PrusaSlicer-NonPlainar/src/libslic3r/SLAPrint.cpp
Vojtech Bubnik 8a2a9dba2f Eradicated admesh from TriangleMesh:
TriangleMesh newly only holds indexed_triangle_set and
TriangleMeshStats. TriangleMeshStats contains an excerpt of stl_stats.
TriangleMeshStats are updated when initializing with indexed_triangle_set.

Admesh triangle mesh fixing is newly only used when loading an STL.
AMF / 3MF / OBJ file formats are already indexed triangle sets, thus
they are no more converted to admesh stl_file format, nor fixed
through admesh repair machinery. When importing AMF / 3MF / OBJ files,
volume is calculated and if negative, all faces are flipped. Also
a bounding box and number of open edges is calculated.

Implemented its_number_of_patches(), its_num_open_edges()
Optimized its_split(), its_is_splittable() using a visitor pattern.

Reworked QHull integration into TriangleMesh:
    1) Face normals were not right.
    2) Indexed triangle set is newly emitted instead of duplicating
       vertices for each face.

Fixed cut_mesh(): Orient the triangulated faces correctly.
2021-09-20 17:12:22 +02:00

1259 lines
52 KiB
C++

#include "SLAPrint.hpp"
#include "SLAPrintSteps.hpp"
#include "ClipperUtils.hpp"
#include "Geometry.hpp"
#include "MTUtils.hpp"
#include "Thread.hpp"
#include <unordered_set>
#include <numeric>
#include <tbb/parallel_for.h>
#include <boost/filesystem/path.hpp>
#include <boost/log/trivial.hpp>
// #define SLAPRINT_DO_BENCHMARK
#ifdef SLAPRINT_DO_BENCHMARK
#include <libnest2d/tools/benchmark.h>
#endif
#include "I18N.hpp"
//! macro used to mark string used at localization,
//! return same string
#define L(s) Slic3r::I18N::translate(s)
namespace Slic3r {
bool is_zero_elevation(const SLAPrintObjectConfig &c)
{
return c.pad_enable.getBool() && c.pad_around_object.getBool();
}
// Compile the argument for support creation from the static print config.
sla::SupportTreeConfig make_support_cfg(const SLAPrintObjectConfig& c)
{
sla::SupportTreeConfig scfg;
scfg.enabled = c.supports_enable.getBool();
scfg.head_front_radius_mm = 0.5*c.support_head_front_diameter.getFloat();
double pillar_r = 0.5 * c.support_pillar_diameter.getFloat();
scfg.head_back_radius_mm = pillar_r;
scfg.head_fallback_radius_mm =
0.01 * c.support_small_pillar_diameter_percent.getFloat() * pillar_r;
scfg.head_penetration_mm = c.support_head_penetration.getFloat();
scfg.head_width_mm = c.support_head_width.getFloat();
scfg.object_elevation_mm = is_zero_elevation(c) ?
0. : c.support_object_elevation.getFloat();
scfg.bridge_slope = c.support_critical_angle.getFloat() * PI / 180.0 ;
scfg.max_bridge_length_mm = c.support_max_bridge_length.getFloat();
scfg.max_pillar_link_distance_mm = c.support_max_pillar_link_distance.getFloat();
switch(c.support_pillar_connection_mode.getInt()) {
case slapcmZigZag:
scfg.pillar_connection_mode = sla::PillarConnectionMode::zigzag; break;
case slapcmCross:
scfg.pillar_connection_mode = sla::PillarConnectionMode::cross; break;
case slapcmDynamic:
scfg.pillar_connection_mode = sla::PillarConnectionMode::dynamic; break;
}
scfg.ground_facing_only = c.support_buildplate_only.getBool();
scfg.pillar_widening_factor = c.support_pillar_widening_factor.getFloat();
scfg.base_radius_mm = 0.5*c.support_base_diameter.getFloat();
scfg.base_height_mm = c.support_base_height.getFloat();
scfg.pillar_base_safety_distance_mm =
c.support_base_safety_distance.getFloat() < EPSILON ?
scfg.safety_distance_mm : c.support_base_safety_distance.getFloat();
scfg.max_bridges_on_pillar = unsigned(c.support_max_bridges_on_pillar.getInt());
return scfg;
}
sla::PadConfig::EmbedObject builtin_pad_cfg(const SLAPrintObjectConfig& c)
{
sla::PadConfig::EmbedObject ret;
ret.enabled = is_zero_elevation(c);
if(ret.enabled) {
ret.everywhere = c.pad_around_object_everywhere.getBool();
ret.object_gap_mm = c.pad_object_gap.getFloat();
ret.stick_width_mm = c.pad_object_connector_width.getFloat();
ret.stick_stride_mm = c.pad_object_connector_stride.getFloat();
ret.stick_penetration_mm = c.pad_object_connector_penetration
.getFloat();
}
return ret;
}
sla::PadConfig make_pad_cfg(const SLAPrintObjectConfig& c)
{
sla::PadConfig pcfg;
pcfg.wall_thickness_mm = c.pad_wall_thickness.getFloat();
pcfg.wall_slope = c.pad_wall_slope.getFloat() * PI / 180.0;
pcfg.max_merge_dist_mm = c.pad_max_merge_distance.getFloat();
pcfg.wall_height_mm = c.pad_wall_height.getFloat();
pcfg.brim_size_mm = c.pad_brim_size.getFloat();
// set builtin pad implicitly ON
pcfg.embed_object = builtin_pad_cfg(c);
return pcfg;
}
bool validate_pad(const indexed_triangle_set &pad, const sla::PadConfig &pcfg)
{
// An empty pad can only be created if embed_object mode is enabled
// and the pad is not forced everywhere
return !pad.empty() || (pcfg.embed_object.enabled && !pcfg.embed_object.everywhere);
}
void SLAPrint::clear()
{
std::scoped_lock<std::mutex> lock(this->state_mutex());
// The following call should stop background processing if it is running.
this->invalidate_all_steps();
for (SLAPrintObject *object : m_objects)
delete object;
m_objects.clear();
m_model.clear_objects();
}
// Transformation without rotation around Z and without a shift by X and Y.
Transform3d SLAPrint::sla_trafo(const ModelObject &model_object) const
{
Vec3d corr = this->relative_correction();
ModelInstance &model_instance = *model_object.instances.front();
Vec3d offset = model_instance.get_offset();
Vec3d rotation = model_instance.get_rotation();
offset(0) = 0.;
offset(1) = 0.;
rotation(2) = 0.;
offset(Z) *= corr(Z);
auto trafo = Transform3d::Identity();
trafo.translate(offset);
trafo.scale(corr);
trafo.rotate(Eigen::AngleAxisd(rotation(2), Vec3d::UnitZ()));
trafo.rotate(Eigen::AngleAxisd(rotation(1), Vec3d::UnitY()));
trafo.rotate(Eigen::AngleAxisd(rotation(0), Vec3d::UnitX()));
trafo.scale(model_instance.get_scaling_factor());
trafo.scale(model_instance.get_mirror());
if (model_instance.is_left_handed())
trafo = Eigen::Scaling(Vec3d(-1., 1., 1.)) * trafo;
return trafo;
}
// List of instances, where the ModelInstance transformation is a composite of sla_trafo and the transformation defined by SLAPrintObject::Instance.
static std::vector<SLAPrintObject::Instance> sla_instances(const ModelObject &model_object)
{
std::vector<SLAPrintObject::Instance> instances;
assert(! model_object.instances.empty());
if (! model_object.instances.empty()) {
Vec3d rotation0 = model_object.instances.front()->get_rotation();
rotation0(2) = 0.;
for (ModelInstance *model_instance : model_object.instances)
if (model_instance->is_printable()) {
instances.emplace_back(
model_instance->id(),
Point::new_scale(model_instance->get_offset(X), model_instance->get_offset(Y)),
float(Geometry::rotation_diff_z(rotation0, model_instance->get_rotation())));
}
}
return instances;
}
std::vector<ObjectID> SLAPrint::print_object_ids() const
{
std::vector<ObjectID> out;
// Reserve one more for the caller to append the ID of the Print itself.
out.reserve(m_objects.size() + 1);
for (const SLAPrintObject *print_object : m_objects)
out.emplace_back(print_object->id());
return out;
}
SLAPrint::ApplyStatus SLAPrint::apply(const Model &model, DynamicPrintConfig config)
{
#ifdef _DEBUG
check_model_ids_validity(model);
#endif /* _DEBUG */
// Normalize the config.
config.option("sla_print_settings_id", true);
config.option("sla_material_settings_id", true);
config.option("printer_settings_id", true);
config.option("physical_printer_settings_id", true);
// Collect changes to print config.
t_config_option_keys print_diff = m_print_config.diff(config);
t_config_option_keys printer_diff = m_printer_config.diff(config);
t_config_option_keys material_diff = m_material_config.diff(config);
t_config_option_keys object_diff = m_default_object_config.diff(config);
t_config_option_keys placeholder_parser_diff = m_placeholder_parser.config_diff(config);
// Do not use the ApplyStatus as we will use the max function when updating apply_status.
unsigned int apply_status = APPLY_STATUS_UNCHANGED;
auto update_apply_status = [&apply_status](bool invalidated)
{ apply_status = std::max<unsigned int>(apply_status, invalidated ? APPLY_STATUS_INVALIDATED : APPLY_STATUS_CHANGED); };
if (! (print_diff.empty() && printer_diff.empty() && material_diff.empty() && object_diff.empty()))
update_apply_status(false);
// Grab the lock for the Print / PrintObject milestones.
std::scoped_lock<std::mutex> lock(this->state_mutex());
// The following call may stop the background processing.
bool invalidate_all_model_objects = false;
if (! print_diff.empty())
update_apply_status(this->invalidate_state_by_config_options(print_diff, invalidate_all_model_objects));
if (! printer_diff.empty())
update_apply_status(this->invalidate_state_by_config_options(printer_diff, invalidate_all_model_objects));
if (! material_diff.empty())
update_apply_status(this->invalidate_state_by_config_options(material_diff, invalidate_all_model_objects));
// Apply variables to placeholder parser. The placeholder parser is currently used
// only to generate the output file name.
if (! placeholder_parser_diff.empty()) {
// update_apply_status(this->invalidate_step(slapsRasterize));
m_placeholder_parser.apply_config(config);
// Set the profile aliases for the PrintBase::output_filename()
m_placeholder_parser.set("print_preset", config.option("sla_print_settings_id")->clone());
m_placeholder_parser.set("material_preset", config.option("sla_material_settings_id")->clone());
m_placeholder_parser.set("printer_preset", config.option("printer_settings_id")->clone());
m_placeholder_parser.set("physical_printer_preset", config.option("physical_printer_settings_id")->clone());
}
// It is also safe to change m_config now after this->invalidate_state_by_config_options() call.
m_print_config.apply_only(config, print_diff, true);
m_printer_config.apply_only(config, printer_diff, true);
// Handle changes to material config.
m_material_config.apply_only(config, material_diff, true);
// Handle changes to object config defaults
m_default_object_config.apply_only(config, object_diff, true);
if (m_printer) m_printer->apply(m_printer_config);
struct ModelObjectStatus {
enum Status {
Unknown,
Old,
New,
Moved,
Deleted,
};
ModelObjectStatus(ObjectID id, Status status = Unknown) : id(id), status(status) {}
ObjectID id;
Status status;
// Search by id.
bool operator<(const ModelObjectStatus &rhs) const { return id < rhs.id; }
};
std::set<ModelObjectStatus> model_object_status;
// 1) Synchronize model objects.
if (model.id() != m_model.id() || invalidate_all_model_objects) {
// Kill everything, initialize from scratch.
// Stop background processing.
this->call_cancel_callback();
update_apply_status(this->invalidate_all_steps());
for (SLAPrintObject *object : m_objects) {
model_object_status.emplace(object->model_object()->id(), ModelObjectStatus::Deleted);
update_apply_status(object->invalidate_all_steps());
delete object;
}
m_objects.clear();
m_model.assign_copy(model);
for (const ModelObject *model_object : m_model.objects)
model_object_status.emplace(model_object->id(), ModelObjectStatus::New);
} else {
if (model_object_list_equal(m_model, model)) {
// The object list did not change.
for (const ModelObject *model_object : m_model.objects)
model_object_status.emplace(model_object->id(), ModelObjectStatus::Old);
} else if (model_object_list_extended(m_model, model)) {
// Add new objects. Their volumes and configs will be synchronized later.
update_apply_status(this->invalidate_step(slapsMergeSlicesAndEval));
for (const ModelObject *model_object : m_model.objects)
model_object_status.emplace(model_object->id(), ModelObjectStatus::Old);
for (size_t i = m_model.objects.size(); i < model.objects.size(); ++ i) {
model_object_status.emplace(model.objects[i]->id(), ModelObjectStatus::New);
m_model.objects.emplace_back(ModelObject::new_copy(*model.objects[i]));
m_model.objects.back()->set_model(&m_model);
}
} else {
// Reorder the objects, add new objects.
// First stop background processing before shuffling or deleting the PrintObjects in the object list.
this->call_cancel_callback();
update_apply_status(this->invalidate_step(slapsMergeSlicesAndEval));
// Second create a new list of objects.
std::vector<ModelObject*> model_objects_old(std::move(m_model.objects));
m_model.objects.clear();
m_model.objects.reserve(model.objects.size());
auto by_id_lower = [](const ModelObject *lhs, const ModelObject *rhs){ return lhs->id() < rhs->id(); };
std::sort(model_objects_old.begin(), model_objects_old.end(), by_id_lower);
for (const ModelObject *mobj : model.objects) {
auto it = std::lower_bound(model_objects_old.begin(), model_objects_old.end(), mobj, by_id_lower);
if (it == model_objects_old.end() || (*it)->id() != mobj->id()) {
// New ModelObject added.
m_model.objects.emplace_back(ModelObject::new_copy(*mobj));
m_model.objects.back()->set_model(&m_model);
model_object_status.emplace(mobj->id(), ModelObjectStatus::New);
} else {
// Existing ModelObject re-added (possibly moved in the list).
m_model.objects.emplace_back(*it);
model_object_status.emplace(mobj->id(), ModelObjectStatus::Moved);
}
}
bool deleted_any = false;
for (ModelObject *&model_object : model_objects_old) {
if (model_object_status.find(ModelObjectStatus(model_object->id())) == model_object_status.end()) {
model_object_status.emplace(model_object->id(), ModelObjectStatus::Deleted);
deleted_any = true;
} else
// Do not delete this ModelObject instance.
model_object = nullptr;
}
if (deleted_any) {
// Delete PrintObjects of the deleted ModelObjects.
std::vector<SLAPrintObject*> print_objects_old = std::move(m_objects);
m_objects.clear();
m_objects.reserve(print_objects_old.size());
for (SLAPrintObject *print_object : print_objects_old) {
auto it_status = model_object_status.find(ModelObjectStatus(print_object->model_object()->id()));
assert(it_status != model_object_status.end());
if (it_status->status == ModelObjectStatus::Deleted) {
update_apply_status(print_object->invalidate_all_steps());
delete print_object;
} else
m_objects.emplace_back(print_object);
}
for (ModelObject *model_object : model_objects_old)
delete model_object;
}
}
}
// 2) Map print objects including their transformation matrices.
struct PrintObjectStatus {
enum Status {
Unknown,
Deleted,
Reused,
New
};
PrintObjectStatus(SLAPrintObject *print_object, Status status = Unknown) :
id(print_object->model_object()->id()),
print_object(print_object),
trafo(print_object->trafo()),
status(status) {}
PrintObjectStatus(ObjectID id) : id(id), print_object(nullptr), trafo(Transform3d::Identity()), status(Unknown) {}
// ID of the ModelObject & PrintObject
ObjectID id;
// Pointer to the old PrintObject
SLAPrintObject *print_object;
// Trafo generated with model_object->world_matrix(true)
Transform3d trafo;
Status status;
// Search by id.
bool operator<(const PrintObjectStatus &rhs) const { return id < rhs.id; }
};
std::multiset<PrintObjectStatus> print_object_status;
for (SLAPrintObject *print_object : m_objects)
print_object_status.emplace(PrintObjectStatus(print_object));
// 3) Synchronize ModelObjects & PrintObjects.
std::vector<SLAPrintObject*> print_objects_new;
print_objects_new.reserve(std::max(m_objects.size(), m_model.objects.size()));
bool new_objects = false;
for (size_t idx_model_object = 0; idx_model_object < model.objects.size(); ++ idx_model_object) {
ModelObject &model_object = *m_model.objects[idx_model_object];
auto it_status = model_object_status.find(ModelObjectStatus(model_object.id()));
assert(it_status != model_object_status.end());
assert(it_status->status != ModelObjectStatus::Deleted);
// PrintObject for this ModelObject, if it exists.
auto it_print_object_status = print_object_status.end();
if (it_status->status != ModelObjectStatus::New) {
// Update the ModelObject instance, possibly invalidate the linked PrintObjects.
assert(it_status->status == ModelObjectStatus::Old || it_status->status == ModelObjectStatus::Moved);
const ModelObject &model_object_new = *model.objects[idx_model_object];
it_print_object_status = print_object_status.lower_bound(PrintObjectStatus(model_object.id()));
if (it_print_object_status != print_object_status.end() && it_print_object_status->id != model_object.id())
it_print_object_status = print_object_status.end();
// Check whether a model part volume was added or removed, their transformations or order changed.
bool model_parts_differ = model_volume_list_changed(model_object, model_object_new, ModelVolumeType::MODEL_PART);
bool sla_trafo_differs =
model_object.instances.empty() != model_object_new.instances.empty() ||
(! model_object.instances.empty() &&
(! sla_trafo(model_object).isApprox(sla_trafo(model_object_new)) ||
model_object.instances.front()->is_left_handed() != model_object_new.instances.front()->is_left_handed()));
if (model_parts_differ || sla_trafo_differs) {
// The very first step (the slicing step) is invalidated. One may freely remove all associated PrintObjects.
if (it_print_object_status != print_object_status.end()) {
update_apply_status(it_print_object_status->print_object->invalidate_all_steps());
const_cast<PrintObjectStatus&>(*it_print_object_status).status = PrintObjectStatus::Deleted;
}
// Copy content of the ModelObject including its ID, do not change the parent.
model_object.assign_copy(model_object_new);
} else {
// Synchronize Object's config.
bool object_config_changed = ! model_object.config.timestamp_matches(model_object_new.config);
if (object_config_changed)
model_object.config.assign_config(model_object_new.config);
if (! object_diff.empty() || object_config_changed) {
SLAPrintObjectConfig new_config = m_default_object_config;
new_config.apply(model_object.config.get(), true);
if (it_print_object_status != print_object_status.end()) {
t_config_option_keys diff = it_print_object_status->print_object->config().diff(new_config);
if (! diff.empty()) {
update_apply_status(it_print_object_status->print_object->invalidate_state_by_config_options(diff));
it_print_object_status->print_object->config_apply_only(new_config, diff, true);
}
}
}
bool old_user_modified = model_object.sla_points_status == sla::PointsStatus::UserModified;
bool new_user_modified = model_object_new.sla_points_status == sla::PointsStatus::UserModified;
if ((old_user_modified && ! new_user_modified) || // switching to automatic supports from manual supports
(! old_user_modified && new_user_modified) || // switching to manual supports from automatic supports
(new_user_modified && model_object.sla_support_points != model_object_new.sla_support_points)) {
if (it_print_object_status != print_object_status.end())
update_apply_status(it_print_object_status->print_object->invalidate_step(slaposSupportPoints));
model_object.sla_support_points = model_object_new.sla_support_points;
}
model_object.sla_points_status = model_object_new.sla_points_status;
// Invalidate hollowing if drain holes have changed
if (model_object.sla_drain_holes != model_object_new.sla_drain_holes)
{
model_object.sla_drain_holes = model_object_new.sla_drain_holes;
update_apply_status(it_print_object_status->print_object->invalidate_step(slaposDrillHoles));
}
// Copy the ModelObject name, input_file and instances. The instances will compared against PrintObject instances in the next step.
model_object.name = model_object_new.name;
model_object.input_file = model_object_new.input_file;
model_object.clear_instances();
model_object.instances.reserve(model_object_new.instances.size());
for (const ModelInstance *model_instance : model_object_new.instances) {
model_object.instances.emplace_back(new ModelInstance(*model_instance));
model_object.instances.back()->set_model_object(&model_object);
}
}
}
std::vector<SLAPrintObject::Instance> new_instances = sla_instances(model_object);
if (it_print_object_status != print_object_status.end() && it_print_object_status->status != PrintObjectStatus::Deleted) {
// The SLAPrintObject is already there.
if (new_instances.empty()) {
const_cast<PrintObjectStatus&>(*it_print_object_status).status = PrintObjectStatus::Deleted;
} else {
if (new_instances != it_print_object_status->print_object->instances()) {
// Instances changed.
it_print_object_status->print_object->set_instances(new_instances);
update_apply_status(this->invalidate_step(slapsMergeSlicesAndEval));
}
print_objects_new.emplace_back(it_print_object_status->print_object);
const_cast<PrintObjectStatus&>(*it_print_object_status).status = PrintObjectStatus::Reused;
}
} else if (! new_instances.empty()) {
auto print_object = new SLAPrintObject(this, &model_object);
// FIXME: this invalidates the transformed mesh in SLAPrintObject
// which is expensive to calculate (especially the raw_mesh() call)
print_object->set_trafo(sla_trafo(model_object), model_object.instances.front()->is_left_handed());
print_object->set_instances(std::move(new_instances));
print_object->config_apply(m_default_object_config, true);
print_object->config_apply(model_object.config.get(), true);
print_objects_new.emplace_back(print_object);
new_objects = true;
}
}
if (m_objects != print_objects_new) {
this->call_cancel_callback();
update_apply_status(this->invalidate_all_steps());
m_objects = print_objects_new;
// Delete the PrintObjects marked as Unknown or Deleted.
for (auto &pos : print_object_status)
if (pos.status == PrintObjectStatus::Unknown || pos.status == PrintObjectStatus::Deleted) {
update_apply_status(pos.print_object->invalidate_all_steps());
delete pos.print_object;
}
if (new_objects)
update_apply_status(false);
}
if(m_objects.empty()) {
m_printer_input = {};
m_print_statistics = {};
}
#ifdef _DEBUG
check_model_ids_equal(m_model, model);
#endif /* _DEBUG */
m_full_print_config = std::move(config);
return static_cast<ApplyStatus>(apply_status);
}
// After calling the apply() function, set_task() may be called to limit the task to be processed by process().
void SLAPrint::set_task(const TaskParams &params)
{
// Grab the lock for the Print / PrintObject milestones.
std::scoped_lock<std::mutex> lock(this->state_mutex());
int n_object_steps = int(params.to_object_step) + 1;
if (n_object_steps == 0)
n_object_steps = int(slaposCount);
if (params.single_model_object.valid()) {
// Find the print object to be processed with priority.
SLAPrintObject *print_object = nullptr;
size_t idx_print_object = 0;
for (; idx_print_object < m_objects.size(); ++ idx_print_object)
if (m_objects[idx_print_object]->model_object()->id() == params.single_model_object) {
print_object = m_objects[idx_print_object];
break;
}
assert(print_object != nullptr);
// Find out whether the priority print object is being currently processed.
bool running = false;
for (int istep = 0; istep < n_object_steps; ++ istep) {
if (! print_object->m_stepmask[size_t(istep)])
// Step was skipped, cancel.
break;
if (print_object->is_step_started_unguarded(SLAPrintObjectStep(istep))) {
// No step was skipped, and a wanted step is being processed. Don't cancel.
running = true;
break;
}
}
if (! running)
this->call_cancel_callback();
// Now the background process is either stopped, or it is inside one of the print object steps to be calculated anyway.
if (params.single_model_instance_only) {
// Suppress all the steps of other instances.
for (SLAPrintObject *po : m_objects)
for (size_t istep = 0; istep < slaposCount; ++ istep)
po->m_stepmask[istep] = false;
} else if (! running) {
// Swap the print objects, so that the selected print_object is first in the row.
// At this point the background processing must be stopped, so it is safe to shuffle print objects.
if (idx_print_object != 0)
std::swap(m_objects.front(), m_objects[idx_print_object]);
}
// and set the steps for the current object.
for (int istep = 0; istep < n_object_steps; ++ istep)
print_object->m_stepmask[size_t(istep)] = true;
for (int istep = n_object_steps; istep < int(slaposCount); ++ istep)
print_object->m_stepmask[size_t(istep)] = false;
} else {
// Slicing all objects.
bool running = false;
for (SLAPrintObject *print_object : m_objects)
for (int istep = 0; istep < n_object_steps; ++ istep) {
if (! print_object->m_stepmask[size_t(istep)]) {
// Step may have been skipped. Restart.
goto loop_end;
}
if (print_object->is_step_started_unguarded(SLAPrintObjectStep(istep))) {
// This step is running, and the state cannot be changed due to the this->state_mutex() being locked.
// It is safe to manipulate m_stepmask of other SLAPrintObjects and SLAPrint now.
running = true;
goto loop_end;
}
}
loop_end:
if (! running)
this->call_cancel_callback();
for (SLAPrintObject *po : m_objects) {
for (int istep = 0; istep < n_object_steps; ++ istep)
po->m_stepmask[size_t(istep)] = true;
for (auto istep = size_t(n_object_steps); istep < slaposCount; ++ istep)
po->m_stepmask[istep] = false;
}
}
if (params.to_object_step != -1 || params.to_print_step != -1) {
// Limit the print steps.
size_t istep = (params.to_object_step != -1) ? 0 : size_t(params.to_print_step) + 1;
for (; istep < m_stepmask.size(); ++ istep)
m_stepmask[istep] = false;
}
}
// Clean up after process() finished, either with success, error or if canceled.
// The adjustments on the SLAPrint / SLAPrintObject data due to set_task() are to be reverted here.
void SLAPrint::finalize()
{
for (SLAPrintObject *po : m_objects)
for (size_t istep = 0; istep < slaposCount; ++ istep)
po->m_stepmask[istep] = true;
for (size_t istep = 0; istep < slapsCount; ++ istep)
m_stepmask[istep] = true;
}
// Generate a recommended output file name based on the format template, default extension, and template parameters
// (timestamps, object placeholders derived from the model, current placeholder prameters and print statistics.
// Use the final print statistics if available, or just keep the print statistics placeholders if not available yet (before the output is finalized).
std::string SLAPrint::output_filename(const std::string &filename_base) const
{
DynamicConfig config = this->finished() ? this->print_statistics().config() : this->print_statistics().placeholders();
return this->PrintBase::output_filename(m_print_config.output_filename_format.value, ".sl1", filename_base, &config);
}
std::string SLAPrint::validate(std::string*) const
{
for(SLAPrintObject * po : m_objects) {
const ModelObject *mo = po->model_object();
bool supports_en = po->config().supports_enable.getBool();
if(supports_en &&
mo->sla_points_status == sla::PointsStatus::UserModified &&
mo->sla_support_points.empty())
return L("Cannot proceed without support points! "
"Add support points or disable support generation.");
sla::SupportTreeConfig cfg = make_support_cfg(po->config());
double elv = cfg.object_elevation_mm;
sla::PadConfig padcfg = make_pad_cfg(po->config());
sla::PadConfig::EmbedObject &builtinpad = padcfg.embed_object;
if(supports_en && !builtinpad.enabled && elv < cfg.head_fullwidth())
return L(
"Elevation is too low for object. Use the \"Pad around "
"object\" feature to print the object without elevation.");
if(supports_en && builtinpad.enabled &&
cfg.pillar_base_safety_distance_mm < builtinpad.object_gap_mm) {
return L(
"The endings of the support pillars will be deployed on the "
"gap between the object and the pad. 'Support base safety "
"distance' has to be greater than the 'Pad object gap' "
"parameter to avoid this.");
}
std::string pval = padcfg.validate();
if (!pval.empty()) return pval;
}
double expt_max = m_printer_config.max_exposure_time.getFloat();
double expt_min = m_printer_config.min_exposure_time.getFloat();
double expt_cur = m_material_config.exposure_time.getFloat();
if (expt_cur < expt_min || expt_cur > expt_max)
return L("Exposition time is out of printer profile bounds.");
double iexpt_max = m_printer_config.max_initial_exposure_time.getFloat();
double iexpt_min = m_printer_config.min_initial_exposure_time.getFloat();
double iexpt_cur = m_material_config.initial_exposure_time.getFloat();
if (iexpt_cur < iexpt_min || iexpt_cur > iexpt_max)
return L("Initial exposition time is out of printer profile bounds.");
return "";
}
void SLAPrint::set_printer(SLAPrinter *arch)
{
invalidate_step(slapsRasterize);
m_printer = arch;
}
bool SLAPrint::invalidate_step(SLAPrintStep step)
{
bool invalidated = Inherited::invalidate_step(step);
// propagate to dependent steps
if (step == slapsMergeSlicesAndEval) {
invalidated |= this->invalidate_all_steps();
}
return invalidated;
}
void SLAPrint::process()
{
if (m_objects.empty())
return;
name_tbb_thread_pool_threads_set_locale();
// Assumption: at this point the print objects should be populated only with
// the model objects we have to process and the instances are also filtered
Steps printsteps(this);
// We want to first process all objects...
std::vector<SLAPrintObjectStep> level1_obj_steps = {
slaposHollowing, slaposDrillHoles, slaposObjectSlice, slaposSupportPoints, slaposSupportTree, slaposPad
};
// and then slice all supports to allow preview to be displayed ASAP
std::vector<SLAPrintObjectStep> level2_obj_steps = {
slaposSliceSupports
};
SLAPrintStep print_steps[] = { slapsMergeSlicesAndEval, slapsRasterize };
double st = Steps::min_objstatus;
BOOST_LOG_TRIVIAL(info) << "Start slicing process.";
#ifdef SLAPRINT_DO_BENCHMARK
Benchmark bench;
#else
struct {
void start() {} void stop() {} double getElapsedSec() { return .0; }
} bench;
#endif
std::array<double, slaposCount + slapsCount> step_times {};
auto apply_steps_on_objects =
[this, &st, &printsteps, &step_times, &bench]
(const std::vector<SLAPrintObjectStep> &steps)
{
double incr = 0;
for (SLAPrintObject *po : m_objects) {
for (SLAPrintObjectStep step : steps) {
// Cancellation checking. Each step will check for
// cancellation on its own and return earlier gracefully.
// Just after it returns execution gets to this point and
// throws the canceled signal.
throw_if_canceled();
st += incr;
if (po->m_stepmask[step] && po->set_started(step)) {
m_report_status(*this, st, printsteps.label(step));
bench.start();
printsteps.execute(step, *po);
bench.stop();
step_times[step] += bench.getElapsedSec();
throw_if_canceled();
po->set_done(step);
}
incr = printsteps.progressrange(step);
}
}
};
apply_steps_on_objects(level1_obj_steps);
apply_steps_on_objects(level2_obj_steps);
// this would disable the rasterization step
// std::fill(m_stepmask.begin(), m_stepmask.end(), false);
st = Steps::max_objstatus;
for(SLAPrintStep currentstep : print_steps) {
throw_if_canceled();
if (m_stepmask[currentstep] && set_started(currentstep)) {
m_report_status(*this, st, printsteps.label(currentstep));
bench.start();
printsteps.execute(currentstep);
bench.stop();
step_times[slaposCount + currentstep] += bench.getElapsedSec();
throw_if_canceled();
set_done(currentstep);
}
st += printsteps.progressrange(currentstep);
}
// If everything vent well
m_report_status(*this, 100, L("Slicing done"));
#ifdef SLAPRINT_DO_BENCHMARK
std::string csvbenchstr;
for (size_t i = 0; i < size_t(slaposCount); ++i)
csvbenchstr += printsteps.label(SLAPrintObjectStep(i)) + ";";
for (size_t i = 0; i < size_t(slapsCount); ++i)
csvbenchstr += printsteps.label(SLAPrintStep(i)) + ";";
csvbenchstr += "\n";
for (double t : step_times) csvbenchstr += std::to_string(t) + ";";
std::cout << "Performance stats: \n" << csvbenchstr << std::endl;
#endif
}
bool SLAPrint::invalidate_state_by_config_options(const std::vector<t_config_option_key> &opt_keys, bool &invalidate_all_model_objects)
{
if (opt_keys.empty())
return false;
static std::unordered_set<std::string> steps_full = {
"initial_layer_height",
"material_correction",
"relative_correction",
"absolute_correction",
"elefant_foot_compensation",
"elefant_foot_min_width",
"gamma_correction"
};
// Cache the plenty of parameters, which influence the final rasterization only,
// or they are only notes not influencing the rasterization step.
static std::unordered_set<std::string> steps_rasterize = {
"min_exposure_time",
"max_exposure_time",
"exposure_time",
"min_initial_exposure_time",
"max_initial_exposure_time",
"initial_exposure_time",
"display_width",
"display_height",
"display_pixels_x",
"display_pixels_y",
"display_mirror_x",
"display_mirror_y",
"display_orientation"
};
static std::unordered_set<std::string> steps_ignore = {
"bed_shape",
"max_print_height",
"printer_technology",
"output_filename_format",
"fast_tilt_time",
"slow_tilt_time",
"area_fill",
"bottle_cost",
"bottle_volume",
"bottle_weight",
"material_density"
};
std::vector<SLAPrintStep> steps;
std::vector<SLAPrintObjectStep> osteps;
bool invalidated = false;
for (const t_config_option_key &opt_key : opt_keys) {
if (steps_rasterize.find(opt_key) != steps_rasterize.end()) {
// These options only affect the final rasterization, or they are just notes without influence on the output,
// so there is nothing to invalidate.
steps.emplace_back(slapsMergeSlicesAndEval);
} else if (steps_ignore.find(opt_key) != steps_ignore.end()) {
// These steps have no influence on the output. Just ignore them.
} else if (steps_full.find(opt_key) != steps_full.end()) {
steps.emplace_back(slapsMergeSlicesAndEval);
osteps.emplace_back(slaposObjectSlice);
invalidate_all_model_objects = true;
} else {
// All values should be covered.
assert(false);
}
}
sort_remove_duplicates(steps);
for (SLAPrintStep step : steps)
invalidated |= this->invalidate_step(step);
sort_remove_duplicates(osteps);
for (SLAPrintObjectStep ostep : osteps)
for (SLAPrintObject *object : m_objects)
invalidated |= object->invalidate_step(ostep);
return invalidated;
}
// Returns true if an object step is done on all objects and there's at least one object.
bool SLAPrint::is_step_done(SLAPrintObjectStep step) const
{
if (m_objects.empty())
return false;
std::scoped_lock<std::mutex> lock(this->state_mutex());
for (const SLAPrintObject *object : m_objects)
if (! object->is_step_done_unguarded(step))
return false;
return true;
}
SLAPrintObject::SLAPrintObject(SLAPrint *print, ModelObject *model_object)
: Inherited(print, model_object)
, m_stepmask(slaposCount, true)
, m_transformed_rmesh([this](TriangleMesh &obj) {
obj = m_model_object->raw_mesh();
if (!obj.empty()) {
obj.transform(m_trafo);
}
})
{}
SLAPrintObject::~SLAPrintObject() {}
// Called by SLAPrint::apply().
// This method only accepts SLAPrintObjectConfig option keys.
bool SLAPrintObject::invalidate_state_by_config_options(const std::vector<t_config_option_key> &opt_keys)
{
if (opt_keys.empty())
return false;
std::vector<SLAPrintObjectStep> steps;
bool invalidated = false;
for (const t_config_option_key &opt_key : opt_keys) {
if ( opt_key == "hollowing_enable"
|| opt_key == "hollowing_min_thickness"
|| opt_key == "hollowing_quality"
|| opt_key == "hollowing_closing_distance"
) {
steps.emplace_back(slaposHollowing);
} else if (
opt_key == "layer_height"
|| opt_key == "faded_layers"
|| opt_key == "pad_enable"
|| opt_key == "pad_wall_thickness"
|| opt_key == "supports_enable"
|| opt_key == "support_object_elevation"
|| opt_key == "pad_around_object"
|| opt_key == "pad_around_object_everywhere"
|| opt_key == "slice_closing_radius"
|| opt_key == "slicing_mode") {
steps.emplace_back(slaposObjectSlice);
} else if (
opt_key == "support_points_density_relative"
|| opt_key == "support_points_minimal_distance") {
steps.emplace_back(slaposSupportPoints);
} else if (
opt_key == "support_head_front_diameter"
|| opt_key == "support_head_penetration"
|| opt_key == "support_head_width"
|| opt_key == "support_pillar_diameter"
|| opt_key == "support_small_pillar_diameter_percent"
|| opt_key == "support_max_bridges_on_pillar"
|| opt_key == "support_pillar_connection_mode"
|| opt_key == "support_buildplate_only"
|| opt_key == "support_base_diameter"
|| opt_key == "support_base_height"
|| opt_key == "support_critical_angle"
|| opt_key == "support_max_bridge_length"
|| opt_key == "support_max_pillar_link_distance"
|| opt_key == "support_base_safety_distance"
) {
steps.emplace_back(slaposSupportTree);
} else if (
opt_key == "pad_wall_height"
|| opt_key == "pad_brim_size"
|| opt_key == "pad_max_merge_distance"
|| opt_key == "pad_wall_slope"
|| opt_key == "pad_edge_radius"
|| opt_key == "pad_object_gap"
|| opt_key == "pad_object_connector_stride"
|| opt_key == "pad_object_connector_width"
|| opt_key == "pad_object_connector_penetration"
) {
steps.emplace_back(slaposPad);
} else {
// All keys should be covered.
assert(false);
}
}
sort_remove_duplicates(steps);
for (SLAPrintObjectStep step : steps)
invalidated |= this->invalidate_step(step);
return invalidated;
}
bool SLAPrintObject::invalidate_step(SLAPrintObjectStep step)
{
bool invalidated = Inherited::invalidate_step(step);
// propagate to dependent steps
if (step == slaposHollowing) {
invalidated |= this->invalidate_all_steps();
} else if (step == slaposDrillHoles) {
invalidated |= this->invalidate_steps({ slaposObjectSlice, slaposSupportPoints, slaposSupportTree, slaposPad, slaposSliceSupports });
invalidated |= m_print->invalidate_step(slapsMergeSlicesAndEval);
} else if (step == slaposObjectSlice) {
invalidated |= this->invalidate_steps({ slaposSupportPoints, slaposSupportTree, slaposPad, slaposSliceSupports });
invalidated |= m_print->invalidate_step(slapsMergeSlicesAndEval);
} else if (step == slaposSupportPoints) {
invalidated |= this->invalidate_steps({ slaposSupportTree, slaposPad, slaposSliceSupports });
invalidated |= m_print->invalidate_step(slapsMergeSlicesAndEval);
} else if (step == slaposSupportTree) {
invalidated |= this->invalidate_steps({ slaposPad, slaposSliceSupports });
invalidated |= m_print->invalidate_step(slapsMergeSlicesAndEval);
} else if (step == slaposPad) {
invalidated |= this->invalidate_steps({slaposSliceSupports});
invalidated |= m_print->invalidate_step(slapsMergeSlicesAndEval);
} else if (step == slaposSliceSupports) {
invalidated |= m_print->invalidate_step(slapsMergeSlicesAndEval);
}
return invalidated;
}
bool SLAPrintObject::invalidate_all_steps()
{
return Inherited::invalidate_all_steps() | m_print->invalidate_all_steps();
}
double SLAPrintObject::get_elevation() const {
if (is_zero_elevation(m_config)) return 0.;
bool en = m_config.supports_enable.getBool();
double ret = en ? m_config.support_object_elevation.getFloat() : 0.;
if(m_config.pad_enable.getBool()) {
// Normally the elevation for the pad itself would be the thickness of
// its walls but currently it is half of its thickness. Whatever it
// will be in the future, we provide the config to the get_pad_elevation
// method and we will have the correct value
sla::PadConfig pcfg = make_pad_cfg(m_config);
if(!pcfg.embed_object) ret += pcfg.required_elevation();
}
return ret;
}
double SLAPrintObject::get_current_elevation() const
{
if (is_zero_elevation(m_config)) return 0.;
bool has_supports = is_step_done(slaposSupportTree);
bool has_pad = is_step_done(slaposPad);
if(!has_supports && !has_pad)
return 0;
else if(has_supports && !has_pad) {
return m_config.support_object_elevation.getFloat();
}
return get_elevation();
}
Vec3d SLAPrint::relative_correction() const
{
Vec3d corr(1., 1., 1.);
if(printer_config().relative_correction.values.size() >= 2) {
corr(X) = printer_config().relative_correction.values[0];
corr(Y) = printer_config().relative_correction.values[0];
corr(Z) = printer_config().relative_correction.values.back();
}
if(material_config().material_correction.values.size() >= 2) {
corr(X) *= material_config().material_correction.values[0];
corr(Y) *= material_config().material_correction.values[0];
corr(Z) *= material_config().material_correction.values.back();
}
return corr;
}
namespace { // dummy empty static containers for return values in some methods
const std::vector<ExPolygons> EMPTY_SLICES;
const TriangleMesh EMPTY_MESH;
const indexed_triangle_set EMPTY_TRIANGLE_SET;
const ExPolygons EMPTY_SLICE;
const std::vector<sla::SupportPoint> EMPTY_SUPPORT_POINTS;
}
const SliceRecord SliceRecord::EMPTY(0, std::nanf(""), 0.f);
const std::vector<sla::SupportPoint>& SLAPrintObject::get_support_points() const
{
return m_supportdata? m_supportdata->pts : EMPTY_SUPPORT_POINTS;
}
const std::vector<ExPolygons> &SLAPrintObject::get_support_slices() const
{
// assert(is_step_done(slaposSliceSupports));
if (!m_supportdata) return EMPTY_SLICES;
return m_supportdata->support_slices;
}
const ExPolygons &SliceRecord::get_slice(SliceOrigin o) const
{
size_t idx = o == soModel ? m_model_slices_idx : m_support_slices_idx;
if(m_po == nullptr) return EMPTY_SLICE;
const std::vector<ExPolygons>& v = o == soModel? m_po->get_model_slices() :
m_po->get_support_slices();
return idx >= v.size() ? EMPTY_SLICE : v[idx];
}
bool SLAPrintObject::has_mesh(SLAPrintObjectStep step) const
{
switch (step) {
case slaposDrillHoles:
return m_hollowing_data && !m_hollowing_data->hollow_mesh_with_holes.empty();
case slaposSupportTree:
return ! this->support_mesh().empty();
case slaposPad:
return ! this->pad_mesh().empty();
default:
return false;
}
}
TriangleMesh SLAPrintObject::get_mesh(SLAPrintObjectStep step) const
{
switch (step) {
case slaposSupportTree:
return this->support_mesh();
case slaposPad:
return this->pad_mesh();
case slaposDrillHoles:
if (m_hollowing_data)
return get_mesh_to_print();
[[fallthrough]];
default:
return TriangleMesh();
}
}
const TriangleMesh& SLAPrintObject::support_mesh() const
{
if(m_config.supports_enable.getBool() && m_supportdata)
return m_supportdata->tree_mesh;
return EMPTY_MESH;
}
const TriangleMesh& SLAPrintObject::pad_mesh() const
{
if(m_config.pad_enable.getBool() && m_supportdata)
return m_supportdata->pad_mesh;
return EMPTY_MESH;
}
const indexed_triangle_set &SLAPrintObject::hollowed_interior_mesh() const
{
if (m_hollowing_data && m_hollowing_data->interior &&
m_config.hollowing_enable.getBool())
return sla::get_mesh(*m_hollowing_data->interior);
return EMPTY_TRIANGLE_SET;
}
const TriangleMesh &SLAPrintObject::transformed_mesh() const {
// we need to transform the raw mesh...
// currently all the instances share the same x and y rotation and scaling
// so we have to extract those from e.g. the first instance and apply to the
// raw mesh. This is also true for the support points.
// BUT: when the support structure is spawned for each instance than it has
// to omit the X, Y rotation and scaling as those have been already applied
// or apply an inverse transformation on the support structure after it
// has been created.
return m_transformed_rmesh.get();
}
sla::SupportPoints SLAPrintObject::transformed_support_points() const
{
assert(m_model_object != nullptr);
auto spts = m_model_object->sla_support_points;
auto tr = trafo().cast<float>();
for (sla::SupportPoint& suppt : spts) {
suppt.pos = tr * suppt.pos;
}
return spts;
}
sla::DrainHoles SLAPrintObject::transformed_drainhole_points() const
{
assert(m_model_object != nullptr);
auto pts = m_model_object->sla_drain_holes;
auto tr = trafo().cast<float>();
auto sc = m_model_object->instances.front()->get_scaling_factor().cast<float>();
for (sla::DrainHole &hl : pts) {
hl.pos = tr * hl.pos;
hl.normal = tr * hl.normal - tr.translation();
// The normal scales as a covector (and we must also
// undo the damage already done).
hl.normal = Vec3f(hl.normal(0)/(sc(0)*sc(0)),
hl.normal(1)/(sc(1)*sc(1)),
hl.normal(2)/(sc(2)*sc(2)));
// Now shift the hole a bit above the object and make it deeper to
// compensate for it. This is to avoid problems when the hole is placed
// on (nearly) flat surface.
hl.pos -= hl.normal.normalized() * sla::HoleStickOutLength;
hl.height += sla::HoleStickOutLength;
}
return pts;
}
DynamicConfig SLAPrintStatistics::config() const
{
DynamicConfig config;
const std::string print_time = Slic3r::short_time(get_time_dhms(float(this->estimated_print_time)));
config.set_key_value("print_time", new ConfigOptionString(print_time));
config.set_key_value("objects_used_material", new ConfigOptionFloat(this->objects_used_material));
config.set_key_value("support_used_material", new ConfigOptionFloat(this->support_used_material));
config.set_key_value("total_cost", new ConfigOptionFloat(this->total_cost));
config.set_key_value("total_weight", new ConfigOptionFloat(this->total_weight));
return config;
}
DynamicConfig SLAPrintStatistics::placeholders()
{
DynamicConfig config;
for (const std::string &key : {
"print_time", "total_cost", "total_weight",
"objects_used_material", "support_used_material" })
config.set_key_value(key, new ConfigOptionString(std::string("{") + key + "}"));
return config;
}
std::string SLAPrintStatistics::finalize_output_path(const std::string &path_in) const
{
std::string final_path;
try {
boost::filesystem::path path(path_in);
DynamicConfig cfg = this->config();
PlaceholderParser pp;
std::string new_stem = pp.process(path.stem().string(), 0, &cfg);
final_path = (path.parent_path() / (new_stem + path.extension().string())).string();
}
catch (const std::exception &ex) {
BOOST_LOG_TRIVIAL(error) << "Failed to apply the print statistics to the export file name: " << ex.what();
final_path = path_in;
}
return final_path;
}
void SLAPrint::StatusReporter::operator()(SLAPrint & p,
double st,
const std::string &msg,
unsigned flags,
const std::string &logmsg)
{
m_st = st;
BOOST_LOG_TRIVIAL(info)
<< st << "% " << msg << (logmsg.empty() ? "" : ": ") << logmsg
<< log_memory_info();
p.set_status(int(std::round(st)), msg, flags);
}
} // namespace Slic3r