884 lines
37 KiB
Perl
884 lines
37 KiB
Perl
package Slic3r::Print;
|
|
use Moo;
|
|
|
|
use File::Basename qw(basename fileparse);
|
|
use File::Spec;
|
|
use List::Util qw(max first);
|
|
use Math::ConvexHull::MonotoneChain qw(convex_hull);
|
|
use Slic3r::ExtrusionPath ':roles';
|
|
use Slic3r::Geometry qw(X Y Z X1 Y1 X2 Y2 MIN PI scale unscale move_points nearest_point);
|
|
use Slic3r::Geometry::Clipper qw(diff_ex union_ex union_pt intersection_ex offset
|
|
offset2 traverse_pt JT_ROUND JT_SQUARE PFT_EVENODD);
|
|
use Time::HiRes qw(gettimeofday tv_interval);
|
|
|
|
has 'config' => (is => 'rw', default => sub { Slic3r::Config->new_from_defaults }, trigger => 1);
|
|
has 'extra_variables' => (is => 'rw', default => sub {{}});
|
|
has 'objects' => (is => 'rw', default => sub {[]});
|
|
has 'total_extrusion_length' => (is => 'rw');
|
|
has 'processing_time' => (is => 'rw');
|
|
has 'extruders' => (is => 'rw', default => sub {[]});
|
|
has 'regions' => (is => 'rw', default => sub {[]});
|
|
has 'support_material_flow' => (is => 'rw');
|
|
has 'first_layer_support_material_flow' => (is => 'rw');
|
|
has 'has_support_material' => (is => 'lazy');
|
|
|
|
# ordered collection of extrusion paths to build skirt loops
|
|
has 'skirt' => (
|
|
is => 'rw',
|
|
#isa => 'ArrayRef[Slic3r::ExtrusionLoop]',
|
|
default => sub { [] },
|
|
);
|
|
|
|
# ordered collection of extrusion paths to build a brim
|
|
has 'brim' => (
|
|
is => 'rw',
|
|
#isa => 'ArrayRef[Slic3r::ExtrusionLoop]',
|
|
default => sub { [] },
|
|
);
|
|
|
|
sub BUILD {
|
|
my $self = shift;
|
|
|
|
# call this manually because the 'default' coderef doesn't trigger the trigger
|
|
$self->_trigger_config;
|
|
}
|
|
|
|
sub _trigger_config {
|
|
my $self = shift;
|
|
|
|
# store config in a handy place
|
|
$Slic3r::Config = $self->config;
|
|
|
|
# legacy with existing config files
|
|
$self->config->set('first_layer_height', $self->config->layer_height)
|
|
if !$self->config->first_layer_height;
|
|
$self->config->set_ifndef('small_perimeter_speed', $self->config->perimeter_speed);
|
|
$self->config->set_ifndef('bridge_speed', $self->config->infill_speed);
|
|
$self->config->set_ifndef('solid_infill_speed', $self->config->infill_speed);
|
|
$self->config->set_ifndef('top_solid_infill_speed', $self->config->solid_infill_speed);
|
|
$self->config->set_ifndef('top_solid_layers', $self->config->solid_layers);
|
|
$self->config->set_ifndef('bottom_solid_layers', $self->config->solid_layers);
|
|
|
|
# G-code flavors
|
|
$self->config->set('extrusion_axis', 'A') if $self->config->gcode_flavor eq 'mach3';
|
|
$self->config->set('extrusion_axis', '') if $self->config->gcode_flavor eq 'no-extrusion';
|
|
|
|
# enforce some settings when spiral_vase is set
|
|
if ($self->config->spiral_vase) {
|
|
$self->config->set('perimeters', 1);
|
|
$self->config->set('fill_density', 0);
|
|
$self->config->set('top_solid_layers', 0);
|
|
$self->config->set('support_material', 0);
|
|
$self->config->set('support_material_enforce_layers', 0);
|
|
$self->config->set('retract_layer_change', [0]); # TODO: only apply this to the spiral layers
|
|
}
|
|
}
|
|
|
|
sub _build_has_support_material {
|
|
my $self = shift;
|
|
return $self->config->support_material
|
|
|| $self->config->raft_layers > 0
|
|
|| $self->config->support_material_enforce_layers > 0;
|
|
}
|
|
|
|
# caller is responsible for supplying models whose objects don't collide
|
|
# and have explicit instance positions
|
|
sub add_model {
|
|
my $self = shift;
|
|
my ($model) = @_;
|
|
|
|
# append/merge materials and preserve a mapping between the original material ID
|
|
# and our numeric material index
|
|
my %materials = ();
|
|
{
|
|
my @material_ids = sort keys %{$model->materials};
|
|
@material_ids = (0) if !@material_ids;
|
|
for (my $i = $self->regions_count; $i < @material_ids; $i++) {
|
|
push @{$self->regions}, Slic3r::Print::Region->new;
|
|
$materials{$material_ids[$i]} = $#{$self->regions};
|
|
}
|
|
}
|
|
|
|
# optimization: if avoid_crossing_perimeters is enabled, split
|
|
# this mesh into distinct objects so that we reduce the complexity
|
|
# of the graphs
|
|
$model->split_meshes if $Slic3r::Config->avoid_crossing_perimeters && !$Slic3r::Config->complete_objects;
|
|
|
|
foreach my $object (@{ $model->objects }) {
|
|
# extract meshes by material
|
|
my @meshes = (); # by region_id
|
|
foreach my $volume (@{$object->volumes}) {
|
|
my $region_id = defined $volume->material_id ? $materials{$volume->material_id} : 0;
|
|
my $mesh = $volume->mesh->clone;
|
|
# should the object contain multiple volumes of the same material, merge them
|
|
$meshes[$region_id] = $meshes[$region_id]
|
|
? Slic3r::TriangleMesh->merge($meshes[$region_id], $mesh)
|
|
: $mesh;
|
|
}
|
|
|
|
foreach my $mesh (@meshes) {
|
|
next unless $mesh;
|
|
$mesh->check_manifoldness;
|
|
|
|
# we ignore the per-instance rotation currently and only
|
|
# consider the first one
|
|
$mesh->rotate($object->instances->[0]->rotation);
|
|
|
|
$mesh->scale(1 / &Slic3r::SCALING_FACTOR);
|
|
}
|
|
|
|
# initialize print object
|
|
push @{$self->objects}, Slic3r::Print::Object->new(
|
|
print => $self,
|
|
meshes => [ @meshes ],
|
|
copies => [ map [ scale $_->offset->[X], scale $_->offset->[Y] ], @{$object->instances} ],
|
|
size => [ map scale $_, @{ $object->size } ],
|
|
input_file => $object->input_file,
|
|
layer_height_ranges => $object->layer_height_ranges,
|
|
);
|
|
}
|
|
}
|
|
|
|
sub validate {
|
|
my $self = shift;
|
|
|
|
if ($Slic3r::Config->complete_objects) {
|
|
# check horizontal clearance
|
|
{
|
|
my @a = ();
|
|
for my $obj_idx (0 .. $#{$self->objects}) {
|
|
my $clearance;
|
|
{
|
|
my @points = map [ @$_[X,Y] ], map @{$_->vertices}, @{$self->objects->[$obj_idx]->meshes};
|
|
my $convex_hull = Slic3r::Polygon->new(convex_hull(\@points));
|
|
($clearance) = map Slic3r::Polygon->new($_),
|
|
Slic3r::Geometry::Clipper::offset(
|
|
[$convex_hull], scale $Slic3r::Config->extruder_clearance_radius / 2, 1, JT_ROUND);
|
|
}
|
|
for my $copy (@{$self->objects->[$obj_idx]->copies}) {
|
|
my $copy_clearance = $clearance->clone;
|
|
$copy_clearance->translate(@$copy);
|
|
if (@{ intersection_ex(\@a, [$copy_clearance]) }) {
|
|
die "Some objects are too close; your extruder will collide with them.\n";
|
|
}
|
|
@a = map @$_, @{union_ex([ @a, $copy_clearance ])};
|
|
}
|
|
}
|
|
}
|
|
|
|
# check vertical clearance
|
|
{
|
|
my @obj_copies = $self->object_copies;
|
|
pop @obj_copies; # ignore the last copy: its height doesn't matter
|
|
my $scaled_clearance = scale $Slic3r::Config->extruder_clearance_height;
|
|
if (grep { +($_->size)[Z] > $scaled_clearance } map @{$self->objects->[$_->[0]]->meshes}, @obj_copies) {
|
|
die "Some objects are too tall and cannot be printed without extruder collisions.\n";
|
|
}
|
|
}
|
|
}
|
|
|
|
if ($Slic3r::Config->spiral_vase) {
|
|
if ((map @{$_->copies}, @{$self->objects}) > 1) {
|
|
die "The Spiral Vase option can only be used when printing a single object.\n";
|
|
}
|
|
if (@{$self->regions} > 1) {
|
|
die "The Spiral Vase option can only be used when printing single material objects.\n";
|
|
}
|
|
}
|
|
}
|
|
|
|
sub init_extruders {
|
|
my $self = shift;
|
|
|
|
# map regions to extruders (ghetto mapping for now)
|
|
my %extruder_mapping = map { $_ => $_ } 0..$#{$self->regions};
|
|
|
|
# initialize all extruder(s) we need
|
|
my @used_extruders = (
|
|
0,
|
|
(map $self->config->get("${_}_extruder")-1, qw(perimeter infill support_material)),
|
|
(values %extruder_mapping),
|
|
);
|
|
for my $extruder_id (keys %{{ map {$_ => 1} @used_extruders }}) {
|
|
$self->extruders->[$extruder_id] = Slic3r::Extruder->new(
|
|
id => $extruder_id,
|
|
map { $_ => $self->config->get($_)->[$extruder_id] // $self->config->get($_)->[0] } #/
|
|
@{&Slic3r::Extruder::OPTIONS}
|
|
);
|
|
}
|
|
|
|
# calculate regions' flows
|
|
for my $region_id (0 .. $#{$self->regions}) {
|
|
my $region = $self->regions->[$region_id];
|
|
|
|
# per-role extruders and flows
|
|
for (qw(perimeter infill solid_infill top_infill)) {
|
|
my $extruder_name = $_;
|
|
$extruder_name =~ s/^(?:solid|top)_//;
|
|
$region->extruders->{$_} = ($self->regions_count > 1)
|
|
? $self->extruders->[$extruder_mapping{$region_id}]
|
|
: $self->extruders->[$self->config->get("${extruder_name}_extruder")-1];
|
|
$region->flows->{$_} = $region->extruders->{$_}->make_flow(
|
|
width => $self->config->get("${_}_extrusion_width") || $self->config->extrusion_width,
|
|
role => $_,
|
|
);
|
|
$region->first_layer_flows->{$_} = $region->extruders->{$_}->make_flow(
|
|
layer_height => $self->config->get_value('first_layer_height'),
|
|
width => $self->config->first_layer_extrusion_width,
|
|
role => $_,
|
|
) if $self->config->first_layer_extrusion_width;
|
|
}
|
|
}
|
|
|
|
# calculate support material flow
|
|
if ($self->has_support_material) {
|
|
my $extruder = $self->extruders->[$self->config->support_material_extruder-1];
|
|
$self->support_material_flow($extruder->make_flow(
|
|
width => $self->config->support_material_extrusion_width || $self->config->extrusion_width,
|
|
role => 'support_material',
|
|
));
|
|
$self->first_layer_support_material_flow($extruder->make_flow(
|
|
layer_height => $self->config->get_value('first_layer_height'),
|
|
width => $self->config->first_layer_extrusion_width,
|
|
role => 'support_material',
|
|
));
|
|
}
|
|
}
|
|
|
|
sub object_copies {
|
|
my $self = shift;
|
|
my @oc = ();
|
|
for my $obj_idx (0 .. $#{$self->objects}) {
|
|
push @oc, map [ $obj_idx, $_ ], @{$self->objects->[$obj_idx]->copies};
|
|
}
|
|
return @oc;
|
|
}
|
|
|
|
sub layer_count {
|
|
my $self = shift;
|
|
return max(map { scalar @{$_->layers} } @{$self->objects});
|
|
}
|
|
|
|
sub regions_count {
|
|
my $self = shift;
|
|
return scalar @{$self->regions};
|
|
}
|
|
|
|
sub bounding_box {
|
|
my $self = shift;
|
|
|
|
my @points = ();
|
|
foreach my $object (@{$self->objects}) {
|
|
foreach my $copy (@{$object->copies}) {
|
|
push @points,
|
|
[ $copy->[X], $copy->[Y] ],
|
|
[ $copy->[X] + $object->size->[X], $copy->[Y] ],
|
|
[ $copy->[X] + $object->size->[X], $copy->[Y] + $object->size->[Y] ],
|
|
[ $copy->[X], $copy->[Y] + $object->size->[Y] ];
|
|
}
|
|
}
|
|
return Slic3r::Geometry::bounding_box(\@points);
|
|
}
|
|
|
|
sub size {
|
|
my $self = shift;
|
|
|
|
my @bb = $self->bounding_box;
|
|
return [ $bb[X2] - $bb[X1], $bb[Y2] - $bb[Y1] ];
|
|
}
|
|
|
|
sub _simplify_slices {
|
|
my $self = shift;
|
|
my ($distance) = @_;
|
|
|
|
foreach my $layer (map @{$_->layers}, @{$self->objects}) {
|
|
@$_ = map $_->simplify($distance), @$_
|
|
for $layer->slices, (map $_->slices, @{$layer->regions});
|
|
}
|
|
}
|
|
|
|
sub export_gcode {
|
|
my $self = shift;
|
|
my %params = @_;
|
|
|
|
$self->init_extruders;
|
|
my $status_cb = $params{status_cb} || sub {};
|
|
my $t0 = [gettimeofday];
|
|
|
|
# skein the STL into layers
|
|
# each layer has surfaces with holes
|
|
$status_cb->(10, "Processing triangulated mesh");
|
|
$_->slice for @{$self->objects};
|
|
|
|
if ($Slic3r::Config->resolution) {
|
|
$status_cb->(15, "Simplifying input");
|
|
$self->_simplify_slices(scale $Slic3r::Config->resolution);
|
|
}
|
|
|
|
# make perimeters
|
|
# this will add a set of extrusion loops to each layer
|
|
# as well as generate infill boundaries
|
|
$status_cb->(20, "Generating perimeters");
|
|
$_->make_perimeters for @{$self->objects};
|
|
|
|
# simplify slices (both layer and region slices),
|
|
# we only need the max resolution for perimeters
|
|
$self->_simplify_slices(&Slic3r::SCALED_RESOLUTION);
|
|
|
|
# this will assign a type (top/bottom/internal) to $layerm->slices
|
|
# and transform $layerm->fill_surfaces from expolygon
|
|
# to typed top/bottom/internal surfaces;
|
|
$status_cb->(30, "Detecting solid surfaces");
|
|
$_->detect_surfaces_type for @{$self->objects};
|
|
|
|
# decide what surfaces are to be filled
|
|
$status_cb->(35, "Preparing infill surfaces");
|
|
$_->prepare_fill_surfaces for map @{$_->regions}, map @{$_->layers}, @{$self->objects};
|
|
|
|
# this will detect bridges and reverse bridges
|
|
# and rearrange top/bottom/internal surfaces
|
|
$status_cb->(45, "Detect bridges");
|
|
$_->process_external_surfaces for map @{$_->regions}, map @{$_->layers}, @{$self->objects};
|
|
|
|
# detect which fill surfaces are near external layers
|
|
# they will be split in internal and internal-solid surfaces
|
|
$status_cb->(60, "Generating horizontal shells");
|
|
$_->discover_horizontal_shells for @{$self->objects};
|
|
$_->clip_fill_surfaces for @{$self->objects};
|
|
# the following step needs to be done before combination because it may need
|
|
# to remove only half of the combined infill
|
|
$_->bridge_over_infill for @{$self->objects};
|
|
|
|
# combine fill surfaces to honor the "infill every N layers" option
|
|
$status_cb->(70, "Combining infill");
|
|
$_->combine_infill for @{$self->objects};
|
|
|
|
# this will generate extrusion paths for each layer
|
|
$status_cb->(80, "Infilling layers");
|
|
{
|
|
Slic3r::parallelize(
|
|
items => sub {
|
|
my @items = (); # [obj_idx, layer_id]
|
|
for my $obj_idx (0 .. $#{$self->objects}) {
|
|
for my $region_id (0 .. ($self->regions_count-1)) {
|
|
push @items, map [$obj_idx, $_, $region_id], 0..($self->objects->[$obj_idx]->layer_count-1);
|
|
}
|
|
}
|
|
@items;
|
|
},
|
|
thread_cb => sub {
|
|
my $q = shift;
|
|
$Slic3r::Geometry::Clipper::clipper = Math::Clipper->new;
|
|
my $fills = {};
|
|
while (defined (my $obj_layer = $q->dequeue)) {
|
|
my ($obj_idx, $layer_id, $region_id) = @$obj_layer;
|
|
my $object = $self->objects->[$obj_idx];
|
|
$fills->{$obj_idx} ||= {};
|
|
$fills->{$obj_idx}{$layer_id} ||= {};
|
|
$fills->{$obj_idx}{$layer_id}{$region_id} = [
|
|
$object->fill_maker->make_fill($object->layers->[$layer_id]->regions->[$region_id]),
|
|
];
|
|
}
|
|
return $fills;
|
|
},
|
|
collect_cb => sub {
|
|
my $fills = shift;
|
|
foreach my $obj_idx (keys %$fills) {
|
|
my $object = $self->objects->[$obj_idx];
|
|
foreach my $layer_id (keys %{$fills->{$obj_idx}}) {
|
|
my $layer = $object->layers->[$layer_id];
|
|
foreach my $region_id (keys %{$fills->{$obj_idx}{$layer_id}}) {
|
|
$layer->regions->[$region_id]->fills($fills->{$obj_idx}{$layer_id}{$region_id});
|
|
}
|
|
}
|
|
}
|
|
},
|
|
no_threads_cb => sub {
|
|
foreach my $layerm (map @{$_->regions}, map @{$_->layers}, @{$self->objects}) {
|
|
$layerm->fills([ $layerm->layer->object->fill_maker->make_fill($layerm) ]);
|
|
}
|
|
},
|
|
);
|
|
}
|
|
|
|
# generate support material
|
|
if ($self->has_support_material) {
|
|
$status_cb->(85, "Generating support material");
|
|
$_->generate_support_material for @{$self->objects};
|
|
}
|
|
|
|
# free memory (note that support material needs fill_surfaces)
|
|
$_->fill_surfaces(undef) for map @{$_->regions}, map @{$_->layers}, @{$self->objects};
|
|
|
|
# make skirt
|
|
$status_cb->(88, "Generating skirt");
|
|
$self->make_skirt;
|
|
$self->make_brim; # must come after make_skirt
|
|
|
|
# time to make some statistics
|
|
if (0) {
|
|
eval "use Devel::Size";
|
|
print "MEMORY USAGE:\n";
|
|
printf " meshes = %.1fMb\n", List::Util::sum(map Devel::Size::total_size($_->meshes), @{$self->objects})/1024/1024;
|
|
printf " layer slices = %.1fMb\n", List::Util::sum(map Devel::Size::total_size($_->slices), map @{$_->layers}, @{$self->objects})/1024/1024;
|
|
printf " region slices = %.1fMb\n", List::Util::sum(map Devel::Size::total_size($_->slices), map @{$_->regions}, map @{$_->layers}, @{$self->objects})/1024/1024;
|
|
printf " perimeters = %.1fMb\n", List::Util::sum(map Devel::Size::total_size($_->perimeters), map @{$_->regions}, map @{$_->layers}, @{$self->objects})/1024/1024;
|
|
printf " fills = %.1fMb\n", List::Util::sum(map Devel::Size::total_size($_->fills), map @{$_->regions}, map @{$_->layers}, @{$self->objects})/1024/1024;
|
|
printf " print object = %.1fMb\n", Devel::Size::total_size($self)/1024/1024;
|
|
}
|
|
if (0) {
|
|
eval "use Slic3r::Test::SectionCut";
|
|
Slic3r::Test::SectionCut->new(print => $self)->export_svg("section_cut.svg");
|
|
}
|
|
|
|
# output everything to a G-code file
|
|
my $output_file = $self->expanded_output_filepath($params{output_file});
|
|
$status_cb->(90, "Exporting G-code" . ($output_file ? " to $output_file" : ""));
|
|
$self->write_gcode($params{output_fh} || $output_file);
|
|
|
|
# run post-processing scripts
|
|
if (@{$Slic3r::Config->post_process}) {
|
|
$status_cb->(95, "Running post-processing scripts");
|
|
$Slic3r::Config->setenv;
|
|
for (@{$Slic3r::Config->post_process}) {
|
|
Slic3r::debugf " '%s' '%s'\n", $_, $output_file;
|
|
system($_, $output_file);
|
|
}
|
|
}
|
|
|
|
# output some statistics
|
|
unless ($params{quiet}) {
|
|
$self->processing_time(tv_interval($t0));
|
|
printf "Done. Process took %d minutes and %.3f seconds\n",
|
|
int($self->processing_time/60),
|
|
$self->processing_time - int($self->processing_time/60)*60;
|
|
|
|
# TODO: more statistics!
|
|
printf "Filament required: %.1fmm (%.1fcm3)\n",
|
|
$self->total_extrusion_length, $self->total_extrusion_volume;
|
|
}
|
|
}
|
|
|
|
sub export_svg {
|
|
my $self = shift;
|
|
my %params = @_;
|
|
|
|
# this shouldn't be needed, but we're currently relying on ->make_surfaces() which
|
|
# calls ->perimeter_flow
|
|
$self->init_extruders;
|
|
|
|
$_->slice for @{$self->objects};
|
|
$self->arrange_objects;
|
|
|
|
my $output_file = $self->expanded_output_filepath($params{output_file});
|
|
$output_file =~ s/\.gcode$/.svg/i;
|
|
|
|
Slic3r::open(\my $fh, ">", $output_file) or die "Failed to open $output_file for writing\n";
|
|
print "Exporting to $output_file...";
|
|
my $print_size = $self->size;
|
|
print $fh sprintf <<"EOF", unscale($print_size->[X]), unscale($print_size->[Y]);
|
|
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
|
|
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN" "http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd">
|
|
<svg width="%s" height="%s" xmlns="http://www.w3.org/2000/svg" xmlns:svg="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:slic3r="http://slic3r.org/namespaces/slic3r">
|
|
<!--
|
|
Generated using Slic3r $Slic3r::VERSION
|
|
http://slic3r.org/
|
|
-->
|
|
EOF
|
|
|
|
my $print_polygon = sub {
|
|
my ($polygon, $type) = @_;
|
|
printf $fh qq{ <polygon slic3r:type="%s" points="%s" style="fill: %s" />\n},
|
|
$type, (join ' ', map { join ',', map unscale $_, @$_ } @$polygon),
|
|
($type eq 'contour' ? 'white' : 'black');
|
|
};
|
|
|
|
my @previous_layer_slices = ();
|
|
for my $layer_id (0..$self->layer_count-1) {
|
|
my @layers = map $_->layers->[$layer_id], @{$self->objects};
|
|
printf $fh qq{ <g id="layer%d" slic3r:z="%s">\n}, $layer_id, unscale +(grep defined $_, @layers)[0]->slice_z;
|
|
|
|
my @current_layer_slices = ();
|
|
for my $obj_idx (0 .. $#{$self->objects}) {
|
|
my $layer = $self->objects->[$obj_idx]->layers->[$layer_id] or next;
|
|
|
|
# sort slices so that the outermost ones come first
|
|
my @slices = sort { $a->contour->encloses_point($b->contour->[0]) ? 0 : 1 } @{$layer->slices};
|
|
foreach my $copy (@{$self->objects->[$obj_idx]->copies}) {
|
|
foreach my $slice (@slices) {
|
|
my $expolygon = $slice->clone;
|
|
$expolygon->translate(@$copy);
|
|
$print_polygon->($expolygon->contour, 'contour');
|
|
$print_polygon->($_, 'hole') for $expolygon->holes;
|
|
push @current_layer_slices, $expolygon;
|
|
}
|
|
}
|
|
}
|
|
# generate support material
|
|
if ($self->has_support_material && $layer_id > 0) {
|
|
my (@supported_slices, @unsupported_slices) = ();
|
|
foreach my $expolygon (@current_layer_slices) {
|
|
my $intersection = intersection_ex(
|
|
[ map @$_, @previous_layer_slices ],
|
|
$expolygon,
|
|
);
|
|
@$intersection
|
|
? push @supported_slices, $expolygon
|
|
: push @unsupported_slices, $expolygon;
|
|
}
|
|
my @supported_points = map @$_, @$_, @supported_slices;
|
|
foreach my $expolygon (@unsupported_slices) {
|
|
# look for the nearest point to this island among all
|
|
# supported points
|
|
my $support_point = nearest_point($expolygon->contour->[0], \@supported_points)
|
|
or next;
|
|
my $anchor_point = nearest_point($support_point, $expolygon->contour);
|
|
printf $fh qq{ <line x1="%s" y1="%s" x2="%s" y2="%s" style="stroke-width: 2; stroke: white" />\n},
|
|
map @$_, $support_point, $anchor_point;
|
|
}
|
|
}
|
|
print $fh qq{ </g>\n};
|
|
@previous_layer_slices = @current_layer_slices;
|
|
}
|
|
|
|
print $fh "</svg>\n";
|
|
close $fh;
|
|
print "Done.\n";
|
|
}
|
|
|
|
sub make_skirt {
|
|
my $self = shift;
|
|
return unless $Slic3r::Config->skirts > 0;
|
|
|
|
# collect points from all layers contained in skirt height
|
|
my @points = ();
|
|
foreach my $obj_idx (0 .. $#{$self->objects}) {
|
|
my $skirt_height = $Slic3r::Config->skirt_height;
|
|
$skirt_height = $self->objects->[$obj_idx]->layer_count if $skirt_height > $self->objects->[$obj_idx]->layer_count;
|
|
my @layers = map $self->objects->[$obj_idx]->layers->[$_], 0..($skirt_height-1);
|
|
my @layer_points = (
|
|
(map @$_, map @$_, map @{$_->slices}, @layers),
|
|
(map @$_, map @{$_->thin_walls}, map @{$_->regions}, @layers),
|
|
(map @{$_->unpack->polyline}, map @{$_->support_fills->paths}, grep $_->support_fills, @layers),
|
|
);
|
|
push @points, map move_points($_, @layer_points), @{$self->objects->[$obj_idx]->copies};
|
|
}
|
|
return if @points < 3; # at least three points required for a convex hull
|
|
|
|
# find out convex hull
|
|
my $convex_hull = convex_hull(\@points);
|
|
|
|
my @extruded_length = (); # for each extruder
|
|
|
|
# TODO: use each extruder's own flow
|
|
my $spacing = $self->objects->[0]->layers->[0]->regions->[0]->perimeter_flow->spacing;
|
|
|
|
my $first_layer_height = $Slic3r::Config->get_value('first_layer_height');
|
|
my @extruders_e_per_mm = ();
|
|
my $extruder_idx = 0;
|
|
|
|
# draw outlines from outside to inside
|
|
# loop while we have less skirts than required or any extruder hasn't reached the min length if any
|
|
my $distance = scale $Slic3r::Config->skirt_distance;
|
|
for (my $i = $Slic3r::Config->skirts; $i > 0; $i--) {
|
|
$distance += scale $spacing;
|
|
my ($loop) = Slic3r::Geometry::Clipper::offset([$convex_hull], $distance, 0.0001, JT_ROUND);
|
|
push @{$self->skirt}, Slic3r::ExtrusionLoop->pack(
|
|
polygon => Slic3r::Polygon->new(@$loop),
|
|
role => EXTR_ROLE_SKIRT,
|
|
flow_spacing => $spacing,
|
|
);
|
|
|
|
if ($Slic3r::Config->min_skirt_length > 0) {
|
|
bless $loop, 'Slic3r::Polygon';
|
|
$extruded_length[$extruder_idx] ||= 0;
|
|
$extruders_e_per_mm[$extruder_idx] ||= $self->extruders->[$extruder_idx]->e_per_mm($spacing, $first_layer_height);
|
|
$extruded_length[$extruder_idx] += unscale $loop->length * $extruders_e_per_mm[$extruder_idx];
|
|
$i++ if defined first { ($extruded_length[$_] // 0) < $Slic3r::Config->min_skirt_length } 0 .. $#{$self->extruders};
|
|
if ($extruded_length[$extruder_idx] >= $Slic3r::Config->min_skirt_length) {
|
|
if ($extruder_idx < $#{$self->extruders}) {
|
|
$extruder_idx++;
|
|
next;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
@{$self->skirt} = reverse @{$self->skirt};
|
|
}
|
|
|
|
sub make_brim {
|
|
my $self = shift;
|
|
return unless $Slic3r::Config->brim_width > 0;
|
|
|
|
my $flow = $self->objects->[0]->layers->[0]->regions->[0]->perimeter_flow;
|
|
|
|
my $grow_distance = $flow->scaled_width / 2;
|
|
my @islands = (); # array of polygons
|
|
foreach my $obj_idx (0 .. $#{$self->objects}) {
|
|
my $layer0 = $self->objects->[$obj_idx]->layers->[0];
|
|
my @object_islands = (
|
|
(map $_->contour, @{$layer0->slices}),
|
|
(map { $_->isa('Slic3r::Polygon') ? $_ : $_->grow($grow_distance) } map @{$_->thin_walls}, @{$layer0->regions}),
|
|
(map $_->unpack->polyline->grow($grow_distance), map @{$_->support_fills->paths}, grep $_->support_fills, $layer0),
|
|
);
|
|
foreach my $copy (@{$self->objects->[$obj_idx]->copies}) {
|
|
push @islands, map $_->clone->translate(@$copy), @object_islands;
|
|
}
|
|
}
|
|
|
|
# if brim touches skirt, make it around skirt too
|
|
# TODO: calculate actual skirt width (using each extruder's flow in multi-extruder setups)
|
|
if ($Slic3r::Config->skirt_distance + (($Slic3r::Config->skirts - 1) * $flow->spacing) <= $Slic3r::Config->brim_width) {
|
|
push @islands, map $_->unpack->split_at_first_point->polyline->grow($grow_distance), @{$self->skirt};
|
|
}
|
|
|
|
my @loops = ();
|
|
my $num_loops = sprintf "%.0f", $Slic3r::Config->brim_width / $flow->width;
|
|
for my $i (reverse 1 .. $num_loops) {
|
|
# JT_SQUARE ensures no vertex is outside the given offset distance
|
|
# -0.5 because islands are not represented by their centerlines
|
|
# TODO: we need the offset inwards/offset outwards logic to avoid overlapping extrusions
|
|
push @loops, offset2(\@islands, ($i - 1.5) * $flow->scaled_spacing, +1.0 * $flow->scaled_spacing, undef, JT_SQUARE);
|
|
}
|
|
|
|
@{$self->brim} = map Slic3r::ExtrusionLoop->pack(
|
|
polygon => Slic3r::Polygon->new($_),
|
|
role => EXTR_ROLE_SKIRT,
|
|
flow_spacing => $flow->spacing,
|
|
), reverse traverse_pt( union_pt(\@loops, PFT_EVENODD) );
|
|
}
|
|
|
|
sub write_gcode {
|
|
my $self = shift;
|
|
my ($file) = @_;
|
|
|
|
# open output gcode file if we weren't supplied a file-handle
|
|
my $fh;
|
|
if (ref $file eq 'IO::Scalar') {
|
|
$fh = $file;
|
|
} else {
|
|
Slic3r::open(\$fh, ">", $file)
|
|
or die "Failed to open $file for writing\n";
|
|
}
|
|
|
|
# write some information
|
|
my @lt = localtime;
|
|
printf $fh "; generated by Slic3r $Slic3r::VERSION on %04d-%02d-%02d at %02d:%02d:%02d\n\n",
|
|
$lt[5] + 1900, $lt[4]+1, $lt[3], $lt[2], $lt[1], $lt[0];
|
|
|
|
print $fh "; $_\n" foreach split /\R/, $Slic3r::Config->notes;
|
|
print $fh "\n" if $Slic3r::Config->notes;
|
|
|
|
for (qw(layer_height perimeters top_solid_layers bottom_solid_layers fill_density perimeter_speed infill_speed travel_speed)) {
|
|
printf $fh "; %s = %s\n", $_, $Slic3r::Config->$_;
|
|
}
|
|
for (qw(nozzle_diameter filament_diameter extrusion_multiplier)) {
|
|
printf $fh "; %s = %s\n", $_, $Slic3r::Config->$_->[0];
|
|
}
|
|
printf $fh "; perimeters extrusion width = %.2fmm\n", $self->regions->[0]->flows->{perimeter}->width;
|
|
printf $fh "; infill extrusion width = %.2fmm\n", $self->regions->[0]->flows->{infill}->width;
|
|
printf $fh "; solid infill extrusion width = %.2fmm\n", $self->regions->[0]->flows->{solid_infill}->width;
|
|
printf $fh "; top infill extrusion width = %.2fmm\n", $self->regions->[0]->flows->{top_infill}->width;
|
|
printf $fh "; support material extrusion width = %.2fmm\n", $self->support_material_flow->width
|
|
if $self->support_material_flow;
|
|
printf $fh "; first layer extrusion width = %.2fmm\n", $self->regions->[0]->first_layer_flows->{perimeter}->width
|
|
if $self->regions->[0]->first_layer_flows->{perimeter};
|
|
print $fh "\n";
|
|
|
|
# set up our extruder object
|
|
my $gcodegen = Slic3r::GCode->new(
|
|
config => $self->config,
|
|
multiple_extruders => (@{$self->extruders} > 1),
|
|
layer_count => $self->layer_count,
|
|
);
|
|
print $fh "G21 ; set units to millimeters\n";
|
|
print $fh $gcodegen->set_fan(0, 1) if $Slic3r::Config->cooling && $Slic3r::Config->disable_fan_first_layers;
|
|
|
|
# write start commands to file
|
|
printf $fh $gcodegen->set_bed_temperature($Slic3r::Config->first_layer_bed_temperature, 1),
|
|
if $Slic3r::Config->first_layer_bed_temperature && $Slic3r::Config->start_gcode !~ /M(?:190|140)/i;
|
|
my $print_first_layer_temperature = sub {
|
|
for my $t (grep $self->extruders->[$_], 0 .. $#{$Slic3r::Config->first_layer_temperature}) {
|
|
printf $fh $gcodegen->set_temperature($self->extruders->[$t]->first_layer_temperature, 0, $t)
|
|
if $self->extruders->[$t]->first_layer_temperature;
|
|
}
|
|
};
|
|
$print_first_layer_temperature->() if $Slic3r::Config->start_gcode !~ /M(?:109|104)/i;
|
|
printf $fh "%s\n", $Slic3r::Config->replace_options($Slic3r::Config->start_gcode);
|
|
for my $t (grep $self->extruders->[$_], 0 .. $#{$Slic3r::Config->first_layer_temperature}) {
|
|
printf $fh $gcodegen->set_temperature($self->extruders->[$t]->first_layer_temperature, 1, $t)
|
|
if $self->extruders->[$t]->first_layer_temperature && $Slic3r::Config->start_gcode !~ /M(?:109|104)/i;
|
|
}
|
|
print $fh "G90 ; use absolute coordinates\n";
|
|
if ($Slic3r::Config->gcode_flavor =~ /^(?:reprap|teacup)$/) {
|
|
printf $fh $gcodegen->reset_e;
|
|
if ($Slic3r::Config->gcode_flavor =~ /^(?:reprap|makerbot|sailfish)$/) {
|
|
if ($Slic3r::Config->use_relative_e_distances) {
|
|
print $fh "M83 ; use relative distances for extrusion\n";
|
|
} else {
|
|
print $fh "M82 ; use absolute distances for extrusion\n";
|
|
}
|
|
}
|
|
}
|
|
|
|
# calculate X,Y shift to center print around specified origin
|
|
my @print_bb = $self->bounding_box;
|
|
my @shift = (
|
|
$Slic3r::Config->print_center->[X] - (unscale ($print_bb[X2] - $print_bb[X1]) / 2) - unscale $print_bb[X1],
|
|
$Slic3r::Config->print_center->[Y] - (unscale ($print_bb[Y2] - $print_bb[Y1]) / 2) - unscale $print_bb[Y1],
|
|
);
|
|
|
|
# initialize a motion planner for object-to-object travel moves
|
|
if ($Slic3r::Config->avoid_crossing_perimeters) {
|
|
my $distance_from_objects = 1;
|
|
# compute the offsetted convex hull for each object and repeat it for each copy.
|
|
my @islands = ();
|
|
foreach my $obj_idx (0 .. $#{$self->objects}) {
|
|
my $convex_hull = convex_hull([
|
|
map @{$_->contour}, map @{$_->slices}, @{$self->objects->[$obj_idx]->layers},
|
|
]);
|
|
# discard layers only containing thin walls (offset would fail on an empty polygon)
|
|
if (@$convex_hull) {
|
|
my @island = Slic3r::ExPolygon->new($convex_hull)
|
|
->translate(scale $shift[X], scale $shift[Y])
|
|
->offset_ex(scale $distance_from_objects, 1, JT_SQUARE);
|
|
foreach my $copy (@{ $self->objects->[$obj_idx]->copies }) {
|
|
push @islands, map $_->clone->translate(@$copy), @island;
|
|
}
|
|
}
|
|
}
|
|
$gcodegen->external_mp(Slic3r::GCode::MotionPlanner->new(
|
|
islands => union_ex([ map @$_, @islands ]),
|
|
no_internal => 1,
|
|
));
|
|
}
|
|
|
|
# prepare the layer processor
|
|
my $layer_gcode = Slic3r::GCode::Layer->new(
|
|
print => $self,
|
|
gcodegen => $gcodegen,
|
|
shift => \@shift,
|
|
);
|
|
|
|
# do all objects for each layer
|
|
if ($Slic3r::Config->complete_objects) {
|
|
|
|
# print objects from the smallest to the tallest to avoid collisions
|
|
# when moving onto next object starting point
|
|
my @obj_idx = sort { $self->objects->[$a]->layer_count <=> $self->objects->[$b]->layer_count } 0..$#{$self->objects};
|
|
|
|
my $finished_objects = 0;
|
|
for my $obj_idx (@obj_idx) {
|
|
for my $copy (@{ $self->objects->[$obj_idx]->copies }) {
|
|
# move to the origin position for the copy we're going to print.
|
|
# this happens before Z goes down to layer 0 again, so that
|
|
# no collision happens hopefully.
|
|
if ($finished_objects > 0) {
|
|
$gcodegen->set_shift(map $shift[$_] + unscale $copy->[$_], X,Y);
|
|
print $fh $gcodegen->retract;
|
|
print $fh $gcodegen->G0(Slic3r::Point->new(0,0), undef, 0, 'move to origin position for next object');
|
|
}
|
|
|
|
my $buffer = Slic3r::GCode::CoolingBuffer->new(
|
|
config => $Slic3r::Config,
|
|
gcodegen => $gcodegen,
|
|
);
|
|
|
|
for my $layer (@{$self->objects->[$obj_idx]->layers}) {
|
|
# if we are printing the bottom layer of an object, and we have already finished
|
|
# another one, set first layer temperatures. this happens before the Z move
|
|
# is triggered, so machine has more time to reach such temperatures
|
|
if ($layer->id == 0 && $finished_objects > 0) {
|
|
printf $fh $gcodegen->set_bed_temperature($Slic3r::Config->first_layer_bed_temperature),
|
|
if $Slic3r::Config->first_layer_bed_temperature;
|
|
$print_first_layer_temperature->();
|
|
}
|
|
print $fh $buffer->append(
|
|
$layer_gcode->process_layer($layer, [$copy]),
|
|
$layer->object."",
|
|
$layer->id,
|
|
$layer->print_z,
|
|
);
|
|
}
|
|
print $fh $buffer->flush;
|
|
$finished_objects++;
|
|
}
|
|
}
|
|
} else {
|
|
my $buffer = Slic3r::GCode::CoolingBuffer->new(
|
|
config => $Slic3r::Config,
|
|
gcodegen => $gcodegen,
|
|
);
|
|
my @layers = sort { $a->print_z <=> $b->print_z } map @{$_->layers}, @{$self->objects};
|
|
foreach my $layer (@layers) {
|
|
print $fh $buffer->append(
|
|
$layer_gcode->process_layer($layer, $layer->object->copies),
|
|
$layer->object."",
|
|
$layer->id,
|
|
$layer->print_z,
|
|
);
|
|
}
|
|
print $fh $buffer->flush;
|
|
}
|
|
|
|
# save statistic data
|
|
$self->total_extrusion_length($gcodegen->total_extrusion_length);
|
|
|
|
# write end commands to file
|
|
print $fh $gcodegen->retract if $gcodegen->extruder; # empty prints don't even set an extruder
|
|
print $fh $gcodegen->set_fan(0);
|
|
printf $fh "%s\n", $Slic3r::Config->replace_options($Slic3r::Config->end_gcode);
|
|
|
|
printf $fh "; filament used = %.1fmm (%.1fcm3)\n",
|
|
$self->total_extrusion_length, $self->total_extrusion_volume;
|
|
|
|
if ($Slic3r::Config->gcode_comments) {
|
|
# append full config
|
|
print $fh "\n";
|
|
foreach my $opt_key (sort keys %{$Slic3r::Config}) {
|
|
next if $Slic3r::Config::Options->{$opt_key}{shortcut};
|
|
next if $Slic3r::Config::Options->{$opt_key}{gui_only};
|
|
printf $fh "; %s = %s\n", $opt_key, $Slic3r::Config->serialize($opt_key);
|
|
}
|
|
}
|
|
|
|
# close our gcode file
|
|
close $fh;
|
|
}
|
|
|
|
sub total_extrusion_volume {
|
|
my $self = shift;
|
|
return $self->total_extrusion_length * ($self->extruders->[0]->filament_diameter**2) * PI/4 / 1000;
|
|
}
|
|
|
|
# this method will return the supplied input file path after expanding its
|
|
# format variables with their values
|
|
sub expanded_output_filepath {
|
|
my $self = shift;
|
|
my ($path, $input_file) = @_;
|
|
|
|
# if no input file was supplied, take the first one from our objects
|
|
$input_file ||= $self->objects->[0]->input_file;
|
|
return undef if !defined $input_file;
|
|
|
|
# if output path is an existing directory, we take that and append
|
|
# the specified filename format
|
|
$path = File::Spec->join($path, $Slic3r::Config->output_filename_format) if ($path && -d $path);
|
|
|
|
# if no explicit output file was defined, we take the input
|
|
# file directory and append the specified filename format
|
|
$path ||= (fileparse($input_file))[1] . $Slic3r::Config->output_filename_format;
|
|
|
|
my $input_filename = my $input_filename_base = basename($input_file);
|
|
$input_filename_base =~ s/\.(?:stl|amf(?:\.xml)?)$//i;
|
|
|
|
return $Slic3r::Config->replace_options($path, {
|
|
input_filename => $input_filename,
|
|
input_filename_base => $input_filename_base,
|
|
%{ $self->extra_variables },
|
|
});
|
|
}
|
|
|
|
1;
|