954 lines
43 KiB
C++
954 lines
43 KiB
C++
#include <assert.h>
|
|
#include <stdio.h>
|
|
#include <memory>
|
|
|
|
#include "../ClipperUtils.hpp"
|
|
#include "../Geometry.hpp"
|
|
#include "../Layer.hpp"
|
|
#include "../Print.hpp"
|
|
#include "../PrintConfig.hpp"
|
|
#include "../Surface.hpp"
|
|
// for Arachne based infills
|
|
#include "../PerimeterGenerator.hpp"
|
|
|
|
#include "FillBase.hpp"
|
|
#include "FillRectilinear.hpp"
|
|
#include "FillLightning.hpp"
|
|
#include "FillConcentric.hpp"
|
|
#include "FillEnsuring.hpp"
|
|
|
|
namespace Slic3r {
|
|
|
|
static constexpr const float NarrowInfillAreaThresholdMM = 3.f;
|
|
|
|
struct SurfaceFillParams
|
|
{
|
|
// Zero based extruder ID.
|
|
unsigned int extruder = 0;
|
|
// Infill pattern, adjusted for the density etc.
|
|
InfillPattern pattern = InfillPattern(0);
|
|
|
|
// FillBase
|
|
// in unscaled coordinates
|
|
coordf_t spacing = 0.;
|
|
// infill / perimeter overlap, in unscaled coordinates
|
|
// coordf_t overlap = 0.;
|
|
// Angle as provided by the region config, in radians.
|
|
float angle = 0.f;
|
|
// Is bridging used for this fill? Bridging parameters may be used even if this->flow.bridge() is not set.
|
|
bool bridge;
|
|
// Non-negative for a bridge.
|
|
float bridge_angle = 0.f;
|
|
|
|
// FillParams
|
|
float density = 0.f;
|
|
// Don't adjust spacing to fill the space evenly.
|
|
// bool dont_adjust = false;
|
|
// Length of the infill anchor along the perimeter line.
|
|
// 1000mm is roughly the maximum length line that fits into a 32bit coord_t.
|
|
float anchor_length = 1000.f;
|
|
float anchor_length_max = 1000.f;
|
|
|
|
// width, height of extrusion, nozzle diameter, is bridge
|
|
// For the output, for fill generator.
|
|
Flow flow;
|
|
|
|
// For the output
|
|
ExtrusionRole extrusion_role{ ExtrusionRole::None };
|
|
|
|
// Various print settings?
|
|
|
|
// Index of this entry in a linear vector.
|
|
size_t idx = 0;
|
|
|
|
|
|
bool operator<(const SurfaceFillParams &rhs) const {
|
|
#define RETURN_COMPARE_NON_EQUAL(KEY) if (this->KEY < rhs.KEY) return true; if (this->KEY > rhs.KEY) return false;
|
|
#define RETURN_COMPARE_NON_EQUAL_TYPED(TYPE, KEY) if (TYPE(this->KEY) < TYPE(rhs.KEY)) return true; if (TYPE(this->KEY) > TYPE(rhs.KEY)) return false;
|
|
|
|
// Sort first by decreasing bridging angle, so that the bridges are processed with priority when trimming one layer by the other.
|
|
if (this->bridge_angle > rhs.bridge_angle) return true;
|
|
if (this->bridge_angle < rhs.bridge_angle) return false;
|
|
|
|
RETURN_COMPARE_NON_EQUAL(extruder);
|
|
RETURN_COMPARE_NON_EQUAL_TYPED(unsigned, pattern);
|
|
RETURN_COMPARE_NON_EQUAL(spacing);
|
|
// RETURN_COMPARE_NON_EQUAL(overlap);
|
|
RETURN_COMPARE_NON_EQUAL(angle);
|
|
RETURN_COMPARE_NON_EQUAL(density);
|
|
// RETURN_COMPARE_NON_EQUAL_TYPED(unsigned, dont_adjust);
|
|
RETURN_COMPARE_NON_EQUAL(anchor_length);
|
|
RETURN_COMPARE_NON_EQUAL(anchor_length_max);
|
|
RETURN_COMPARE_NON_EQUAL(flow.width());
|
|
RETURN_COMPARE_NON_EQUAL(flow.height());
|
|
RETURN_COMPARE_NON_EQUAL(flow.nozzle_diameter());
|
|
RETURN_COMPARE_NON_EQUAL_TYPED(unsigned, bridge);
|
|
return this->extrusion_role.lower(rhs.extrusion_role);
|
|
}
|
|
|
|
bool operator==(const SurfaceFillParams &rhs) const {
|
|
return this->extruder == rhs.extruder &&
|
|
this->pattern == rhs.pattern &&
|
|
this->spacing == rhs.spacing &&
|
|
// this->overlap == rhs.overlap &&
|
|
this->angle == rhs.angle &&
|
|
this->bridge == rhs.bridge &&
|
|
// this->bridge_angle == rhs.bridge_angle &&
|
|
this->density == rhs.density &&
|
|
// this->dont_adjust == rhs.dont_adjust &&
|
|
this->anchor_length == rhs.anchor_length &&
|
|
this->anchor_length_max == rhs.anchor_length_max &&
|
|
this->flow == rhs.flow &&
|
|
this->extrusion_role == rhs.extrusion_role;
|
|
}
|
|
};
|
|
|
|
struct SurfaceFill {
|
|
SurfaceFill(const SurfaceFillParams& params) : region_id(size_t(-1)), surface(stCount, ExPolygon()), params(params) {}
|
|
|
|
size_t region_id;
|
|
Surface surface;
|
|
ExPolygons expolygons;
|
|
SurfaceFillParams params;
|
|
};
|
|
|
|
static inline bool fill_type_monotonic(InfillPattern pattern)
|
|
{
|
|
return pattern == ipMonotonic || pattern == ipMonotonicLines;
|
|
}
|
|
|
|
std::vector<SurfaceFill> group_fills(const Layer &layer)
|
|
{
|
|
std::vector<SurfaceFill> surface_fills;
|
|
|
|
// Fill in a map of a region & surface to SurfaceFillParams.
|
|
std::set<SurfaceFillParams> set_surface_params;
|
|
std::vector<std::vector<const SurfaceFillParams*>> region_to_surface_params(layer.regions().size(), std::vector<const SurfaceFillParams*>());
|
|
SurfaceFillParams params;
|
|
bool has_internal_voids = false;
|
|
for (size_t region_id = 0; region_id < layer.regions().size(); ++ region_id) {
|
|
const LayerRegion &layerm = *layer.regions()[region_id];
|
|
region_to_surface_params[region_id].assign(layerm.fill_surfaces().size(), nullptr);
|
|
for (const Surface &surface : layerm.fill_surfaces())
|
|
if (surface.surface_type == stInternalVoid)
|
|
has_internal_voids = true;
|
|
else {
|
|
const PrintRegionConfig ®ion_config = layerm.region().config();
|
|
FlowRole extrusion_role = surface.is_top() ? frTopSolidInfill : (surface.is_solid() ? frSolidInfill : frInfill);
|
|
bool is_bridge = layer.id() > 0 && surface.is_bridge();
|
|
params.extruder = layerm.region().extruder(extrusion_role);
|
|
params.pattern = region_config.fill_pattern.value;
|
|
params.density = float(region_config.fill_density);
|
|
|
|
if (surface.is_solid()) {
|
|
params.density = 100.f;
|
|
//FIXME for non-thick bridges, shall we allow a bottom surface pattern?
|
|
params.pattern = (surface.is_external() && ! is_bridge) ?
|
|
(surface.is_top() ? region_config.top_fill_pattern.value : region_config.bottom_fill_pattern.value) :
|
|
fill_type_monotonic(region_config.top_fill_pattern) ? ipMonotonic : ipRectilinear;
|
|
} else if (params.density <= 0)
|
|
continue;
|
|
|
|
params.extrusion_role =
|
|
is_bridge ?
|
|
ExtrusionRole::BridgeInfill :
|
|
(surface.is_solid() ?
|
|
(surface.is_top() ? ExtrusionRole::TopSolidInfill : ExtrusionRole::SolidInfill) :
|
|
ExtrusionRole::InternalInfill);
|
|
params.bridge_angle = float(surface.bridge_angle);
|
|
params.angle = float(Geometry::deg2rad(region_config.fill_angle.value));
|
|
|
|
// Calculate the actual flow we'll be using for this infill.
|
|
params.bridge = is_bridge || Fill::use_bridge_flow(params.pattern);
|
|
params.flow = params.bridge ?
|
|
// Always enable thick bridges for internal bridges.
|
|
layerm.bridging_flow(extrusion_role, surface.is_bridge() && ! surface.is_external()) :
|
|
layerm.flow(extrusion_role, (surface.thickness == -1) ? layer.height : surface.thickness);
|
|
|
|
// Calculate flow spacing for infill pattern generation.
|
|
if (surface.is_solid() || is_bridge) {
|
|
params.spacing = params.flow.spacing();
|
|
// Don't limit anchor length for solid or bridging infill.
|
|
params.anchor_length = 1000.f;
|
|
params.anchor_length_max = 1000.f;
|
|
} else {
|
|
// Internal infill. Calculating infill line spacing independent of the current layer height and 1st layer status,
|
|
// so that internall infill will be aligned over all layers of the current region.
|
|
params.spacing = layerm.region().flow(*layer.object(), frInfill, layer.object()->config().layer_height, false).spacing();
|
|
// Anchor a sparse infill to inner perimeters with the following anchor length:
|
|
params.anchor_length = float(region_config.infill_anchor);
|
|
if (region_config.infill_anchor.percent)
|
|
params.anchor_length = float(params.anchor_length * 0.01 * params.spacing);
|
|
params.anchor_length_max = float(region_config.infill_anchor_max);
|
|
if (region_config.infill_anchor_max.percent)
|
|
params.anchor_length_max = float(params.anchor_length_max * 0.01 * params.spacing);
|
|
params.anchor_length = std::min(params.anchor_length, params.anchor_length_max);
|
|
}
|
|
|
|
auto it_params = set_surface_params.find(params);
|
|
if (it_params == set_surface_params.end())
|
|
it_params = set_surface_params.insert(it_params, params);
|
|
region_to_surface_params[region_id][&surface - &layerm.fill_surfaces().surfaces.front()] = &(*it_params);
|
|
}
|
|
}
|
|
|
|
surface_fills.reserve(set_surface_params.size());
|
|
for (const SurfaceFillParams ¶ms : set_surface_params) {
|
|
const_cast<SurfaceFillParams&>(params).idx = surface_fills.size();
|
|
surface_fills.emplace_back(params);
|
|
}
|
|
|
|
for (size_t region_id = 0; region_id < layer.regions().size(); ++ region_id) {
|
|
const LayerRegion &layerm = *layer.regions()[region_id];
|
|
for (const Surface &surface : layerm.fill_surfaces())
|
|
if (surface.surface_type != stInternalVoid) {
|
|
const SurfaceFillParams *params = region_to_surface_params[region_id][&surface - &layerm.fill_surfaces().surfaces.front()];
|
|
if (params != nullptr) {
|
|
SurfaceFill &fill = surface_fills[params->idx];
|
|
if (fill.region_id == size_t(-1)) {
|
|
fill.region_id = region_id;
|
|
fill.surface = surface;
|
|
fill.expolygons.emplace_back(std::move(fill.surface.expolygon));
|
|
} else
|
|
fill.expolygons.emplace_back(surface.expolygon);
|
|
}
|
|
}
|
|
}
|
|
|
|
{
|
|
Polygons all_polygons;
|
|
for (SurfaceFill &fill : surface_fills)
|
|
if (! fill.expolygons.empty()) {
|
|
if (fill.expolygons.size() > 1 || ! all_polygons.empty()) {
|
|
Polygons polys = to_polygons(std::move(fill.expolygons));
|
|
// Make a union of polygons, use a safety offset, subtract the preceding polygons.
|
|
// Bridges are processed first (see SurfaceFill::operator<())
|
|
fill.expolygons = all_polygons.empty() ? union_safety_offset_ex(polys) : diff_ex(polys, all_polygons, ApplySafetyOffset::Yes);
|
|
append(all_polygons, std::move(polys));
|
|
} else if (&fill != &surface_fills.back())
|
|
append(all_polygons, to_polygons(fill.expolygons));
|
|
}
|
|
}
|
|
|
|
// we need to detect any narrow surfaces that might collapse
|
|
// when adding spacing below
|
|
// such narrow surfaces are often generated in sloping walls
|
|
// by bridge_over_infill() and combine_infill() as a result of the
|
|
// subtraction of the combinable area from the layer infill area,
|
|
// which leaves small areas near the perimeters
|
|
// we are going to grow such regions by overlapping them with the void (if any)
|
|
// TODO: detect and investigate whether there could be narrow regions without
|
|
// any void neighbors
|
|
if (has_internal_voids) {
|
|
// Internal voids are generated only if "infill_only_where_needed" or "infill_every_layers" are active.
|
|
coord_t distance_between_surfaces = 0;
|
|
Polygons surfaces_polygons;
|
|
Polygons voids;
|
|
int region_internal_infill = -1;
|
|
int region_solid_infill = -1;
|
|
int region_some_infill = -1;
|
|
for (SurfaceFill &surface_fill : surface_fills)
|
|
if (! surface_fill.expolygons.empty()) {
|
|
distance_between_surfaces = std::max(distance_between_surfaces, surface_fill.params.flow.scaled_spacing());
|
|
append((surface_fill.surface.surface_type == stInternalVoid) ? voids : surfaces_polygons, to_polygons(surface_fill.expolygons));
|
|
if (surface_fill.surface.surface_type == stInternalSolid)
|
|
region_internal_infill = (int)surface_fill.region_id;
|
|
if (surface_fill.surface.is_solid())
|
|
region_solid_infill = (int)surface_fill.region_id;
|
|
if (surface_fill.surface.surface_type != stInternalVoid)
|
|
region_some_infill = (int)surface_fill.region_id;
|
|
}
|
|
if (! voids.empty() && ! surfaces_polygons.empty()) {
|
|
// First clip voids by the printing polygons, as the voids were ignored by the loop above during mutual clipping.
|
|
voids = diff(voids, surfaces_polygons);
|
|
// Corners of infill regions, which would not be filled with an extrusion path with a radius of distance_between_surfaces/2
|
|
Polygons collapsed = diff(
|
|
surfaces_polygons,
|
|
opening(surfaces_polygons, float(distance_between_surfaces /2), float(distance_between_surfaces / 2 + ClipperSafetyOffset)));
|
|
//FIXME why the voids are added to collapsed here? First it is expensive, second the result may lead to some unwanted regions being
|
|
// added if two offsetted void regions merge.
|
|
// polygons_append(voids, collapsed);
|
|
ExPolygons extensions = intersection_ex(expand(collapsed, float(distance_between_surfaces)), voids, ApplySafetyOffset::Yes);
|
|
// Now find an internal infill SurfaceFill to add these extrusions to.
|
|
SurfaceFill *internal_solid_fill = nullptr;
|
|
unsigned int region_id = 0;
|
|
if (region_internal_infill != -1)
|
|
region_id = region_internal_infill;
|
|
else if (region_solid_infill != -1)
|
|
region_id = region_solid_infill;
|
|
else if (region_some_infill != -1)
|
|
region_id = region_some_infill;
|
|
const LayerRegion& layerm = *layer.regions()[region_id];
|
|
for (SurfaceFill &surface_fill : surface_fills)
|
|
if (surface_fill.surface.surface_type == stInternalSolid && std::abs(layer.height - surface_fill.params.flow.height()) < EPSILON) {
|
|
internal_solid_fill = &surface_fill;
|
|
break;
|
|
}
|
|
if (internal_solid_fill == nullptr) {
|
|
// Produce another solid fill.
|
|
params.extruder = layerm.region().extruder(frSolidInfill);
|
|
params.pattern = fill_type_monotonic(layerm.region().config().top_fill_pattern) ? ipMonotonic : ipRectilinear;
|
|
params.density = 100.f;
|
|
params.extrusion_role = ExtrusionRole::InternalInfill;
|
|
params.angle = float(Geometry::deg2rad(layerm.region().config().fill_angle.value));
|
|
// calculate the actual flow we'll be using for this infill
|
|
params.flow = layerm.flow(frSolidInfill);
|
|
params.spacing = params.flow.spacing();
|
|
surface_fills.emplace_back(params);
|
|
surface_fills.back().surface.surface_type = stInternalSolid;
|
|
surface_fills.back().surface.thickness = layer.height;
|
|
surface_fills.back().expolygons = std::move(extensions);
|
|
} else {
|
|
append(extensions, std::move(internal_solid_fill->expolygons));
|
|
internal_solid_fill->expolygons = union_ex(extensions);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Detect narrow internal solid infill area and use ipEnsuring pattern instead.
|
|
{
|
|
std::vector<char> narrow_expolygons;
|
|
static constexpr const auto narrow_pattern = ipEnsuring;
|
|
for (size_t surface_fill_id = 0, num_old_fills = surface_fills.size(); surface_fill_id < num_old_fills; ++ surface_fill_id)
|
|
if (SurfaceFill &fill = surface_fills[surface_fill_id]; fill.surface.surface_type == stInternalSolid) {
|
|
size_t num_expolygons = fill.expolygons.size();
|
|
narrow_expolygons.clear();
|
|
narrow_expolygons.reserve(num_expolygons);
|
|
// Detect narrow expolygons.
|
|
int num_narrow = 0;
|
|
for (const ExPolygon &ex : fill.expolygons) {
|
|
bool narrow = offset_ex(ex, -scaled<float>(NarrowInfillAreaThresholdMM)).empty();
|
|
num_narrow += int(narrow);
|
|
narrow_expolygons.emplace_back(narrow);
|
|
}
|
|
if (num_narrow == num_expolygons) {
|
|
// All expolygons are narrow, change the fill pattern.
|
|
fill.params.pattern = narrow_pattern;
|
|
} else if (num_narrow > 0) {
|
|
// Some expolygons are narrow, split the fills.
|
|
params = fill.params;
|
|
params.pattern = narrow_pattern;
|
|
surface_fills.emplace_back(params);
|
|
SurfaceFill &old_fill = surface_fills[surface_fill_id];
|
|
SurfaceFill &new_fill = surface_fills.back();
|
|
new_fill.region_id = old_fill.region_id;
|
|
new_fill.surface.surface_type = stInternalSolid;
|
|
new_fill.surface.thickness = old_fill.surface.thickness;
|
|
new_fill.expolygons.reserve(num_narrow);
|
|
for (size_t i = 0; i < narrow_expolygons.size(); ++ i)
|
|
if (narrow_expolygons[i])
|
|
new_fill.expolygons.emplace_back(std::move(old_fill.expolygons[i]));
|
|
old_fill.expolygons.erase(std::remove_if(old_fill.expolygons.begin(), old_fill.expolygons.end(),
|
|
[&narrow_expolygons, ex_first = old_fill.expolygons.data()](const ExPolygon& ex) { return narrow_expolygons[&ex - ex_first]; }),
|
|
old_fill.expolygons.end());
|
|
}
|
|
}
|
|
}
|
|
|
|
return surface_fills;
|
|
}
|
|
|
|
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
|
|
void export_group_fills_to_svg(const char *path, const std::vector<SurfaceFill> &fills)
|
|
{
|
|
BoundingBox bbox;
|
|
for (const auto &fill : fills)
|
|
for (const auto &expoly : fill.expolygons)
|
|
bbox.merge(get_extents(expoly));
|
|
Point legend_size = export_surface_type_legend_to_svg_box_size();
|
|
Point legend_pos(bbox.min(0), bbox.max(1));
|
|
bbox.merge(Point(std::max(bbox.min(0) + legend_size(0), bbox.max(0)), bbox.max(1) + legend_size(1)));
|
|
|
|
SVG svg(path, bbox);
|
|
const float transparency = 0.5f;
|
|
for (const auto &fill : fills)
|
|
for (const auto &expoly : fill.expolygons)
|
|
svg.draw(expoly, surface_type_to_color_name(fill.surface.surface_type), transparency);
|
|
export_surface_type_legend_to_svg(svg, legend_pos);
|
|
svg.Close();
|
|
}
|
|
#endif
|
|
|
|
static void insert_fills_into_islands(Layer &layer, uint32_t fill_region_id, uint32_t fill_begin, uint32_t fill_end)
|
|
{
|
|
if (fill_begin < fill_end) {
|
|
// Sort the extrusion range into its LayerIsland.
|
|
// Traverse the slices in an increasing order of bounding box size, so that the islands inside another islands are tested first,
|
|
// so we can just test a point inside ExPolygon::contour and we may skip testing the holes.
|
|
auto point_inside_surface = [&layer](const size_t lslice_idx, const Point &point) {
|
|
const BoundingBox &bbox = layer.lslices_ex[lslice_idx].bbox;
|
|
return point.x() >= bbox.min.x() && point.x() < bbox.max.x() &&
|
|
point.y() >= bbox.min.y() && point.y() < bbox.max.y() &&
|
|
layer.lslices[lslice_idx].contour.contains(point);
|
|
};
|
|
Point point = layer.get_region(fill_region_id)->fills().entities[fill_begin]->first_point();
|
|
int lslice_idx = int(layer.lslices_ex.size()) - 1;
|
|
for (; lslice_idx >= 0; -- lslice_idx)
|
|
if (point_inside_surface(lslice_idx, point))
|
|
break;
|
|
assert(lslice_idx >= 0);
|
|
if (lslice_idx >= 0) {
|
|
LayerSlice &lslice = layer.lslices_ex[lslice_idx];
|
|
// Find an island.
|
|
LayerIsland *island = nullptr;
|
|
if (lslice.islands.size() == 1) {
|
|
// Cool, just save the extrusions in there.
|
|
island = &lslice.islands.front();
|
|
} else {
|
|
// The infill was created for one of the infills.
|
|
// In case of ironing, the infill may not fall into any of the infill expolygons either.
|
|
// In case of some numerical error, the infill may not fall into any of the infill expolygons either.
|
|
// 1) Try an exact test, it should be cheaper than a closest region test.
|
|
for (LayerIsland &li : lslice.islands) {
|
|
const BoundingBoxes &bboxes = li.fill_expolygons_composite() ?
|
|
layer.get_region(li.perimeters.region())->fill_expolygons_composite_bboxes() :
|
|
layer.get_region(li.fill_region_id)->fill_expolygons_bboxes();
|
|
const ExPolygons &expolygons = li.fill_expolygons_composite() ?
|
|
layer.get_region(li.perimeters.region())->fill_expolygons_composite() :
|
|
layer.get_region(li.fill_region_id)->fill_expolygons();
|
|
for (uint32_t fill_expolygon_id : li.fill_expolygons)
|
|
if (bboxes[fill_expolygon_id].contains(point) && expolygons[fill_expolygon_id].contains(point)) {
|
|
island = &li;
|
|
goto found;
|
|
}
|
|
}
|
|
// 2) Find closest fill_expolygon, branch and bound by distance to bounding box.
|
|
{
|
|
struct Island {
|
|
uint32_t island_idx;
|
|
uint32_t expolygon_idx;
|
|
double distance2;
|
|
};
|
|
std::vector<Island> islands_sorted;
|
|
for (uint32_t island_idx = 0; island_idx < uint32_t(lslice.islands.size()); ++ island_idx) {
|
|
const LayerIsland &li = lslice.islands[island_idx];
|
|
const BoundingBoxes &bboxes = li.fill_expolygons_composite() ?
|
|
layer.get_region(li.perimeters.region())->fill_expolygons_composite_bboxes() :
|
|
layer.get_region(li.fill_region_id)->fill_expolygons_bboxes();
|
|
for (uint32_t fill_expolygon_id : li.fill_expolygons)
|
|
islands_sorted.push_back({ island_idx, fill_expolygon_id, bbox_point_distance_squared(bboxes[fill_expolygon_id], point) });
|
|
}
|
|
std::sort(islands_sorted.begin(), islands_sorted.end(), [](auto &l, auto &r){ return l.distance2 < r.distance2; });
|
|
auto dist_min2 = std::numeric_limits<double>::max();
|
|
for (uint32_t sorted_bbox_idx = 0; sorted_bbox_idx < uint32_t(islands_sorted.size()); ++ sorted_bbox_idx) {
|
|
const Island &isl = islands_sorted[sorted_bbox_idx];
|
|
if (isl.distance2 > dist_min2)
|
|
// Branch & bound condition.
|
|
break;
|
|
LayerIsland &li = lslice.islands[isl.island_idx];
|
|
const ExPolygons &expolygons = li.fill_expolygons_composite() ?
|
|
layer.get_region(li.perimeters.region())->fill_expolygons_composite() :
|
|
layer.get_region(li.fill_region_id)->fill_expolygons();
|
|
double d2 = (expolygons[isl.expolygon_idx].point_projection(point) - point).cast<double>().squaredNorm();
|
|
if (d2 < dist_min2) {
|
|
dist_min2 = d2;
|
|
island = &li;
|
|
}
|
|
}
|
|
}
|
|
found:;
|
|
}
|
|
assert(island);
|
|
if (island)
|
|
island->add_fill_range(LayerExtrusionRange{ fill_region_id, { fill_begin, fill_end }});
|
|
}
|
|
}
|
|
}
|
|
|
|
void Layer::clear_fills()
|
|
{
|
|
for (LayerRegion *layerm : m_regions)
|
|
layerm->m_fills.clear();
|
|
for (LayerSlice &lslice : lslices_ex)
|
|
for (LayerIsland &island : lslice.islands)
|
|
island.fills.clear();
|
|
}
|
|
|
|
void Layer::make_fills(FillAdaptive::Octree* adaptive_fill_octree, FillAdaptive::Octree* support_fill_octree, FillLightning::Generator* lightning_generator)
|
|
{
|
|
this->clear_fills();
|
|
|
|
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
|
|
// this->export_region_fill_surfaces_to_svg_debug("10_fill-initial");
|
|
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
|
|
|
|
std::vector<SurfaceFill> surface_fills = group_fills(*this);
|
|
const Slic3r::BoundingBox bbox = this->object()->bounding_box();
|
|
const auto resolution = this->object()->print()->config().gcode_resolution.value;
|
|
const auto perimeter_generator = this->object()->config().perimeter_generator;
|
|
|
|
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
|
|
{
|
|
static int iRun = 0;
|
|
export_group_fills_to_svg(debug_out_path("Layer-fill_surfaces-10_fill-final-%d.svg", iRun ++).c_str(), surface_fills);
|
|
}
|
|
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
|
|
|
|
size_t first_object_layer_id = this->object()->get_layer(0)->id();
|
|
for (SurfaceFill &surface_fill : surface_fills) {
|
|
//skip patterns for which additional input is nullptr
|
|
switch (surface_fill.params.pattern) {
|
|
case ipLightning: if (lightning_generator == nullptr) continue; break;
|
|
case ipAdaptiveCubic: if (adaptive_fill_octree == nullptr) continue; break;
|
|
case ipSupportCubic: if (support_fill_octree == nullptr) continue; break;
|
|
default: break;
|
|
}
|
|
|
|
// Create the filler object.
|
|
std::unique_ptr<Fill> f = std::unique_ptr<Fill>(Fill::new_from_type(surface_fill.params.pattern));
|
|
f->set_bounding_box(bbox);
|
|
// Layer ID is used for orienting the infill in alternating directions.
|
|
// Layer::id() returns layer ID including raft layers, subtract them to make the infill direction independent
|
|
// from raft.
|
|
f->layer_id = this->id() - first_object_layer_id;
|
|
f->z = this->print_z;
|
|
f->angle = surface_fill.params.angle;
|
|
f->adapt_fill_octree = (surface_fill.params.pattern == ipSupportCubic) ? support_fill_octree : adaptive_fill_octree;
|
|
f->print_config = &this->object()->print()->config();
|
|
f->print_object_config = &this->object()->config();
|
|
|
|
if (surface_fill.params.pattern == ipLightning) {
|
|
auto *lf = dynamic_cast<FillLightning::Filler*>(f.get());
|
|
lf->generator = lightning_generator;
|
|
lf->num_raft_layers = this->object()->slicing_parameters().raft_layers();
|
|
}
|
|
|
|
if (surface_fill.params.pattern == ipEnsuring) {
|
|
auto *fill_bounded_rectilinear = dynamic_cast<FillEnsuring *>(f.get());
|
|
assert(fill_bounded_rectilinear != nullptr);
|
|
fill_bounded_rectilinear->print_region_config = &m_regions[surface_fill.region_id]->region().config();
|
|
}
|
|
|
|
// calculate flow spacing for infill pattern generation
|
|
bool using_internal_flow = ! surface_fill.surface.is_solid() && ! surface_fill.params.bridge;
|
|
double link_max_length = 0.;
|
|
if (! surface_fill.params.bridge) {
|
|
#if 0
|
|
link_max_length = layerm.region()->config().get_abs_value(surface.is_external() ? "external_fill_link_max_length" : "fill_link_max_length", flow.spacing());
|
|
// printf("flow spacing: %f, is_external: %d, link_max_length: %lf\n", flow.spacing(), int(surface.is_external()), link_max_length);
|
|
#else
|
|
if (surface_fill.params.density > 80.) // 80%
|
|
link_max_length = 3. * f->spacing;
|
|
#endif
|
|
}
|
|
|
|
// Maximum length of the perimeter segment linking two infill lines.
|
|
f->link_max_length = (coord_t)scale_(link_max_length);
|
|
// Used by the concentric infill pattern to clip the loops to create extrusion paths.
|
|
f->loop_clipping = coord_t(scale_(surface_fill.params.flow.nozzle_diameter()) * LOOP_CLIPPING_LENGTH_OVER_NOZZLE_DIAMETER);
|
|
|
|
LayerRegion &layerm = *m_regions[surface_fill.region_id];
|
|
|
|
// apply half spacing using this flow's own spacing and generate infill
|
|
FillParams params;
|
|
params.density = float(0.01 * surface_fill.params.density);
|
|
params.dont_adjust = false; // surface_fill.params.dont_adjust;
|
|
params.anchor_length = surface_fill.params.anchor_length;
|
|
params.anchor_length_max = surface_fill.params.anchor_length_max;
|
|
params.resolution = resolution;
|
|
params.use_arachne = (perimeter_generator == PerimeterGeneratorType::Arachne && surface_fill.params.pattern == ipConcentric) || surface_fill.params.pattern == ipEnsuring;
|
|
params.layer_height = layerm.layer()->height;
|
|
|
|
for (ExPolygon &expoly : surface_fill.expolygons) {
|
|
// Spacing is modified by the filler to indicate adjustments. Reset it for each expolygon.
|
|
f->spacing = surface_fill.params.spacing;
|
|
surface_fill.surface.expolygon = std::move(expoly);
|
|
Polylines polylines;
|
|
ThickPolylines thick_polylines;
|
|
try {
|
|
if (params.use_arachne)
|
|
thick_polylines = f->fill_surface_arachne(&surface_fill.surface, params);
|
|
else
|
|
polylines = f->fill_surface(&surface_fill.surface, params);
|
|
} catch (InfillFailedException &) {
|
|
}
|
|
if (!polylines.empty() || !thick_polylines.empty()) {
|
|
// calculate actual flow from spacing (which might have been adjusted by the infill
|
|
// pattern generator)
|
|
double flow_mm3_per_mm = surface_fill.params.flow.mm3_per_mm();
|
|
double flow_width = surface_fill.params.flow.width();
|
|
if (using_internal_flow) {
|
|
// if we used the internal flow we're not doing a solid infill
|
|
// so we can safely ignore the slight variation that might have
|
|
// been applied to f->spacing
|
|
} else {
|
|
Flow new_flow = surface_fill.params.flow.with_spacing(float(f->spacing));
|
|
flow_mm3_per_mm = new_flow.mm3_per_mm();
|
|
flow_width = new_flow.width();
|
|
}
|
|
// Save into layer.
|
|
ExtrusionEntityCollection* eec = nullptr;
|
|
auto fill_begin = uint32_t(layerm.fills().size());
|
|
layerm.m_fills.entities.push_back(eec = new ExtrusionEntityCollection());
|
|
// Only concentric fills are not sorted.
|
|
eec->no_sort = f->no_sort();
|
|
if (params.use_arachne) {
|
|
for (const ThickPolyline &thick_polyline : thick_polylines) {
|
|
Flow new_flow = surface_fill.params.flow.with_spacing(float(f->spacing));
|
|
|
|
ExtrusionMultiPath multi_path = PerimeterGenerator::thick_polyline_to_multi_path(thick_polyline, surface_fill.params.extrusion_role, new_flow, scaled<float>(0.05), float(SCALED_EPSILON));
|
|
// Append paths to collection.
|
|
if (!multi_path.empty()) {
|
|
if (multi_path.paths.front().first_point() == multi_path.paths.back().last_point())
|
|
eec->entities.emplace_back(new ExtrusionLoop(std::move(multi_path.paths)));
|
|
else
|
|
eec->entities.emplace_back(new ExtrusionMultiPath(std::move(multi_path)));
|
|
}
|
|
}
|
|
|
|
thick_polylines.clear();
|
|
} else {
|
|
extrusion_entities_append_paths(
|
|
eec->entities, std::move(polylines),
|
|
surface_fill.params.extrusion_role,
|
|
flow_mm3_per_mm, float(flow_width), surface_fill.params.flow.height());
|
|
}
|
|
insert_fills_into_islands(*this, uint32_t(surface_fill.region_id), fill_begin, uint32_t(layerm.fills().size()));
|
|
}
|
|
}
|
|
}
|
|
|
|
for (LayerSlice &lslice : this->lslices_ex)
|
|
for (LayerIsland &island : lslice.islands) {
|
|
if (! island.thin_fills.empty()) {
|
|
// Copy thin fills into fills packed as a collection.
|
|
// Fills are always stored as collections, the rest of the pipeline (wipe into infill, G-code generator) relies on it.
|
|
LayerRegion &layerm = *this->get_region(island.perimeters.region());
|
|
ExtrusionEntityCollection &collection = *(new ExtrusionEntityCollection());
|
|
layerm.m_fills.entities.push_back(&collection);
|
|
collection.entities.reserve(island.thin_fills.size());
|
|
for (uint32_t fill_id : island.thin_fills)
|
|
collection.entities.push_back(layerm.thin_fills().entities[fill_id]->clone());
|
|
island.add_fill_range({ island.perimeters.region(), { uint32_t(layerm.m_fills.entities.size() - 1), uint32_t(layerm.m_fills.entities.size()) } });
|
|
}
|
|
// Sort the fills by region ID.
|
|
std::sort(island.fills.begin(), island.fills.end(), [](auto &l, auto &r){ return l.region() < r.region() || (l.region() == r.region() && *l.begin() < *r.begin()); });
|
|
// Compress continuous fill ranges of the same region.
|
|
{
|
|
size_t k = 0;
|
|
for (size_t i = 0; i < island.fills.size();) {
|
|
uint32_t region_id = island.fills[i].region();
|
|
uint32_t begin = *island.fills[i].begin();
|
|
uint32_t end = *island.fills[i].end();
|
|
size_t j = i + 1;
|
|
for (; j < island.fills.size() && island.fills[j].region() == region_id && *island.fills[j].begin() == end; ++ j)
|
|
end = *island.fills[j].end();
|
|
island.fills[k ++] = { region_id, { begin, end } };
|
|
i = j;
|
|
}
|
|
island.fills.erase(island.fills.begin() + k, island.fills.end());
|
|
}
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
for (LayerRegion *layerm : m_regions)
|
|
for (const ExtrusionEntity *e : layerm->fills())
|
|
assert(dynamic_cast<const ExtrusionEntityCollection*>(e) != nullptr);
|
|
#endif
|
|
}
|
|
|
|
Polylines Layer::generate_sparse_infill_polylines_for_anchoring() const
|
|
{
|
|
std::vector<SurfaceFill> surface_fills = group_fills(*this);
|
|
const Slic3r::BoundingBox bbox = this->object()->bounding_box();
|
|
const auto resolution = this->object()->print()->config().gcode_resolution.value;
|
|
|
|
Polylines sparse_infill_polylines{};
|
|
|
|
for (SurfaceFill &surface_fill : surface_fills) {
|
|
// skip patterns for which additional input is nullptr
|
|
switch (surface_fill.params.pattern) {
|
|
case ipLightning: continue; break;
|
|
case ipAdaptiveCubic: continue; break;
|
|
case ipSupportCubic: continue; break;
|
|
case ipCount: continue; break;
|
|
case ipSupportBase: continue; break;
|
|
case ipEnsuring: continue; break;
|
|
case ipRectilinear:
|
|
case ipMonotonic:
|
|
case ipMonotonicLines:
|
|
case ipAlignedRectilinear:
|
|
case ipGrid:
|
|
case ipTriangles:
|
|
case ipStars:
|
|
case ipCubic:
|
|
case ipLine:
|
|
case ipConcentric:
|
|
case ipHoneycomb:
|
|
case ip3DHoneycomb:
|
|
case ipGyroid:
|
|
case ipHilbertCurve:
|
|
case ipArchimedeanChords:
|
|
case ipOctagramSpiral: break;
|
|
}
|
|
|
|
// Create the filler object.
|
|
std::unique_ptr<Fill> f = std::unique_ptr<Fill>(Fill::new_from_type(surface_fill.params.pattern));
|
|
f->set_bounding_box(bbox);
|
|
f->layer_id = this->id();
|
|
f->z = this->print_z;
|
|
f->angle = surface_fill.params.angle;
|
|
// f->adapt_fill_octree = (surface_fill.params.pattern == ipSupportCubic) ? support_fill_octree : adaptive_fill_octree;
|
|
f->print_config = &this->object()->print()->config();
|
|
f->print_object_config = &this->object()->config();
|
|
|
|
// calculate flow spacing for infill pattern generation
|
|
double link_max_length = 0.;
|
|
if (!surface_fill.params.bridge) {
|
|
#if 0
|
|
link_max_length = layerm.region()->config().get_abs_value(surface.is_external() ? "external_fill_link_max_length" : "fill_link_max_length", flow.spacing());
|
|
// printf("flow spacing: %f, is_external: %d, link_max_length: %lf\n", flow.spacing(), int(surface.is_external()), link_max_length);
|
|
#else
|
|
if (surface_fill.params.density > 80.) // 80%
|
|
link_max_length = 3. * f->spacing;
|
|
#endif
|
|
}
|
|
|
|
// Maximum length of the perimeter segment linking two infill lines.
|
|
f->link_max_length = (coord_t) scale_(link_max_length);
|
|
// Used by the concentric infill pattern to clip the loops to create extrusion paths.
|
|
f->loop_clipping = coord_t(scale_(surface_fill.params.flow.nozzle_diameter()) * LOOP_CLIPPING_LENGTH_OVER_NOZZLE_DIAMETER);
|
|
|
|
LayerRegion &layerm = *m_regions[surface_fill.region_id];
|
|
|
|
// apply half spacing using this flow's own spacing and generate infill
|
|
FillParams params;
|
|
params.density = float(0.01 * surface_fill.params.density);
|
|
params.dont_adjust = false; // surface_fill.params.dont_adjust;
|
|
params.anchor_length = surface_fill.params.anchor_length;
|
|
params.anchor_length_max = surface_fill.params.anchor_length_max;
|
|
params.resolution = resolution;
|
|
params.use_arachne = false;
|
|
params.layer_height = layerm.layer()->height;
|
|
|
|
for (ExPolygon &expoly : surface_fill.expolygons) {
|
|
// Spacing is modified by the filler to indicate adjustments. Reset it for each expolygon.
|
|
f->spacing = surface_fill.params.spacing;
|
|
surface_fill.surface.expolygon = std::move(expoly);
|
|
try {
|
|
Polylines polylines = f->fill_surface(&surface_fill.surface, params);
|
|
sparse_infill_polylines.insert(sparse_infill_polylines.end(), polylines.begin(), polylines.end());
|
|
} catch (InfillFailedException &) {}
|
|
}
|
|
}
|
|
|
|
return sparse_infill_polylines;
|
|
}
|
|
|
|
// Create ironing extrusions over top surfaces.
|
|
void Layer::make_ironing()
|
|
{
|
|
// LayerRegion::slices contains surfaces marked with SurfaceType.
|
|
// Here we want to collect top surfaces extruded with the same extruder.
|
|
// A surface will be ironed with the same extruder to not contaminate the print with another material leaking from the nozzle.
|
|
|
|
// First classify regions based on the extruder used.
|
|
struct IroningParams {
|
|
int extruder = -1;
|
|
bool just_infill = false;
|
|
// Spacing of the ironing lines, also to calculate the extrusion flow from.
|
|
double line_spacing;
|
|
// Height of the extrusion, to calculate the extrusion flow from.
|
|
double height;
|
|
double speed;
|
|
double angle;
|
|
|
|
bool operator<(const IroningParams &rhs) const {
|
|
if (this->extruder < rhs.extruder)
|
|
return true;
|
|
if (this->extruder > rhs.extruder)
|
|
return false;
|
|
if (int(this->just_infill) < int(rhs.just_infill))
|
|
return true;
|
|
if (int(this->just_infill) > int(rhs.just_infill))
|
|
return false;
|
|
if (this->line_spacing < rhs.line_spacing)
|
|
return true;
|
|
if (this->line_spacing > rhs.line_spacing)
|
|
return false;
|
|
if (this->height < rhs.height)
|
|
return true;
|
|
if (this->height > rhs.height)
|
|
return false;
|
|
if (this->speed < rhs.speed)
|
|
return true;
|
|
if (this->speed > rhs.speed)
|
|
return false;
|
|
if (this->angle < rhs.angle)
|
|
return true;
|
|
if (this->angle > rhs.angle)
|
|
return false;
|
|
return false;
|
|
}
|
|
|
|
bool operator==(const IroningParams &rhs) const {
|
|
return this->extruder == rhs.extruder && this->just_infill == rhs.just_infill &&
|
|
this->line_spacing == rhs.line_spacing && this->height == rhs.height && this->speed == rhs.speed &&
|
|
this->angle == rhs.angle;
|
|
}
|
|
|
|
LayerRegion *layerm;
|
|
uint32_t region_id;
|
|
|
|
// IdeaMaker: ironing
|
|
// ironing flowrate (5% percent)
|
|
// ironing speed (10 mm/sec)
|
|
|
|
// Kisslicer:
|
|
// iron off, Sweep, Group
|
|
// ironing speed: 15 mm/sec
|
|
|
|
// Cura:
|
|
// Pattern (zig-zag / concentric)
|
|
// line spacing (0.1mm)
|
|
// flow: from normal layer height. 10%
|
|
// speed: 20 mm/sec
|
|
};
|
|
|
|
std::vector<IroningParams> by_extruder;
|
|
double default_layer_height = this->object()->config().layer_height;
|
|
|
|
for (uint32_t region_id = 0; region_id < uint32_t(this->regions().size()); ++region_id)
|
|
if (LayerRegion *layerm = this->get_region(region_id); ! layerm->slices().empty()) {
|
|
IroningParams ironing_params;
|
|
const PrintRegionConfig &config = layerm->region().config();
|
|
if (config.ironing &&
|
|
(config.ironing_type == IroningType::AllSolid ||
|
|
(config.top_solid_layers > 0 &&
|
|
(config.ironing_type == IroningType::TopSurfaces ||
|
|
(config.ironing_type == IroningType::TopmostOnly && layerm->layer()->upper_layer == nullptr))))) {
|
|
if (config.perimeter_extruder == config.solid_infill_extruder || config.perimeters == 0) {
|
|
// Iron the whole face.
|
|
ironing_params.extruder = config.solid_infill_extruder;
|
|
} else {
|
|
// Iron just the infill.
|
|
ironing_params.extruder = config.solid_infill_extruder;
|
|
}
|
|
}
|
|
if (ironing_params.extruder != -1) {
|
|
//TODO just_infill is currently not used.
|
|
ironing_params.just_infill = false;
|
|
ironing_params.line_spacing = config.ironing_spacing;
|
|
ironing_params.height = default_layer_height * 0.01 * config.ironing_flowrate;
|
|
ironing_params.speed = config.ironing_speed;
|
|
ironing_params.angle = config.fill_angle * M_PI / 180.;
|
|
ironing_params.layerm = layerm;
|
|
ironing_params.region_id = region_id;
|
|
by_extruder.emplace_back(ironing_params);
|
|
}
|
|
}
|
|
std::sort(by_extruder.begin(), by_extruder.end());
|
|
|
|
FillRectilinear fill;
|
|
FillParams fill_params;
|
|
fill.set_bounding_box(this->object()->bounding_box());
|
|
// Layer ID is used for orienting the infill in alternating directions.
|
|
// Layer::id() returns layer ID including raft layers, subtract them to make the infill direction independent
|
|
// from raft.
|
|
//FIXME ironing does not take fill angle into account. Shall it? Does it matter?
|
|
fill.layer_id = this->id() - this->object()->get_layer(0)->id();
|
|
fill.z = this->print_z;
|
|
fill.overlap = 0;
|
|
fill_params.density = 1.;
|
|
fill_params.monotonic = true;
|
|
|
|
for (size_t i = 0; i < by_extruder.size();) {
|
|
// Find span of regions equivalent to the ironing operation.
|
|
IroningParams &ironing_params = by_extruder[i];
|
|
size_t j = i;
|
|
for (++ j; j < by_extruder.size() && ironing_params == by_extruder[j]; ++ j) ;
|
|
|
|
// Create the ironing extrusions for regions <i, j)
|
|
ExPolygons ironing_areas;
|
|
double nozzle_dmr = this->object()->print()->config().nozzle_diameter.values[ironing_params.extruder - 1];
|
|
if (ironing_params.just_infill) {
|
|
//TODO just_infill is currently not used.
|
|
// Just infill.
|
|
} else {
|
|
// Infill and perimeter.
|
|
// Merge top surfaces with the same ironing parameters.
|
|
Polygons polys;
|
|
Polygons infills;
|
|
for (size_t k = i; k < j; ++ k) {
|
|
const IroningParams &ironing_params = by_extruder[k];
|
|
const PrintRegionConfig ®ion_config = ironing_params.layerm->region().config();
|
|
bool iron_everything = region_config.ironing_type == IroningType::AllSolid;
|
|
bool iron_completely = iron_everything;
|
|
if (iron_everything) {
|
|
// Check whether there is any non-solid hole in the regions.
|
|
bool internal_infill_solid = region_config.fill_density.value > 95.;
|
|
for (const Surface &surface : ironing_params.layerm->fill_surfaces())
|
|
if ((! internal_infill_solid && surface.surface_type == stInternal) || surface.surface_type == stInternalBridge || surface.surface_type == stInternalVoid) {
|
|
// Some fill region is not quite solid. Don't iron over the whole surface.
|
|
iron_completely = false;
|
|
break;
|
|
}
|
|
}
|
|
if (iron_completely) {
|
|
// Iron everything. This is likely only good for solid transparent objects.
|
|
for (const Surface &surface : ironing_params.layerm->slices())
|
|
polygons_append(polys, surface.expolygon);
|
|
} else {
|
|
for (const Surface &surface : ironing_params.layerm->slices())
|
|
if (surface.surface_type == stTop || (iron_everything && surface.surface_type == stBottom))
|
|
// stBottomBridge is not being ironed on purpose, as it would likely destroy the bridges.
|
|
polygons_append(polys, surface.expolygon);
|
|
}
|
|
if (iron_everything && ! iron_completely) {
|
|
// Add solid fill surfaces. This may not be ideal, as one will not iron perimeters touching these
|
|
// solid fill surfaces, but it is likely better than nothing.
|
|
for (const Surface &surface : ironing_params.layerm->fill_surfaces())
|
|
if (surface.surface_type == stInternalSolid)
|
|
polygons_append(infills, surface.expolygon);
|
|
}
|
|
}
|
|
|
|
if (! infills.empty() || j > i + 1) {
|
|
// Ironing over more than a single region or over solid internal infill.
|
|
if (! infills.empty())
|
|
// For IroningType::AllSolid only:
|
|
// Add solid infill areas for layers, that contain some non-ironable infil (sparse infill, bridge infill).
|
|
append(polys, std::move(infills));
|
|
polys = union_safety_offset(polys);
|
|
}
|
|
// Trim the top surfaces with half the nozzle diameter.
|
|
ironing_areas = intersection_ex(polys, offset(this->lslices, - float(scale_(0.5 * nozzle_dmr))));
|
|
}
|
|
|
|
// Create the filler object.
|
|
fill.spacing = ironing_params.line_spacing;
|
|
fill.angle = float(ironing_params.angle + 0.25 * M_PI);
|
|
fill.link_max_length = (coord_t)scale_(3. * fill.spacing);
|
|
double extrusion_height = ironing_params.height * fill.spacing / nozzle_dmr;
|
|
float extrusion_width = Flow::rounded_rectangle_extrusion_width_from_spacing(float(nozzle_dmr), float(extrusion_height));
|
|
double flow_mm3_per_mm = nozzle_dmr * extrusion_height;
|
|
Surface surface_fill(stTop, ExPolygon());
|
|
for (ExPolygon &expoly : ironing_areas) {
|
|
surface_fill.expolygon = std::move(expoly);
|
|
Polylines polylines;
|
|
try {
|
|
assert(!fill_params.use_arachne);
|
|
polylines = fill.fill_surface(&surface_fill, fill_params);
|
|
} catch (InfillFailedException &) {
|
|
}
|
|
if (! polylines.empty()) {
|
|
// Save into layer.
|
|
auto fill_begin = uint32_t(ironing_params.layerm->fills().size());
|
|
ExtrusionEntityCollection *eec = nullptr;
|
|
ironing_params.layerm->m_fills.entities.push_back(eec = new ExtrusionEntityCollection());
|
|
// Don't sort the ironing infill lines as they are monotonicly ordered.
|
|
eec->no_sort = true;
|
|
extrusion_entities_append_paths(
|
|
eec->entities, std::move(polylines),
|
|
ExtrusionRole::Ironing,
|
|
flow_mm3_per_mm, extrusion_width, float(extrusion_height));
|
|
insert_fills_into_islands(*this, ironing_params.region_id, fill_begin, uint32_t(ironing_params.layerm->fills().size()));
|
|
}
|
|
}
|
|
|
|
// Regions up to j were processed.
|
|
i = j;
|
|
}
|
|
}
|
|
|
|
} // namespace Slic3r
|