeItem(const char *opt_key, const int value, bool append = false) : opt_key(opt_key), opt_value(std::to_string(value)), append(append) {}
SetDeserializeItem(const std::string &opt_key, const int value, bool append = false) : opt_key(opt_key), opt_value(std::to_string(value)), append(append) {}
SetDeserializeItem(const char *opt_key, const float value, bool append = false) : opt_key(opt_key), opt_value(std::to_string(value)), append(append) {}
SetDeserializeItem(const std::string &opt_key, const float value, bool append = false) : opt_key(opt_key), opt_value(std::to_string(value)), append(append) {}
SetDeserializeItem(const char *opt_key, const double value, bool append = false) : opt_key(opt_key), opt_value(std::to_string(value)), append(append) {}
SetDeserializeItem(const std::string &opt_key, const double value, bool append = false) : opt_key(opt_key), opt_value(std::to_string(value)), append(append) {}
std::string opt_key; std::string opt_value; bool append = false;
};
// May throw BadOptionTypeException() if the operation fails.
void set_deserialize(std::initializer_list<SetDeserializeItem> items);
double get_abs_value(const t_config_option_key &opt_key) const;
double get_abs_value(const t_config_option_key &opt_key, double ratio_over) const;
void setenv_() const;
void load(const std::string &file);
void load_from_ini(const std::string &file);
void load_from_gcode_file(const std::string &file);
// Returns number of key/value pairs extracted.
size_t load_from_gcode_string(const char* str);
void load(const boost::property_tree::ptree &tree);
void save(const std::string &file) const;
// Set all the nullable values to nils.
void null_nullables();
private:
// Set a configuration value from a string.
bool set_deserialize_raw(const t_config_option_key &opt_key_src, const std::string &str, bool append);
};
// Configuration store with dynamic number of configuration values.
// In Slic3r, the dynamic config is mostly used at the user interface layer.
class DynamicConfig : public virtual ConfigBase
{
public:
DynamicConfig() {}
DynamicConfig(const DynamicConfig &rhs) { *this = rhs; }
DynamicConfig(DynamicConfig &&rhs) noexcept : options(std::move(rhs.options)) { rhs.options.clear(); }
explicit DynamicConfig(const ConfigBase &rhs, const t_config_option_keys &keys);
explicit DynamicConfig(const ConfigBase& rhs) : DynamicConfig(rhs, rhs.keys()) {}
virtual ~DynamicConfig() override { clear(); }
// Copy a content of one DynamicConfig to another DynamicConfig.
// If rhs.def() is not null, then it has to be equal to this->def().
DynamicConfig& operator=(const DynamicConfig &rhs)
{
assert(this->def() == nullptr || this->def() == rhs.def());
this->clear();
for (const auto &kvp : rhs.options)
this->options[kvp.first].reset(kvp.second->clone());
return *this;
}
// Move a content of one DynamicConfig to another DynamicConfig.
// If rhs.def() is not null, then it has to be equal to this->def().
DynamicConfig& operator=(DynamicConfig &&rhs) noexcept
{
assert(this->def() == nullptr || this->def() == rhs.def());
this->clear();
this->options = std::move(rhs.options);
rhs.options.clear();
return *this;
}
// Add a content of one DynamicConfig to another DynamicConfig.
// If rhs.def() is not null, then it has to be equal to this->def().
DynamicConfig& operator+=(const DynamicConfig &rhs)
{
assert(this->def() == nullptr || this->def() == rhs.def());
for (const auto &kvp : rhs.options) {
auto it = this->options.find(kvp.first);
if (it == this->options.end())
this->options[kvp.first].reset(kvp.second->clone());
else {
assert(it->second->type() == kvp.second->type());
if (it->second->type() == kvp.second->type())
*it->second = *kvp.second;
else
it->second.reset(kvp.second->clone());
}
}
return *this;
}
// Move a content of one DynamicConfig to another DynamicConfig.
// If rhs.def() is not null, then it has to be equal to this->def().
DynamicConfig& operator+=(DynamicConfig &&rhs)
{
assert(this->def() == nullptr || this->def() == rhs.def());
for (auto &kvp : rhs.options) {
auto it = this->options.find(kvp.first);
if (it == this->options.end()) {
this->options.insert(std::make_pair(kvp.first, std::move(kvp.second)));
} else {
assert(it->second->type() == kvp.second->type());
it->second = std::move(kvp.second);
}
}
rhs.options.clear();
return *this;
}
bool operator==(const DynamicConfig &rhs) const;
bool operator!=(const DynamicConfig &rhs) const { return ! (*this == rhs); }
void swap(DynamicConfig &other)
{
std::swap(this->options, other.options);
}
void clear()
{
this->options.clear();
}
bool erase(const t_config_option_key &opt_key)
{
auto it = this->options.find(opt_key);
if (it == this->options.end())
return false;
this->options.erase(it);
return true;
}
// Remove options with all nil values, those are optional and it does not help to hold them.
size_t remove_nil_options();
// Allow DynamicConfig to be instantiated on ints own without a definition.
// If the definition is not defined, the method requiring the definition will throw NoDefinitionException.
const ConfigDef* def() const override { return nullptr; }
template<class T> T* opt(const t_config_option_key &opt_key, bool create = false)
{ return dynamic_cast<T*>(this->option(opt_key, create)); }
template<class T> const T* opt(const t_config_option_key &opt_key) const
{ return dynamic_cast<const T*>(this->option(opt_key)); }
// Overrides ConfigResolver::optptr().
const ConfigOption* optptr(const t_config_option_key &opt_key) const override;
// Overrides ConfigBase::optptr(). Find ando/or create a ConfigOption instance for a given name.
ConfigOption* optptr(const t_config_option_key &opt_key, bool create = false) override;
// Overrides ConfigBase::keys(). Collect names of all configuration values maintained by this configuration store.
t_config_option_keys keys() const override;
bool empty() const { return options.empty(); }
// Set a value for an opt_key. Returns true if the value did not exist yet.
// This DynamicConfig will take ownership of opt.
// Be careful, as this method does not test the existence of opt_key in this->def().
bool set_key_value(const std::string &opt_key, ConfigOption *opt)
{
auto it = this->options.find(opt_key);
if (it == this->options.end()) {
this->options[opt_key].reset(opt);
return true;
} else {
it->second.reset(opt);
return false;
}
}
std::string& opt_string(const t_config_option_key &opt_key, bool create = false) { return this->option<ConfigOptionString>(opt_key, create)->value; }
const std::string& opt_string(const t_config_option_key &opt_key) const { return const_cast<DynamicConfig*>(this)->opt_string(opt_key); }
std::string& opt_string(const t_config_option_key &opt_key, unsigned int idx) { return this->option<ConfigOptionStrings>(opt_key)->get_at(idx); }
const std::string& opt_string(const t_config_option_key &opt_key, unsigned int idx) const { return const_cast<DynamicConfig*>(this)->opt_string(opt_key, idx); }
double& opt_float(const t_config_option_key &opt_key) { return this->option<ConfigOptionFloat>(opt_key)->value; }
const double& opt_float(const t_config_option_key &opt_key) const { return dynamic_cast<const ConfigOptionFloat*>(this->option(opt_key))->value; }
double& opt_float(const t_config_option_key &opt_key, unsigned int idx) { return this->option<ConfigOptionFloats>(opt_key)->get_at(idx); }
const double& opt_float(const t_config_option_key &opt_key, unsigned int idx) const { return dynamic_cast<const ConfigOptionFloats*>(this->option(opt_key))->get_at(idx); }
int& opt_int(const t_config_option_key &opt_key) { return this->option<ConfigOptionInt>(opt_key)->value; }
int opt_int(const t_config_option_key &opt_key) const { return dynamic_cast<const ConfigOptionInt*>(this->option(opt_key))->value; }
int& opt_int(const t_config_option_key &opt_key, unsigned int idx) { return this->option<ConfigOptionInts>(opt_key)->get_at(idx); }
int opt_int(const t_config_option_key &opt_key, unsigned int idx) const { return dynamic_cast<const ConfigOptionInts*>(this->option(opt_key))->get_at(idx); }
template<typename ENUM>
ENUM opt_enum(const t_config_option_key &opt_key) const { return (ENUM)dynamic_cast<const ConfigOptionEnumGeneric*>(this->option(opt_key))->value; }
bool opt_bool(const t_config_option_key &opt_key) const { return this->option<ConfigOptionBool>(opt_key)->value != 0; }
bool opt_bool(const t_config_option_key &opt_key, unsigned int idx) const { return this->option<ConfigOptionBools>(opt_key)->get_at(idx) != 0; }
// Command line processing
void read_cli(const std::vector<std::string> &tokens, t_config_option_keys* extra, t_config_option_keys* keys = nullptr);
bool read_cli(int argc, const char* const argv[], t_config_option_keys* extra, t_config_option_keys* keys = nullptr);
std::map<t_config_option_key, std::unique_ptr<ConfigOption>>::const_iterator cbegin() const { return options.cbegin(); }
std::map<t_config_option_key, std::unique_ptr<ConfigOption>>::const_iterator cend() const { return options.cend(); }
size_t size() const { return options.size(); }
private:
std::map<t_config_option_key, std::unique_ptr<ConfigOption>> options;
friend class cereal::access;
template<class Archive> void serialize(Archive &ar) { ar(options); }
};
/// Configuration store with a static definition of configuration values.
/// In Slic3r, the static configuration stores are during the slicing / g-code generation for efficiency reasons,
/// because the configuration values could be accessed directly.
class StaticConfig : public virtual ConfigBase
{
public:
StaticConfig() {}
/// Gets list of config option names for each config option of this->def, which has a static counter-part defined by the derived object
/// and which could be resolved by this->optptr(key) call.
t_config_option_keys keys() const;
protected:
/// Set all statically defined config options to their defaults defined by this->def().
void set_defaults();
};
}
#endif