PrusaSlicer-NonPlainar/src/slic3r/GUI/GLGizmo.cpp

1732 lines
57 KiB
C++

#include "../../libslic3r/libslic3r.h"
#include "GLGizmo.hpp"
#include "GUI.hpp"
#include "../../libslic3r/Utils.hpp"
#include <Eigen/Dense>
#include "../../libslic3r/Geometry.hpp"
#include <igl/unproject_onto_mesh.h>
#include <GL/glew.h>
#include <iostream>
#include <numeric>
static const float DEFAULT_BASE_COLOR[3] = { 0.625f, 0.625f, 0.625f };
static const float DEFAULT_DRAG_COLOR[3] = { 1.0f, 1.0f, 1.0f };
static const float DEFAULT_HIGHLIGHT_COLOR[3] = { 1.0f, 0.38f, 0.0f };
static const float AXES_COLOR[3][3] = { { 1.0f, 0.0f, 0.0f }, { 0.0f, 1.0f, 0.0f }, { 0.0f, 0.0f, 1.0f } };
namespace Slic3r {
namespace GUI {
const float GLGizmoBase::Grabber::SizeFactor = 0.025f;
const float GLGizmoBase::Grabber::MinHalfSize = 1.5f;
const float GLGizmoBase::Grabber::DraggingScaleFactor = 1.25f;
GLGizmoBase::Grabber::Grabber()
: center(Vec3d::Zero())
, angles(Vec3d::Zero())
, dragging(false)
, enabled(true)
{
color[0] = 1.0f;
color[1] = 1.0f;
color[2] = 1.0f;
}
void GLGizmoBase::Grabber::render(bool hover, float size) const
{
float render_color[3];
if (hover)
{
render_color[0] = 1.0f - color[0];
render_color[1] = 1.0f - color[1];
render_color[2] = 1.0f - color[2];
}
else
::memcpy((void*)render_color, (const void*)color, 3 * sizeof(float));
render(size, render_color, true);
}
void GLGizmoBase::Grabber::render(float size, const float* render_color, bool use_lighting) const
{
float half_size = dragging ? size * SizeFactor * DraggingScaleFactor : size * SizeFactor;
half_size = std::max(half_size, MinHalfSize);
if (use_lighting)
::glEnable(GL_LIGHTING);
::glColor3fv(render_color);
::glPushMatrix();
::glTranslated(center(0), center(1), center(2));
::glRotated(Geometry::rad2deg(angles(2)), 0.0, 0.0, 1.0);
::glRotated(Geometry::rad2deg(angles(1)), 0.0, 1.0, 0.0);
::glRotated(Geometry::rad2deg(angles(0)), 1.0, 0.0, 0.0);
// face min x
::glPushMatrix();
::glTranslatef(-(GLfloat)half_size, 0.0f, 0.0f);
::glRotatef(-90.0f, 0.0f, 1.0f, 0.0f);
render_face(half_size);
::glPopMatrix();
// face max x
::glPushMatrix();
::glTranslatef((GLfloat)half_size, 0.0f, 0.0f);
::glRotatef(90.0f, 0.0f, 1.0f, 0.0f);
render_face(half_size);
::glPopMatrix();
// face min y
::glPushMatrix();
::glTranslatef(0.0f, -(GLfloat)half_size, 0.0f);
::glRotatef(90.0f, 1.0f, 0.0f, 0.0f);
render_face(half_size);
::glPopMatrix();
// face max y
::glPushMatrix();
::glTranslatef(0.0f, (GLfloat)half_size, 0.0f);
::glRotatef(-90.0f, 1.0f, 0.0f, 0.0f);
render_face(half_size);
::glPopMatrix();
// face min z
::glPushMatrix();
::glTranslatef(0.0f, 0.0f, -(GLfloat)half_size);
::glRotatef(180.0f, 1.0f, 0.0f, 0.0f);
render_face(half_size);
::glPopMatrix();
// face max z
::glPushMatrix();
::glTranslatef(0.0f, 0.0f, (GLfloat)half_size);
render_face(half_size);
::glPopMatrix();
::glPopMatrix();
if (use_lighting)
::glDisable(GL_LIGHTING);
}
void GLGizmoBase::Grabber::render_face(float half_size) const
{
::glBegin(GL_TRIANGLES);
::glNormal3f(0.0f, 0.0f, 1.0f);
::glVertex3f(-(GLfloat)half_size, -(GLfloat)half_size, 0.0f);
::glVertex3f((GLfloat)half_size, -(GLfloat)half_size, 0.0f);
::glVertex3f((GLfloat)half_size, (GLfloat)half_size, 0.0f);
::glVertex3f((GLfloat)half_size, (GLfloat)half_size, 0.0f);
::glVertex3f(-(GLfloat)half_size, (GLfloat)half_size, 0.0f);
::glVertex3f(-(GLfloat)half_size, -(GLfloat)half_size, 0.0f);
::glEnd();
}
GLGizmoBase::GLGizmoBase(GLCanvas3D& parent)
: m_parent(parent)
, m_group_id(-1)
, m_state(Off)
, m_hover_id(-1)
, m_dragging(false)
{
::memcpy((void*)m_base_color, (const void*)DEFAULT_BASE_COLOR, 3 * sizeof(float));
::memcpy((void*)m_drag_color, (const void*)DEFAULT_DRAG_COLOR, 3 * sizeof(float));
::memcpy((void*)m_highlight_color, (const void*)DEFAULT_HIGHLIGHT_COLOR, 3 * sizeof(float));
}
void GLGizmoBase::set_hover_id(int id)
{
if (m_grabbers.empty() || (id < (int)m_grabbers.size()))
{
m_hover_id = id;
on_set_hover_id();
}
}
void GLGizmoBase::set_highlight_color(const float* color)
{
if (color != nullptr)
::memcpy((void*)m_highlight_color, (const void*)color, 3 * sizeof(float));
}
void GLGizmoBase::enable_grabber(unsigned int id)
{
if ((0 <= id) && (id < (unsigned int)m_grabbers.size()))
m_grabbers[id].enabled = true;
on_enable_grabber(id);
}
void GLGizmoBase::disable_grabber(unsigned int id)
{
if ((0 <= id) && (id < (unsigned int)m_grabbers.size()))
m_grabbers[id].enabled = false;
on_disable_grabber(id);
}
void GLGizmoBase::start_dragging(const GLCanvas3D::Selection& selection)
{
m_dragging = true;
for (int i = 0; i < (int)m_grabbers.size(); ++i)
{
m_grabbers[i].dragging = (m_hover_id == i);
}
on_start_dragging(selection);
}
void GLGizmoBase::stop_dragging()
{
m_dragging = false;
for (int i = 0; i < (int)m_grabbers.size(); ++i)
{
m_grabbers[i].dragging = false;
}
on_stop_dragging();
}
void GLGizmoBase::update(const Linef3& mouse_ray, const Point* mouse_pos)
{
if (m_hover_id != -1)
on_update(mouse_ray, mouse_pos);
}
float GLGizmoBase::picking_color_component(unsigned int id) const
{
int color = 254 - (int)id;
if (m_group_id > -1)
color -= m_group_id;
return (float)color / 255.0f;
}
void GLGizmoBase::render_grabbers(const BoundingBoxf3& box) const
{
float size = (float)box.max_size();
for (int i = 0; i < (int)m_grabbers.size(); ++i)
{
if (m_grabbers[i].enabled)
m_grabbers[i].render((m_hover_id == i), size);
}
}
void GLGizmoBase::render_grabbers_for_picking(const BoundingBoxf3& box) const
{
float size = (float)box.max_size();
for (unsigned int i = 0; i < (unsigned int)m_grabbers.size(); ++i)
{
if (m_grabbers[i].enabled)
{
m_grabbers[i].color[0] = 1.0f;
m_grabbers[i].color[1] = 1.0f;
m_grabbers[i].color[2] = picking_color_component(i);
m_grabbers[i].render_for_picking(size);
}
}
}
void GLGizmoBase::set_tooltip(const std::string& tooltip) const
{
m_parent.set_tooltip(tooltip);
}
std::string GLGizmoBase::format(float value, unsigned int decimals) const
{
char buf[1024];
::sprintf(buf, "%.*f", decimals, value);
return buf;
}
const float GLGizmoRotate::Offset = 5.0f;
const unsigned int GLGizmoRotate::CircleResolution = 64;
const unsigned int GLGizmoRotate::AngleResolution = 64;
const unsigned int GLGizmoRotate::ScaleStepsCount = 72;
const float GLGizmoRotate::ScaleStepRad = 2.0f * (float)PI / GLGizmoRotate::ScaleStepsCount;
const unsigned int GLGizmoRotate::ScaleLongEvery = 2;
const float GLGizmoRotate::ScaleLongTooth = 0.1f; // in percent of radius
const unsigned int GLGizmoRotate::SnapRegionsCount = 8;
const float GLGizmoRotate::GrabberOffset = 0.15f; // in percent of radius
GLGizmoRotate::GLGizmoRotate(GLCanvas3D& parent, GLGizmoRotate::Axis axis)
: GLGizmoBase(parent)
, m_axis(axis)
, m_angle(0.0)
, m_center(0.0, 0.0, 0.0)
, m_radius(0.0f)
, m_snap_coarse_in_radius(0.0f)
, m_snap_coarse_out_radius(0.0f)
, m_snap_fine_in_radius(0.0f)
, m_snap_fine_out_radius(0.0f)
{
}
void GLGizmoRotate::set_angle(double angle)
{
if (std::abs(angle - 2.0 * (double)PI) < EPSILON)
angle = 0.0;
m_angle = angle;
}
bool GLGizmoRotate::on_init()
{
m_grabbers.push_back(Grabber());
return true;
}
void GLGizmoRotate::on_start_dragging(const GLCanvas3D::Selection& selection)
{
const BoundingBoxf3& box = selection.get_bounding_box();
m_center = box.center();
m_radius = Offset + box.radius();
m_snap_coarse_in_radius = m_radius / 3.0f;
m_snap_coarse_out_radius = 2.0f * m_snap_coarse_in_radius;
m_snap_fine_in_radius = m_radius;
m_snap_fine_out_radius = m_snap_fine_in_radius + m_radius * ScaleLongTooth;
}
void GLGizmoRotate::on_update(const Linef3& mouse_ray, const Point* mouse_position)
{
Vec2d mouse_pos = to_2d(mouse_position_in_local_plane(mouse_ray));
Vec2d orig_dir = Vec2d::UnitX();
Vec2d new_dir = mouse_pos.normalized();
double theta = ::acos(clamp(-1.0, 1.0, new_dir.dot(orig_dir)));
if (cross2(orig_dir, new_dir) < 0.0)
theta = 2.0 * (double)PI - theta;
double len = mouse_pos.norm();
// snap to coarse snap region
if ((m_snap_coarse_in_radius <= len) && (len <= m_snap_coarse_out_radius))
{
double step = 2.0 * (double)PI / (double)SnapRegionsCount;
theta = step * (double)std::round(theta / step);
}
else
{
// snap to fine snap region (scale)
if ((m_snap_fine_in_radius <= len) && (len <= m_snap_fine_out_radius))
{
double step = 2.0 * (double)PI / (double)ScaleStepsCount;
theta = step * (double)std::round(theta / step);
}
}
if (theta == 2.0 * (double)PI)
theta = 0.0;
m_angle = theta;
}
void GLGizmoRotate::on_render(const GLCanvas3D::Selection& selection) const
{
if (!m_grabbers[0].enabled)
return;
const BoundingBoxf3& box = selection.get_bounding_box();
bool single_instance = selection.is_single_full_instance();
std::string axis;
switch (m_axis)
{
case X: { axis = "X: "; break; }
case Y: { axis = "Y: "; break; }
case Z: { axis = "Z: "; break; }
}
if ((single_instance && (m_hover_id == 0)) || m_dragging)
set_tooltip(axis + format((float)Geometry::rad2deg(m_angle), 4) + "\u00B0");
else
{
m_center = box.center();
m_radius = Offset + box.radius();
m_snap_coarse_in_radius = m_radius / 3.0f;
m_snap_coarse_out_radius = 2.0f * m_snap_coarse_in_radius;
m_snap_fine_in_radius = m_radius;
m_snap_fine_out_radius = m_radius * (1.0f + ScaleLongTooth);
}
::glEnable(GL_DEPTH_TEST);
::glPushMatrix();
transform_to_local();
::glLineWidth((m_hover_id != -1) ? 2.0f : 1.5f);
::glColor3fv((m_hover_id != -1) ? m_drag_color : m_highlight_color);
render_circle();
if (m_hover_id != -1)
{
render_scale();
render_snap_radii();
render_reference_radius();
}
::glColor3fv(m_highlight_color);
if (m_hover_id != -1)
render_angle();
render_grabber(box);
::glPopMatrix();
}
void GLGizmoRotate::on_render_for_picking(const GLCanvas3D::Selection& selection) const
{
::glDisable(GL_DEPTH_TEST);
::glPushMatrix();
transform_to_local();
render_grabbers_for_picking(selection.get_bounding_box());
::glPopMatrix();
}
void GLGizmoRotate::render_circle() const
{
::glBegin(GL_LINE_LOOP);
for (unsigned int i = 0; i < ScaleStepsCount; ++i)
{
float angle = (float)i * ScaleStepRad;
float x = ::cos(angle) * m_radius;
float y = ::sin(angle) * m_radius;
float z = 0.0f;
::glVertex3f((GLfloat)x, (GLfloat)y, (GLfloat)z);
}
::glEnd();
}
void GLGizmoRotate::render_scale() const
{
float out_radius_long = m_snap_fine_out_radius;
float out_radius_short = m_radius * (1.0f + 0.5f * ScaleLongTooth);
::glBegin(GL_LINES);
for (unsigned int i = 0; i < ScaleStepsCount; ++i)
{
float angle = (float)i * ScaleStepRad;
float cosa = ::cos(angle);
float sina = ::sin(angle);
float in_x = cosa * m_radius;
float in_y = sina * m_radius;
float in_z = 0.0f;
float out_x = (i % ScaleLongEvery == 0) ? cosa * out_radius_long : cosa * out_radius_short;
float out_y = (i % ScaleLongEvery == 0) ? sina * out_radius_long : sina * out_radius_short;
float out_z = 0.0f;
::glVertex3f((GLfloat)in_x, (GLfloat)in_y, (GLfloat)in_z);
::glVertex3f((GLfloat)out_x, (GLfloat)out_y, (GLfloat)out_z);
}
::glEnd();
}
void GLGizmoRotate::render_snap_radii() const
{
float step = 2.0f * (float)PI / (float)SnapRegionsCount;
float in_radius = m_radius / 3.0f;
float out_radius = 2.0f * in_radius;
::glBegin(GL_LINES);
for (unsigned int i = 0; i < SnapRegionsCount; ++i)
{
float angle = (float)i * step;
float cosa = ::cos(angle);
float sina = ::sin(angle);
float in_x = cosa * in_radius;
float in_y = sina * in_radius;
float in_z = 0.0f;
float out_x = cosa * out_radius;
float out_y = sina * out_radius;
float out_z = 0.0f;
::glVertex3f((GLfloat)in_x, (GLfloat)in_y, (GLfloat)in_z);
::glVertex3f((GLfloat)out_x, (GLfloat)out_y, (GLfloat)out_z);
}
::glEnd();
}
void GLGizmoRotate::render_reference_radius() const
{
::glBegin(GL_LINES);
::glVertex3f(0.0f, 0.0f, 0.0f);
::glVertex3f((GLfloat)(m_radius * (1.0f + GrabberOffset)), 0.0f, 0.0f);
::glEnd();
}
void GLGizmoRotate::render_angle() const
{
float step_angle = (float)m_angle / AngleResolution;
float ex_radius = m_radius * (1.0f + GrabberOffset);
::glBegin(GL_LINE_STRIP);
for (unsigned int i = 0; i <= AngleResolution; ++i)
{
float angle = (float)i * step_angle;
float x = ::cos(angle) * ex_radius;
float y = ::sin(angle) * ex_radius;
float z = 0.0f;
::glVertex3f((GLfloat)x, (GLfloat)y, (GLfloat)z);
}
::glEnd();
}
void GLGizmoRotate::render_grabber(const BoundingBoxf3& box) const
{
double grabber_radius = (double)m_radius * (1.0 + (double)GrabberOffset);
m_grabbers[0].center = Vec3d(::cos(m_angle) * grabber_radius, ::sin(m_angle) * grabber_radius, 0.0);
m_grabbers[0].angles(2) = m_angle;
::glColor3fv((m_hover_id != -1) ? m_drag_color : m_highlight_color);
::glBegin(GL_LINES);
::glVertex3f(0.0f, 0.0f, 0.0f);
::glVertex3dv(m_grabbers[0].center.data());
::glEnd();
::memcpy((void*)m_grabbers[0].color, (const void*)m_highlight_color, 3 * sizeof(float));
render_grabbers(box);
}
void GLGizmoRotate::transform_to_local() const
{
::glTranslated(m_center(0), m_center(1), m_center(2));
switch (m_axis)
{
case X:
{
::glRotatef(90.0f, 0.0f, 1.0f, 0.0f);
::glRotatef(90.0f, 0.0f, 0.0f, 1.0f);
break;
}
case Y:
{
::glRotatef(-90.0f, 1.0f, 0.0f, 0.0f);
::glRotatef(180.0f, 0.0f, 0.0f, 1.0f);
break;
}
default:
case Z:
{
// no rotation
break;
}
}
}
Vec3d GLGizmoRotate::mouse_position_in_local_plane(const Linef3& mouse_ray) const
{
double half_pi = 0.5 * (double)PI;
Transform3d m = Transform3d::Identity();
switch (m_axis)
{
case X:
{
m.rotate(Eigen::AngleAxisd(-half_pi, Vec3d::UnitZ()));
m.rotate(Eigen::AngleAxisd(-half_pi, Vec3d::UnitY()));
break;
}
case Y:
{
m.rotate(Eigen::AngleAxisd(-(double)PI, Vec3d::UnitZ()));
m.rotate(Eigen::AngleAxisd(half_pi, Vec3d::UnitX()));
break;
}
default:
case Z:
{
// no rotation applied
break;
}
}
m.translate(-m_center);
return transform(mouse_ray, m).intersect_plane(0.0);
}
GLGizmoRotate3D::GLGizmoRotate3D(GLCanvas3D& parent)
: GLGizmoBase(parent)
{
m_gizmos.emplace_back(parent, GLGizmoRotate::X);
m_gizmos.emplace_back(parent, GLGizmoRotate::Y);
m_gizmos.emplace_back(parent, GLGizmoRotate::Z);
for (unsigned int i = 0; i < 3; ++i)
{
m_gizmos[i].set_group_id(i);
}
}
bool GLGizmoRotate3D::on_init()
{
for (GLGizmoRotate& g : m_gizmos)
{
if (!g.init())
return false;
}
for (unsigned int i = 0; i < 3; ++i)
{
m_gizmos[i].set_highlight_color(AXES_COLOR[i]);
}
std::string path = resources_dir() + "/icons/overlay/";
std::string filename = path + "rotate_off.png";
if (!m_textures[Off].load_from_file(filename, false))
return false;
filename = path + "rotate_hover.png";
if (!m_textures[Hover].load_from_file(filename, false))
return false;
filename = path + "rotate_on.png";
if (!m_textures[On].load_from_file(filename, false))
return false;
return true;
}
std::string GLGizmoRotate3D::on_get_name() const
{
return L("Rotate");
}
void GLGizmoRotate3D::on_start_dragging(const GLCanvas3D::Selection& selection)
{
if ((0 <= m_hover_id) && (m_hover_id < 3))
m_gizmos[m_hover_id].start_dragging(selection);
}
void GLGizmoRotate3D::on_stop_dragging()
{
if ((0 <= m_hover_id) && (m_hover_id < 3))
m_gizmos[m_hover_id].stop_dragging();
}
void GLGizmoRotate3D::on_render(const GLCanvas3D::Selection& selection) const
{
if ((m_hover_id == -1) || (m_hover_id == 0))
m_gizmos[X].render(selection);
if ((m_hover_id == -1) || (m_hover_id == 1))
m_gizmos[Y].render(selection);
if ((m_hover_id == -1) || (m_hover_id == 2))
m_gizmos[Z].render(selection);
}
const float GLGizmoScale3D::Offset = 5.0f;
GLGizmoScale3D::GLGizmoScale3D(GLCanvas3D& parent)
: GLGizmoBase(parent)
, m_scale(Vec3d::Ones())
, m_starting_scale(Vec3d::Ones())
{
}
bool GLGizmoScale3D::on_init()
{
std::string path = resources_dir() + "/icons/overlay/";
std::string filename = path + "scale_off.png";
if (!m_textures[Off].load_from_file(filename, false))
return false;
filename = path + "scale_hover.png";
if (!m_textures[Hover].load_from_file(filename, false))
return false;
filename = path + "scale_on.png";
if (!m_textures[On].load_from_file(filename, false))
return false;
for (int i = 0; i < 10; ++i)
{
m_grabbers.push_back(Grabber());
}
double half_pi = 0.5 * (double)PI;
// x axis
m_grabbers[0].angles(1) = half_pi;
m_grabbers[1].angles(1) = half_pi;
// y axis
m_grabbers[2].angles(0) = half_pi;
m_grabbers[3].angles(0) = half_pi;
return true;
}
std::string GLGizmoScale3D::on_get_name() const
{
return L("Scale");
}
void GLGizmoScale3D::on_start_dragging(const GLCanvas3D::Selection& selection)
{
if (m_hover_id != -1)
{
m_starting_drag_position = m_grabbers[m_hover_id].center;
m_starting_box = selection.get_bounding_box();
}
}
void GLGizmoScale3D::on_update(const Linef3& mouse_ray, const Point* mouse_pos)
{
if ((m_hover_id == 0) || (m_hover_id == 1))
do_scale_x(mouse_ray);
else if ((m_hover_id == 2) || (m_hover_id == 3))
do_scale_y(mouse_ray);
else if ((m_hover_id == 4) || (m_hover_id == 5))
do_scale_z(mouse_ray);
else if (m_hover_id >= 6)
do_scale_uniform(mouse_ray);
}
#if ENABLE_GIZMOS_RESET
void GLGizmoScale3D::on_process_double_click()
{
if (m_hover_id >= 6)
m_scale = Vec3d::Ones();
}
#endif // ENABLE_GIZMOS_RESET
void GLGizmoScale3D::on_render(const GLCanvas3D::Selection& selection) const
{
bool single_instance = selection.is_single_full_instance();
#if ENABLE_MODELVOLUME_TRANSFORM
Vec3f scale = single_instance ? 100.0f * selection.get_volume(*selection.get_volume_idxs().begin())->get_instance_scaling_factor().cast<float>() : 100.0f * m_scale.cast<float>();
#else
Vec3f scale = single_instance ? 100.0f * selection.get_volume(*selection.get_volume_idxs().begin())->get_scaling_factor().cast<float>() : 100.0f * m_scale.cast<float>();
#endif // ENABLE_MODELVOLUME_TRANSFORM
if ((single_instance && ((m_hover_id == 0) || (m_hover_id == 1))) || m_grabbers[0].dragging || m_grabbers[1].dragging)
set_tooltip("X: " + format(scale(0), 4) + "%");
else if ((single_instance && ((m_hover_id == 2) || (m_hover_id == 3))) || m_grabbers[2].dragging || m_grabbers[3].dragging)
set_tooltip("Y: " + format(scale(1), 4) + "%");
else if ((single_instance && ((m_hover_id == 4) || (m_hover_id == 5))) || m_grabbers[4].dragging || m_grabbers[5].dragging)
set_tooltip("Z: " + format(scale(2), 4) + "%");
else if ((single_instance && ((m_hover_id == 6) || (m_hover_id == 7) || (m_hover_id == 8) || (m_hover_id == 9)))
|| m_grabbers[6].dragging || m_grabbers[7].dragging || m_grabbers[8].dragging || m_grabbers[9].dragging)
{
std::string tooltip = "X: " + format(scale(0), 4) + "%\n";
tooltip += "Y: " + format(scale(1), 4) + "%\n";
tooltip += "Z: " + format(scale(2), 4) + "%";
set_tooltip(tooltip);
}
::glEnable(GL_DEPTH_TEST);
BoundingBoxf3 box;
Transform3d transform = Transform3d::Identity();
Vec3d angles = Vec3d::Zero();
Transform3d offsets_transform = Transform3d::Identity();
if (single_instance)
{
// calculate bounding box in instance local reference system
const GLCanvas3D::Selection::IndicesList& idxs = selection.get_volume_idxs();
for (unsigned int idx : idxs)
{
box.merge(selection.get_volume(idx)->bounding_box);
}
// gets transform from first selected volume
const GLVolume* v = selection.get_volume(*idxs.begin());
#if ENABLE_MODELVOLUME_TRANSFORM
transform = v->world_matrix();
#else
transform = v->world_matrix().cast<double>();
#endif // ENABLE_MODELVOLUME_TRANSFORM
// gets angles from first selected volume
#if ENABLE_MODELVOLUME_TRANSFORM
angles = v->get_instance_rotation();
#else
angles = v->get_rotation();
#endif // ENABLE_MODELVOLUME_TRANSFORM
// consider rotation+mirror only components of the transform for offsets
#if ENABLE_MODELVOLUME_TRANSFORM
offsets_transform = Geometry::assemble_transform(Vec3d::Zero(), angles, Vec3d::Ones(), v->get_instance_mirror());
#else
offsets_transform = Geometry::assemble_transform(Vec3d::Zero(), angles, Vec3d::Ones(), v->get_mirror());
#endif // ENABLE_MODELVOLUME_TRANSFORM
}
else
box = selection.get_bounding_box();
m_box = box;
const Vec3d& center = m_box.center();
Vec3d offset_x = offsets_transform * Vec3d((double)Offset, 0.0, 0.0);
Vec3d offset_y = offsets_transform * Vec3d(0.0, (double)Offset, 0.0);
Vec3d offset_z = offsets_transform * Vec3d(0.0, 0.0, (double)Offset);
// x axis
m_grabbers[0].center = transform * Vec3d(m_box.min(0), center(1), center(2)) - offset_x;
m_grabbers[1].center = transform * Vec3d(m_box.max(0), center(1), center(2)) + offset_x;
::memcpy((void*)m_grabbers[0].color, (const void*)&AXES_COLOR[0], 3 * sizeof(float));
::memcpy((void*)m_grabbers[1].color, (const void*)&AXES_COLOR[0], 3 * sizeof(float));
// y axis
m_grabbers[2].center = transform * Vec3d(center(0), m_box.min(1), center(2)) - offset_y;
m_grabbers[3].center = transform * Vec3d(center(0), m_box.max(1), center(2)) + offset_y;
::memcpy((void*)m_grabbers[2].color, (const void*)&AXES_COLOR[1], 3 * sizeof(float));
::memcpy((void*)m_grabbers[3].color, (const void*)&AXES_COLOR[1], 3 * sizeof(float));
// z axis
m_grabbers[4].center = transform * Vec3d(center(0), center(1), m_box.min(2)) - offset_z;
m_grabbers[5].center = transform * Vec3d(center(0), center(1), m_box.max(2)) + offset_z;
::memcpy((void*)m_grabbers[4].color, (const void*)&AXES_COLOR[2], 3 * sizeof(float));
::memcpy((void*)m_grabbers[5].color, (const void*)&AXES_COLOR[2], 3 * sizeof(float));
// uniform
m_grabbers[6].center = transform * Vec3d(m_box.min(0), m_box.min(1), center(2)) - offset_x - offset_y;
m_grabbers[7].center = transform * Vec3d(m_box.max(0), m_box.min(1), center(2)) + offset_x - offset_y;
m_grabbers[8].center = transform * Vec3d(m_box.max(0), m_box.max(1), center(2)) + offset_x + offset_y;
m_grabbers[9].center = transform * Vec3d(m_box.min(0), m_box.max(1), center(2)) - offset_x + offset_y;
for (int i = 6; i < 10; ++i)
{
::memcpy((void*)m_grabbers[i].color, (const void*)m_highlight_color, 3 * sizeof(float));
}
// sets grabbers orientation
for (int i = 0; i < 10; ++i)
{
m_grabbers[i].angles = angles;
}
::glLineWidth((m_hover_id != -1) ? 2.0f : 1.5f);
float box_max_size = (float)m_box.max_size();
if (m_hover_id == -1)
{
// draw connections
if (m_grabbers[0].enabled && m_grabbers[1].enabled)
{
::glColor3fv(m_grabbers[0].color);
render_grabbers_connection(0, 1);
}
if (m_grabbers[2].enabled && m_grabbers[3].enabled)
{
::glColor3fv(m_grabbers[2].color);
render_grabbers_connection(2, 3);
}
if (m_grabbers[4].enabled && m_grabbers[5].enabled)
{
::glColor3fv(m_grabbers[4].color);
render_grabbers_connection(4, 5);
}
::glColor3fv(m_base_color);
render_grabbers_connection(6, 7);
render_grabbers_connection(7, 8);
render_grabbers_connection(8, 9);
render_grabbers_connection(9, 6);
// draw grabbers
render_grabbers(m_box);
}
else if ((m_hover_id == 0) || (m_hover_id == 1))
{
// draw connection
::glColor3fv(m_grabbers[0].color);
render_grabbers_connection(0, 1);
// draw grabbers
m_grabbers[0].render(true, box_max_size);
m_grabbers[1].render(true, box_max_size);
}
else if ((m_hover_id == 2) || (m_hover_id == 3))
{
// draw connection
::glColor3fv(m_grabbers[2].color);
render_grabbers_connection(2, 3);
// draw grabbers
m_grabbers[2].render(true, box_max_size);
m_grabbers[3].render(true, box_max_size);
}
else if ((m_hover_id == 4) || (m_hover_id == 5))
{
// draw connection
::glColor3fv(m_grabbers[4].color);
render_grabbers_connection(4, 5);
// draw grabbers
m_grabbers[4].render(true, box_max_size);
m_grabbers[5].render(true, box_max_size);
}
else if (m_hover_id >= 6)
{
// draw connection
::glColor3fv(m_drag_color);
render_grabbers_connection(6, 7);
render_grabbers_connection(7, 8);
render_grabbers_connection(8, 9);
render_grabbers_connection(9, 6);
// draw grabbers
for (int i = 6; i < 10; ++i)
{
m_grabbers[i].render(true, box_max_size);
}
}
}
void GLGizmoScale3D::on_render_for_picking(const GLCanvas3D::Selection& selection) const
{
::glDisable(GL_DEPTH_TEST);
render_grabbers_for_picking(selection.get_bounding_box());
}
void GLGizmoScale3D::render_grabbers_connection(unsigned int id_1, unsigned int id_2) const
{
unsigned int grabbers_count = (unsigned int)m_grabbers.size();
if ((id_1 < grabbers_count) && (id_2 < grabbers_count))
{
::glBegin(GL_LINES);
::glVertex3dv(m_grabbers[id_1].center.data());
::glVertex3dv(m_grabbers[id_2].center.data());
::glEnd();
}
}
void GLGizmoScale3D::do_scale_x(const Linef3& mouse_ray)
{
double ratio = calc_ratio(mouse_ray);
if (ratio > 0.0)
m_scale(0) = m_starting_scale(0) * ratio;
}
void GLGizmoScale3D::do_scale_y(const Linef3& mouse_ray)
{
double ratio = calc_ratio(mouse_ray);
if (ratio > 0.0)
m_scale(1) = m_starting_scale(1) * ratio;
}
void GLGizmoScale3D::do_scale_z(const Linef3& mouse_ray)
{
double ratio = calc_ratio(mouse_ray);
if (ratio > 0.0)
m_scale(2) = m_starting_scale(2) * ratio;
}
void GLGizmoScale3D::do_scale_uniform(const Linef3& mouse_ray)
{
double ratio = calc_ratio(mouse_ray);
if (ratio > 0.0)
m_scale = m_starting_scale * ratio;
}
double GLGizmoScale3D::calc_ratio(const Linef3& mouse_ray) const
{
double ratio = 0.0;
// vector from the center to the starting position
Vec3d starting_vec = m_starting_drag_position - m_starting_box.center();
double len_starting_vec = starting_vec.norm();
if (len_starting_vec != 0.0)
{
Vec3d mouse_dir = mouse_ray.unit_vector();
// finds the intersection of the mouse ray with the plane parallel to the camera viewport and passing throught the starting position
// use ray-plane intersection see i.e. https://en.wikipedia.org/wiki/Line%E2%80%93plane_intersection algebric form
// in our case plane normal and ray direction are the same (orthogonal view)
// when moving to perspective camera the negative z unit axis of the camera needs to be transformed in world space and used as plane normal
Vec3d inters = mouse_ray.a + (m_starting_drag_position - mouse_ray.a).dot(mouse_dir) / mouse_dir.squaredNorm() * mouse_dir;
// vector from the starting position to the found intersection
Vec3d inters_vec = inters - m_starting_drag_position;
// finds projection of the vector along the staring direction
double proj = inters_vec.dot(starting_vec.normalized());
return (len_starting_vec + proj) / len_starting_vec;
}
return ratio;
}
const double GLGizmoMove3D::Offset = 10.0;
GLGizmoMove3D::GLGizmoMove3D(GLCanvas3D& parent)
: GLGizmoBase(parent)
, m_displacement(Vec3d::Zero())
, m_starting_drag_position(Vec3d::Zero())
, m_starting_box_center(Vec3d::Zero())
, m_starting_box_bottom_center(Vec3d::Zero())
{
}
bool GLGizmoMove3D::on_init()
{
std::string path = resources_dir() + "/icons/overlay/";
std::string filename = path + "move_off.png";
if (!m_textures[Off].load_from_file(filename, false))
return false;
filename = path + "move_hover.png";
if (!m_textures[Hover].load_from_file(filename, false))
return false;
filename = path + "move_on.png";
if (!m_textures[On].load_from_file(filename, false))
return false;
for (int i = 0; i < 3; ++i)
{
m_grabbers.push_back(Grabber());
}
return true;
}
std::string GLGizmoMove3D::on_get_name() const
{
return L("Move");
}
void GLGizmoMove3D::on_start_dragging(const GLCanvas3D::Selection& selection)
{
if (m_hover_id != -1)
{
m_displacement = Vec3d::Zero();
const BoundingBoxf3& box = selection.get_bounding_box();
m_starting_drag_position = m_grabbers[m_hover_id].center;
m_starting_box_center = box.center();
m_starting_box_bottom_center = box.center();
m_starting_box_bottom_center(2) = box.min(2);
}
}
void GLGizmoMove3D::on_stop_dragging()
{
m_displacement = Vec3d::Zero();
}
void GLGizmoMove3D::on_update(const Linef3& mouse_ray, const Point* mouse_pos)
{
if (m_hover_id == 0)
m_displacement(0) = calc_projection(mouse_ray);
else if (m_hover_id == 1)
m_displacement(1) = calc_projection(mouse_ray);
else if (m_hover_id == 2)
m_displacement(2) = calc_projection(mouse_ray);
}
void GLGizmoMove3D::on_render(const GLCanvas3D::Selection& selection) const
{
bool show_position = selection.is_single_full_instance();
const Vec3d& position = selection.get_bounding_box().center();
if ((show_position && (m_hover_id == 0)) || m_grabbers[0].dragging)
set_tooltip("X: " + format(show_position ? position(0) : m_displacement(0), 2));
else if ((show_position && (m_hover_id == 1)) || m_grabbers[1].dragging)
set_tooltip("Y: " + format(show_position ? position(1) : m_displacement(1), 2));
else if ((show_position && (m_hover_id == 2)) || m_grabbers[2].dragging)
set_tooltip("Z: " + format(show_position ? position(2) : m_displacement(2), 2));
::glEnable(GL_DEPTH_TEST);
const BoundingBoxf3& box = selection.get_bounding_box();
const Vec3d& center = box.center();
// x axis
m_grabbers[0].center = Vec3d(box.max(0) + Offset, center(1), center(2));
::memcpy((void*)m_grabbers[0].color, (const void*)&AXES_COLOR[0], 3 * sizeof(float));
// y axis
m_grabbers[1].center = Vec3d(center(0), box.max(1) + Offset, center(2));
::memcpy((void*)m_grabbers[1].color, (const void*)&AXES_COLOR[1], 3 * sizeof(float));
// z axis
m_grabbers[2].center = Vec3d(center(0), center(1), box.max(2) + Offset);
::memcpy((void*)m_grabbers[2].color, (const void*)&AXES_COLOR[2], 3 * sizeof(float));
::glLineWidth((m_hover_id != -1) ? 2.0f : 1.5f);
if (m_hover_id == -1)
{
// draw axes
for (unsigned int i = 0; i < 3; ++i)
{
if (m_grabbers[i].enabled)
{
::glColor3fv(AXES_COLOR[i]);
::glBegin(GL_LINES);
::glVertex3dv(center.data());
::glVertex3dv(m_grabbers[i].center.data());
::glEnd();
}
}
// draw grabbers
render_grabbers(box);
}
else
{
// draw axis
::glColor3fv(AXES_COLOR[m_hover_id]);
::glBegin(GL_LINES);
::glVertex3dv(center.data());
::glVertex3dv(m_grabbers[m_hover_id].center.data());
::glEnd();
// draw grabber
m_grabbers[m_hover_id].render(true, box.max_size());
}
}
void GLGizmoMove3D::on_render_for_picking(const GLCanvas3D::Selection& selection) const
{
::glDisable(GL_DEPTH_TEST);
render_grabbers_for_picking(selection.get_bounding_box());
}
double GLGizmoMove3D::calc_projection(const Linef3& mouse_ray) const
{
double projection = 0.0;
Vec3d starting_vec = m_starting_drag_position - m_starting_box_center;
double len_starting_vec = starting_vec.norm();
if (len_starting_vec != 0.0)
{
Vec3d mouse_dir = mouse_ray.unit_vector();
// finds the intersection of the mouse ray with the plane parallel to the camera viewport and passing throught the starting position
// use ray-plane intersection see i.e. https://en.wikipedia.org/wiki/Line%E2%80%93plane_intersection algebric form
// in our case plane normal and ray direction are the same (orthogonal view)
// when moving to perspective camera the negative z unit axis of the camera needs to be transformed in world space and used as plane normal
Vec3d inters = mouse_ray.a + (m_starting_drag_position - mouse_ray.a).dot(mouse_dir) / mouse_dir.squaredNorm() * mouse_dir;
// vector from the starting position to the found intersection
Vec3d inters_vec = inters - m_starting_drag_position;
// finds projection of the vector along the staring direction
projection = inters_vec.dot(starting_vec.normalized());
}
return projection;
}
GLGizmoFlatten::GLGizmoFlatten(GLCanvas3D& parent)
: GLGizmoBase(parent)
, m_normal(Vec3d::Zero())
, m_starting_center(Vec3d::Zero())
{
}
bool GLGizmoFlatten::on_init()
{
std::string path = resources_dir() + "/icons/overlay/";
std::string filename = path + "layflat_off.png";
if (!m_textures[Off].load_from_file(filename, false))
return false;
filename = path + "layflat_hover.png";
if (!m_textures[Hover].load_from_file(filename, false))
return false;
filename = path + "layflat_on.png";
if (!m_textures[On].load_from_file(filename, false))
return false;
return true;
}
std::string GLGizmoFlatten::on_get_name() const
{
return L("Flatten");
}
void GLGizmoFlatten::on_start_dragging(const GLCanvas3D::Selection& selection)
{
if (m_hover_id != -1)
{
m_normal = m_planes[m_hover_id].normal;
m_starting_center = selection.get_bounding_box().center();
}
}
void GLGizmoFlatten::on_render(const GLCanvas3D::Selection& selection) const
{
// The planes are rendered incorrectly when the object is being moved. We better won't render anything in that case.
// This indeed has a better solution (to be implemented when there is more time)
Vec3d dragged_offset(Vec3d::Zero());
if (m_starting_center == Vec3d::Zero())
m_starting_center = selection.get_bounding_box().center();
dragged_offset = selection.get_bounding_box().center() - m_starting_center;
if (dragged_offset.norm() > 0.001)
return;
::glEnable(GL_BLEND);
::glEnable(GL_DEPTH_TEST);
::glDisable(GL_CULL_FACE);
if (selection.is_from_single_object()) {
const std::set<int>& instances_list = selection.get_instance_idxs();
if (!instances_list.empty() && m_model_object) {
for (const int instance_idx : instances_list) {
Transform3d m = m_model_object->instances[instance_idx]->get_matrix();
for (int i=0; i<(int)m_planes.size(); ++i) {
if (i == m_hover_id)
::glColor4f(0.9f, 0.9f, 0.9f, 0.75f);
else
::glColor4f(0.9f, 0.9f, 0.9f, 0.5f);
m.pretranslate(dragged_offset);
::glPushMatrix();
::glMultMatrixd(m.data());
::glBegin(GL_POLYGON);
for (const Vec3d& vertex : m_planes[i].vertices)
::glVertex3dv(vertex.data());
::glEnd();
::glPopMatrix();
}
}
}
}
::glEnable(GL_CULL_FACE);
::glDisable(GL_BLEND);
}
void GLGizmoFlatten::on_render_for_picking(const GLCanvas3D::Selection& selection) const
{
::glEnable(GL_DEPTH_TEST);
::glDisable(GL_CULL_FACE);
if (selection.is_from_single_object()) {
const std::set<int>& instances_list = selection.get_instance_idxs();
if (!instances_list.empty() && m_model_object) {
for (const int instance_idx : instances_list) {
for (int i=0; i<(int)m_planes.size(); ++i) {
::glColor3f(1.0f, 1.0f, picking_color_component(i));
::glPushMatrix();
::glMultMatrixd(m_model_object->instances[instance_idx]->get_matrix().data());
::glBegin(GL_POLYGON);
for (const Vec3d& vertex : m_planes[i].vertices)
::glVertex3dv(vertex.data());
::glEnd();
::glPopMatrix();
}
}
}
}
::glEnable(GL_CULL_FACE);
}
void GLGizmoFlatten::set_flattening_data(const ModelObject* model_object)
{
m_starting_center = Vec3d::Zero();
bool object_changed = m_model_object != model_object;
m_model_object = model_object;
if (object_changed && is_plane_update_necessary())
update_planes();
}
void GLGizmoFlatten::update_planes()
{
TriangleMesh ch;
for (const ModelVolume* vol : m_model_object->volumes)
#if ENABLE_MODELVOLUME_TRANSFORM
{
TriangleMesh vol_ch = vol->get_convex_hull();
vol_ch.transform(vol->get_matrix());
ch.merge(vol_ch);
}
#else
ch.merge(vol->get_convex_hull());
#endif // ENABLE_MODELVOLUME_TRANSFORM
ch = ch.convex_hull_3d();
const Vec3d& bb_size = ch.bounding_box().size();
double min_bb_face_area = std::min(bb_size(0) * bb_size(1), std::min(bb_size(0) * bb_size(2), bb_size(1) * bb_size(2)));
m_planes.clear();
// Now we'll go through all the facets and append Points of facets sharing the same normal:
const int num_of_facets = ch.stl.stats.number_of_facets;
std::vector<int> facet_queue(num_of_facets, 0);
std::vector<bool> facet_visited(num_of_facets, false);
int facet_queue_cnt = 0;
const stl_normal* normal_ptr = nullptr;
while (1) {
// Find next unvisited triangle:
int facet_idx = 0;
for (; facet_idx < num_of_facets; ++ facet_idx)
if (!facet_visited[facet_idx]) {
facet_queue[facet_queue_cnt ++] = facet_idx;
facet_visited[facet_idx] = true;
normal_ptr = &ch.stl.facet_start[facet_idx].normal;
m_planes.emplace_back();
break;
}
if (facet_idx == num_of_facets)
break; // Everything was visited already
while (facet_queue_cnt > 0) {
int facet_idx = facet_queue[-- facet_queue_cnt];
const stl_normal& this_normal = ch.stl.facet_start[facet_idx].normal;
if (std::abs(this_normal(0) - (*normal_ptr)(0)) < 0.001 && std::abs(this_normal(1) - (*normal_ptr)(1)) < 0.001 && std::abs(this_normal(2) - (*normal_ptr)(2)) < 0.001) {
stl_vertex* first_vertex = ch.stl.facet_start[facet_idx].vertex;
for (int j=0; j<3; ++j)
m_planes.back().vertices.emplace_back((double)first_vertex[j](0), (double)first_vertex[j](1), (double)first_vertex[j](2));
facet_visited[facet_idx] = true;
for (int j = 0; j < 3; ++ j) {
int neighbor_idx = ch.stl.neighbors_start[facet_idx].neighbor[j];
if (! facet_visited[neighbor_idx])
facet_queue[facet_queue_cnt ++] = neighbor_idx;
}
}
}
m_planes.back().normal = Vec3d((double)(*normal_ptr)(0), (double)(*normal_ptr)(1), (double)(*normal_ptr)(2));
// if this is a just a very small triangle, remove it to speed up further calculations (it would be rejected anyway):
if (m_planes.back().vertices.size() == 3 &&
((m_planes.back().vertices[0] - m_planes.back().vertices[1]).norm() < 1.0
|| (m_planes.back().vertices[0] - m_planes.back().vertices[2]).norm() < 1.0
|| (m_planes.back().vertices[1] - m_planes.back().vertices[2]).norm() < 1.0))
m_planes.pop_back();
}
const float minimal_area = 0.01f * (float)min_bb_face_area;
// Now we'll go through all the polygons, transform the points into xy plane to process them:
for (unsigned int polygon_id=0; polygon_id < m_planes.size(); ++polygon_id) {
Pointf3s& polygon = m_planes[polygon_id].vertices;
const Vec3d& normal = m_planes[polygon_id].normal;
// We are going to rotate about z and y to flatten the plane
Eigen::Quaterniond q;
Transform3d m = Transform3d::Identity();
m.matrix().block(0, 0, 3, 3) = q.setFromTwoVectors(normal, Vec3d::UnitZ()).toRotationMatrix();
polygon = transform(polygon, m);
polygon = Slic3r::Geometry::convex_hull(polygon); // To remove the inner points
// We will calculate area of the polygons and discard ones that are too small
// The limit is more forgiving in case the normal is in the direction of the coordinate axes
float area_threshold = (std::abs(normal(0)) > 0.999f || std::abs(normal(1)) > 0.999f || std::abs(normal(2)) > 0.999f) ? minimal_area : 10.0f * minimal_area;
float& area = m_planes[polygon_id].area;
area = 0.f;
for (unsigned int i = 0; i < polygon.size(); i++) // Shoelace formula
area += polygon[i](0)*polygon[i + 1 < polygon.size() ? i + 1 : 0](1) - polygon[i + 1 < polygon.size() ? i + 1 : 0](0)*polygon[i](1);
area = 0.5f * std::abs(area);
if (area < area_threshold) {
m_planes.erase(m_planes.begin()+(polygon_id--));
continue;
}
// We check the inner angles and discard polygons with angles smaller than the following threshold
const double angle_threshold = ::cos(10.0 * (double)PI / 180.0);
bool discard = false;
for (unsigned int i = 0; i < polygon.size(); ++i)
{
const Vec3d& prec = polygon[(i == 0) ? polygon.size() - 1 : i - 1];
const Vec3d& curr = polygon[i];
const Vec3d& next = polygon[(i == polygon.size() - 1) ? 0 : i + 1];
if ((prec - curr).normalized().dot((next - curr).normalized()) > angle_threshold)
{
discard = true;
break;
}
}
if (discard)
{
m_planes.erase(m_planes.begin() + (polygon_id--));
continue;
}
// We will shrink the polygon a little bit so it does not touch the object edges:
Vec3d centroid = std::accumulate(polygon.begin(), polygon.end(), Vec3d(0.0, 0.0, 0.0));
centroid /= (double)polygon.size();
for (auto& vertex : polygon)
vertex = 0.9f*vertex + 0.1f*centroid;
// Polygon is now simple and convex, we'll round the corners to make them look nicer.
// The algorithm takes a vertex, calculates middles of respective sides and moves the vertex
// towards their average (controlled by 'aggressivity'). This is repeated k times.
// In next iterations, the neighbours are not always taken at the middle (to increase the
// rounding effect at the corners, where we need it most).
const unsigned int k = 10; // number of iterations
const float aggressivity = 0.2f; // agressivity
const unsigned int N = polygon.size();
std::vector<std::pair<unsigned int, unsigned int>> neighbours;
if (k != 0) {
Pointf3s points_out(2*k*N); // vector long enough to store the future vertices
for (unsigned int j=0; j<N; ++j) {
points_out[j*2*k] = polygon[j];
neighbours.push_back(std::make_pair((int)(j*2*k-k) < 0 ? (N-1)*2*k+k : j*2*k-k, j*2*k+k));
}
for (unsigned int i=0; i<k; ++i) {
// Calculate middle of each edge so that neighbours points to something useful:
for (unsigned int j=0; j<N; ++j)
if (i==0)
points_out[j*2*k+k] = 0.5f * (points_out[j*2*k] + points_out[j==N-1 ? 0 : (j+1)*2*k]);
else {
float r = 0.2+0.3/(k-1)*i; // the neighbours are not always taken in the middle
points_out[neighbours[j].first] = r*points_out[j*2*k] + (1-r) * points_out[neighbours[j].first-1];
points_out[neighbours[j].second] = r*points_out[j*2*k] + (1-r) * points_out[neighbours[j].second+1];
}
// Now we have a triangle and valid neighbours, we can do an iteration:
for (unsigned int j=0; j<N; ++j)
points_out[2*k*j] = (1-aggressivity) * points_out[2*k*j] +
aggressivity*0.5f*(points_out[neighbours[j].first] + points_out[neighbours[j].second]);
for (auto& n : neighbours) {
++n.first;
--n.second;
}
}
polygon = points_out; // replace the coarse polygon with the smooth one that we just created
}
// Transform back to 3D;
for (auto& b : polygon) {
b(2) += 0.1f; // raise a bit above the object surface to avoid flickering
}
m = m.inverse();
polygon = transform(polygon, m);
}
// We'll sort the planes by area and only keep the 254 largest ones (because of the picking pass limitations):
std::sort(m_planes.rbegin(), m_planes.rend(), [](const PlaneData& a, const PlaneData& b) { return a.area < b.area; });
m_planes.resize(std::min((int)m_planes.size(), 254));
// Planes are finished - let's save what we calculated it from:
m_source_data.bounding_boxes.clear();
for (const auto& vol : m_model_object->volumes)
m_source_data.bounding_boxes.push_back(vol->get_convex_hull().bounding_box());
const float* first_vertex = m_model_object->volumes.front()->get_convex_hull().first_vertex();
m_source_data.mesh_first_point = Vec3d((double)first_vertex[0], (double)first_vertex[1], (double)first_vertex[2]);
}
// Check if the bounding boxes of each volume's convex hull is the same as before
// and that scaling and rotation has not changed. In that case we don't have to recalculate it.
bool GLGizmoFlatten::is_plane_update_necessary() const
{
if (m_state != On || !m_model_object || m_model_object->instances.empty())
return false;
if (m_model_object->volumes.size() != m_source_data.bounding_boxes.size())
return true;
// now compare the bounding boxes:
for (unsigned int i=0; i<m_model_object->volumes.size(); ++i)
if (m_model_object->volumes[i]->get_convex_hull().bounding_box() != m_source_data.bounding_boxes[i])
return true;
const float* first_vertex = m_model_object->volumes.front()->get_convex_hull().first_vertex();
Vec3d first_point((double)first_vertex[0], (double)first_vertex[1], (double)first_vertex[2]);
if (first_point != m_source_data.mesh_first_point)
return true;
return false;
}
Vec3d GLGizmoFlatten::get_flattening_normal() const
{
Vec3d out = m_normal;
m_normal = Vec3d::Zero();
m_starting_center = Vec3d::Zero();
return out;
}
GLGizmoSlaSupports::GLGizmoSlaSupports(GLCanvas3D& parent)
: GLGizmoBase(parent), m_starting_center(Vec3d::Zero())
{
}
bool GLGizmoSlaSupports::on_init()
{
std::string path = resources_dir() + "/icons/overlay/";
std::string filename = path + "sla_support_points_off.png";
if (!m_textures[Off].load_from_file(filename, false))
return false;
filename = path + "sla_support_points_hover.png";
if (!m_textures[Hover].load_from_file(filename, false))
return false;
filename = path + "sla_support_points_on.png";
if (!m_textures[On].load_from_file(filename, false))
return false;
return true;
}
void GLGizmoSlaSupports::set_model_object_ptr(ModelObject* model_object)
{
if (model_object != nullptr)
{
m_starting_center = Vec3d::Zero();
m_model_object = model_object;
m_model_object_matrix = model_object->instances.front()->get_matrix();
if (is_mesh_update_necessary())
update_mesh();
}
}
void GLGizmoSlaSupports::on_render(const GLCanvas3D::Selection& selection) const
{
::glEnable(GL_BLEND);
::glEnable(GL_DEPTH_TEST);
// the dragged_offset is a vector measuring where was the object moved
// with the gizmo being on. This is reset in set_flattening_data and
// does not work correctly when there are multiple copies.
if (m_starting_center == Vec3d::Zero())
m_starting_center = selection.get_bounding_box().center();
Vec3d dragged_offset = selection.get_bounding_box().center() - m_starting_center;
for (auto& g : m_grabbers) {
g.color[0] = 1.f;
g.color[1] = 0.f;
g.color[2] = 0.f;
}
::glPushMatrix();
::glTranslatef((GLfloat)dragged_offset(0), (GLfloat)dragged_offset(1), (GLfloat)dragged_offset(2));
render_grabbers();
::glPopMatrix();
render_tooltip_texture();
::glDisable(GL_BLEND);
}
void GLGizmoSlaSupports::on_render_for_picking(const GLCanvas3D::Selection& selection) const
{
::glEnable(GL_DEPTH_TEST);
for (unsigned int i=0; i<m_grabbers.size(); ++i) {
m_grabbers[i].color[0] = 1.0f;
m_grabbers[i].color[1] = 1.0f;
m_grabbers[i].color[2] = picking_color_component(i);
}
render_grabbers(true);
}
void GLGizmoSlaSupports::render_grabbers(bool picking) const
{
for (int i = 0; i < (int)m_grabbers.size(); ++i)
{
if (!m_grabbers[i].enabled)
continue;
float render_color[3];
if (!picking && m_hover_id == i) {
render_color[0] = 1.0f - m_grabbers[i].color[0];
render_color[1] = 1.0f - m_grabbers[i].color[1];
render_color[2] = 1.0f - m_grabbers[i].color[2];
}
else
::memcpy((void*)render_color, (const void*)m_grabbers[i].color, 3 * sizeof(float));
if (!picking)
::glEnable(GL_LIGHTING);
::glColor3f((GLfloat)render_color[0], (GLfloat)render_color[1], (GLfloat)render_color[2]);
::glPushMatrix();
Vec3d center = m_model_object_matrix * m_grabbers[i].center;
::glTranslatef((GLfloat)center(0), (GLfloat)center(1), (GLfloat)center(2));
GLUquadricObj *quadric;
quadric = ::gluNewQuadric();
::gluQuadricDrawStyle(quadric, GLU_FILL );
::gluSphere( quadric , 0.75f, 36 , 18 );
::gluDeleteQuadric(quadric);
::glPopMatrix();
if (!picking)
::glDisable(GL_LIGHTING);
}
}
bool GLGizmoSlaSupports::is_mesh_update_necessary() const
{
if (m_state != On || !m_model_object || m_model_object->instances.empty())
return false;
if ((m_model_object->instances.front()->get_matrix() * m_source_data.matrix.inverse() * Vec3d(1., 1., 1.) - Vec3d(1., 1., 1.)).norm() > 0.001)
return true;
// following should detect direct mesh changes (can be removed after the mesh is made completely immutable):
/*const float* first_vertex = m_model_object->volumes.front()->get_convex_hull().first_vertex();
Vec3d first_point((double)first_vertex[0], (double)first_vertex[1], (double)first_vertex[2]);
if (first_point != m_source_data.mesh_first_point)
return true;*/
return false;
}
void GLGizmoSlaSupports::update_mesh()
{
Eigen::MatrixXf& V = m_V;
Eigen::MatrixXi& F = m_F;
const stl_file& stl = m_model_object->mesh().stl;
V.resize(3*stl.stats.number_of_facets, 3);
F.resize(stl.stats.number_of_facets, 3);
for (unsigned int i=0; i<stl.stats.number_of_facets; ++i) {
const stl_facet* facet = stl.facet_start+i;
V(3*i+0, 0) = facet->vertex[0](0); V(3*i+0, 1) = facet->vertex[0](1); V(3*i+0, 2) = facet->vertex[0](2);
V(3*i+1, 0) = facet->vertex[1](0); V(3*i+1, 1) = facet->vertex[1](1); V(3*i+1, 2) = facet->vertex[1](2);
V(3*i+2, 0) = facet->vertex[2](0); V(3*i+2, 1) = facet->vertex[2](1); V(3*i+2, 2) = facet->vertex[2](2);
F(i, 0) = 3*i+0;
F(i, 1) = 3*i+1;
F(i, 2) = 3*i+2;
}
m_source_data.matrix = m_model_object->instances.front()->get_matrix();
const float* first_vertex = m_model_object->volumes.front()->get_convex_hull().first_vertex();
m_source_data.mesh_first_point = Vec3d((double)first_vertex[0], (double)first_vertex[1], (double)first_vertex[2]);
// we'll now reload Grabbers (selection might have changed):
m_grabbers.clear();
for (const Vec3f& point : m_model_object->sla_support_points) {
m_grabbers.push_back(Grabber());
m_grabbers.back().center = point.cast<double>();
}
}
Vec3f GLGizmoSlaSupports::unproject_on_mesh(const Vec2d& mouse_pos)
{
// if the gizmo doesn't have the V, F structures for igl, calculate them first:
if (m_V.size() == 0 || is_mesh_update_necessary())
update_mesh();
Eigen::Matrix<GLint, 4, 1, Eigen::DontAlign> viewport;
::glGetIntegerv(GL_VIEWPORT, viewport.data());
Eigen::Matrix<GLdouble, 4, 4, Eigen::DontAlign> modelview_matrix;
::glGetDoublev(GL_MODELVIEW_MATRIX, modelview_matrix.data());
Eigen::Matrix<GLdouble, 4, 4, Eigen::DontAlign> projection_matrix;
::glGetDoublev(GL_PROJECTION_MATRIX, projection_matrix.data());
int fid = 0;
Eigen::Vector3f bc(0, 0, 0);
if (!igl::unproject_onto_mesh(Vec2f(mouse_pos(0), viewport(3)-mouse_pos(1)), modelview_matrix.cast<float>(), projection_matrix.cast<float>(), viewport.cast<float>(), m_V, m_F, fid, bc))
/*if (!igl::embree::unproject_onto_mesh(Vec2f(mouse_pos(0), viewport(3)-mouse_pos(1)),
m_F,
modelview_matrix.cast<float>(),
projection_matrix.cast<float>(),
viewport.cast<float>(),
m_intersector,
fid,
bc))*/
throw "unable to unproject_onto_mesh";
const Vec3f& a = m_V.row(m_F(fid, 0));
const Vec3f& b = m_V.row(m_F(fid, 1));
const Vec3f& c = m_V.row(m_F(fid, 2));
Vec3f point = bc(0)*a + bc(1)*b + bc(2)*c;
return m_model_object->instances.front()->get_matrix().inverse().cast<float>() * point;
}
void GLGizmoSlaSupports::clicked_on_object(const Vec2d& mouse_position)
{
Vec3f new_pos;
try {
new_pos = unproject_on_mesh(mouse_position); // this can throw - we don't want to create a new grabber in that case
m_grabbers.push_back(Grabber());
m_grabbers.back().center = new_pos.cast<double>();
m_model_object->sla_support_points.push_back(new_pos);
}
catch (...) {}
}
void GLGizmoSlaSupports::delete_current_grabber(bool delete_all)
{
if (delete_all) {
m_grabbers.clear();
m_model_object->sla_support_points.clear();
}
else
if (m_hover_id != -1) {
m_grabbers.erase(m_grabbers.begin() + m_hover_id);
m_model_object->sla_support_points.erase(m_model_object->sla_support_points.begin() + m_hover_id);
m_hover_id = -1;
}
}
void GLGizmoSlaSupports::on_update(const Linef3& mouse_ray, const Point* mouse_pos)
{
if (m_hover_id != -1 && mouse_pos) {
Vec3f new_pos;
try {
new_pos = unproject_on_mesh(Vec2d((*mouse_pos)(0), (*mouse_pos)(1)));
m_grabbers[m_hover_id].center = new_pos.cast<double>();
m_model_object->sla_support_points[m_hover_id] = new_pos;
}
catch (...) {}
}
}
void GLGizmoSlaSupports::render_tooltip_texture() const {
if (m_tooltip_texture.get_id() == 0)
if (!m_tooltip_texture.load_from_file(resources_dir() + "/icons/variable_layer_height_tooltip.png", false))
return;
if (m_reset_texture.get_id() == 0)
if (!m_reset_texture.load_from_file(resources_dir() + "/icons/variable_layer_height_reset.png", false))
return;
float zoom = m_parent.get_camera_zoom();
float inv_zoom = (zoom != 0.0f) ? 1.0f / zoom : 0.0f;
float gap = 30.0f * inv_zoom;
const Size& cnv_size = m_parent.get_canvas_size();
float l = gap - cnv_size.get_width()/2.f * inv_zoom;
float r = l + (float)m_tooltip_texture.get_width() * inv_zoom;
float b = gap - cnv_size.get_height()/2.f * inv_zoom;
float t = b + (float)m_tooltip_texture.get_height() * inv_zoom;
Rect reset_rect = m_parent.get_gizmo_reset_rect(m_parent, true);
::glDisable(GL_DEPTH_TEST);
::glPushMatrix();
::glLoadIdentity();
GLTexture::render_texture(m_tooltip_texture.get_id(), l, r, b, t);
GLTexture::render_texture(m_reset_texture.get_id(), reset_rect.get_left(), reset_rect.get_right(), reset_rect.get_bottom(), reset_rect.get_top());
::glPopMatrix();
::glEnable(GL_DEPTH_TEST);
}
std::string GLGizmoSlaSupports::on_get_name() const
{
return L("SLA Support Points");
}
} // namespace GUI
} // namespace Slic3r