PrusaSlicer-NonPlainar/src/slic3r/GUI/3DScene.cpp

1553 lines
65 KiB
C++

#include <GL/glew.h>
#include "3DScene.hpp"
#include "GLShader.hpp"
#include "GUI_App.hpp"
#include "Plater.hpp"
#include "BitmapCache.hpp"
#include "Camera.hpp"
#include "libslic3r/BuildVolume.hpp"
#include "libslic3r/ExtrusionEntity.hpp"
#include "libslic3r/ExtrusionEntityCollection.hpp"
#include "libslic3r/Geometry.hpp"
#include "libslic3r/Print.hpp"
#include "libslic3r/SLAPrint.hpp"
#include "libslic3r/Slicing.hpp"
#include "libslic3r/Format/STL.hpp"
#include "libslic3r/Utils.hpp"
#include "libslic3r/AppConfig.hpp"
#include "libslic3r/PresetBundle.hpp"
#include "libslic3r/ClipperUtils.hpp"
#include "libslic3r/Tesselate.hpp"
#include "libslic3r/PrintConfig.hpp"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <boost/log/trivial.hpp>
#include <boost/filesystem/operations.hpp>
#include <boost/algorithm/string/predicate.hpp>
#include <Eigen/Dense>
#ifdef HAS_GLSAFE
void glAssertRecentCallImpl(const char* file_name, unsigned int line, const char* function_name)
{
#if defined(NDEBUG)
// In release mode, only show OpenGL errors if sufficiently high loglevel.
if (Slic3r::get_logging_level() < 5)
return;
#endif // NDEBUG
GLenum err = glGetError();
if (err == GL_NO_ERROR)
return;
const char* sErr = 0;
switch (err) {
case GL_INVALID_ENUM: sErr = "Invalid Enum"; break;
case GL_INVALID_VALUE: sErr = "Invalid Value"; break;
// be aware that GL_INVALID_OPERATION is generated if glGetError is executed between the execution of glBegin and the corresponding execution of glEnd
case GL_INVALID_OPERATION: sErr = "Invalid Operation"; break;
case GL_STACK_OVERFLOW: sErr = "Stack Overflow"; break;
case GL_STACK_UNDERFLOW: sErr = "Stack Underflow"; break;
case GL_OUT_OF_MEMORY: sErr = "Out Of Memory"; break;
default: sErr = "Unknown"; break;
}
BOOST_LOG_TRIVIAL(error) << "OpenGL error in " << file_name << ":" << line << ", function " << function_name << "() : " << (int)err << " - " << sErr;
assert(false);
}
#endif // HAS_GLSAFE
namespace Slic3r {
const float GLVolume::SinkingContours::HalfWidth = 0.25f;
void GLVolume::SinkingContours::render()
{
update();
GLShaderProgram* shader = GUI::wxGetApp().get_current_shader();
if (shader == nullptr)
return;
const GUI::Camera& camera = GUI::wxGetApp().plater()->get_camera();
shader->set_uniform("view_model_matrix", camera.get_view_matrix() * Geometry::translation_transform(m_shift));
shader->set_uniform("projection_matrix", camera.get_projection_matrix());
m_model.render();
}
void GLVolume::SinkingContours::update()
{
const int object_idx = m_parent.object_idx();
const Model& model = GUI::wxGetApp().plater()->model();
if (object_idx < 0 ||
object_idx >= int(model.objects.size()) ||
!m_parent.is_sinking() ||
m_parent.is_below_printbed()){
m_model.reset();
return;
}
const BoundingBoxf3& box = m_parent.transformed_convex_hull_bounding_box();
if (m_old_box.size().isApprox(box.size()) &&
m_old_box.min.z() == box.min.z()){
// Fix it !!! It is not working all the time
m_shift = box.center() - m_old_box.center();
return;
}
m_old_box = box;
m_shift = Vec3d::Zero();
const TriangleMesh& mesh = model.objects[object_idx]->volumes[m_parent.volume_idx()]->mesh();
m_model.reset();
GUI::GLModel::Geometry init_data;
init_data.format = { GUI::GLModel::Geometry::EPrimitiveType::Triangles, GUI::GLModel::Geometry::EVertexLayout::P3 };
init_data.color = ColorRGBA::WHITE();
unsigned int vertices_counter = 0;
MeshSlicingParams slicing_params;
slicing_params.trafo = m_parent.world_matrix();
const Polygons polygons = union_(slice_mesh(mesh.its, 0.0f, slicing_params));
if (polygons.empty()) return;
for (const ExPolygon& expoly : diff_ex(expand(polygons, float(scale_(HalfWidth))), shrink(polygons, float(scale_(HalfWidth))))) {
const std::vector<Vec3d> triangulation = triangulate_expolygon_3d(expoly);
init_data.reserve_vertices(init_data.vertices_count() + triangulation.size());
init_data.reserve_indices(init_data.indices_count() + triangulation.size());
for (const Vec3d& v : triangulation) {
init_data.add_vertex((Vec3f)(v.cast<float>() + 0.015f * Vec3f::UnitZ())); // add a small positive z to avoid z-fighting
++vertices_counter;
if (vertices_counter % 3 == 0)
init_data.add_triangle(vertices_counter - 3, vertices_counter - 2, vertices_counter - 1);
}
}
if (init_data.vertices_count() > 0)
m_model.init_from(std::move(init_data));
}
void GLVolume::NonManifoldEdges::render()
{
update();
#if ENABLE_GL_CORE_PROFILE
if (!GUI::OpenGLManager::get_gl_info().is_core_profile())
#endif // ENABLE_GL_CORE_PROFILE
glsafe(::glLineWidth(2.0f));
GLShaderProgram* shader = GUI::wxGetApp().get_current_shader();
if (shader == nullptr)
return;
const GUI::Camera& camera = GUI::wxGetApp().plater()->get_camera();
shader->set_uniform("view_model_matrix", camera.get_view_matrix() * m_parent.world_matrix());
shader->set_uniform("projection_matrix", camera.get_projection_matrix());
#if ENABLE_GL_CORE_PROFILE
const std::array<int, 4>& viewport = camera.get_viewport();
shader->set_uniform("viewport_size", Vec2d(double(viewport[2]), double(viewport[3])));
shader->set_uniform("width", 0.5f);
shader->set_uniform("gap_size", 0.0f);
#endif // ENABLE_GL_CORE_PROFILE
m_model.set_color(complementary(m_parent.render_color));
m_model.render();
}
void GLVolume::NonManifoldEdges::update()
{
if (!m_update_needed)
return;
m_model.reset();
const int object_idx = m_parent.object_idx();
const Model& model = GUI::wxGetApp().plater()->model();
if (0 <= object_idx && object_idx < int(model.objects.size())) {
const ModelObject* model_object = model.objects[object_idx];
const int volume_idx = m_parent.volume_idx();
if (0 <= volume_idx && volume_idx < int(model_object->volumes.size())) {
const ModelVolume* model_volume = model_object->volumes[volume_idx];
const TriangleMesh& mesh = model_volume->mesh();
const std::vector<std::pair<int, int>> edges = its_get_open_edges(mesh.its);
if (!edges.empty()) {
GUI::GLModel::Geometry init_data;
init_data.format = { GUI::GLModel::Geometry::EPrimitiveType::Lines, GUI::GLModel::Geometry::EVertexLayout::P3 };
init_data.reserve_vertices(2 * edges.size());
init_data.reserve_indices(2 * edges.size());
// vertices + indices
unsigned int vertices_count = 0;
for (const std::pair<int, int>& edge : edges) {
init_data.add_vertex((Vec3f)mesh.its.vertices[edge.first].cast<float>());
init_data.add_vertex((Vec3f)mesh.its.vertices[edge.second].cast<float>());
vertices_count += 2;
init_data.add_line(vertices_count - 2, vertices_count - 1);
}
m_model.init_from(std::move(init_data));
}
}
}
m_update_needed = false;
}
const ColorRGBA GLVolume::SELECTED_COLOR = ColorRGBA::GREEN();
const ColorRGBA GLVolume::HOVER_SELECT_COLOR = { 0.4f, 0.9f, 0.1f, 1.0f };
const ColorRGBA GLVolume::HOVER_DESELECT_COLOR = { 1.0f, 0.75f, 0.75f, 1.0f };
const ColorRGBA GLVolume::OUTSIDE_COLOR = { 0.0f, 0.38f, 0.8f, 1.0f };
const ColorRGBA GLVolume::SELECTED_OUTSIDE_COLOR = { 0.19f, 0.58f, 1.0f, 1.0f };
const ColorRGBA GLVolume::DISABLED_COLOR = ColorRGBA::DARK_GRAY();
const ColorRGBA GLVolume::SLA_SUPPORT_COLOR = ColorRGBA::LIGHT_GRAY();
const ColorRGBA GLVolume::SLA_PAD_COLOR = { 0.0f, 0.2f, 0.0f, 1.0f };
const ColorRGBA GLVolume::NEUTRAL_COLOR = { 0.9f, 0.9f, 0.9f, 1.0f };
const std::array<ColorRGBA, 4> GLVolume::MODEL_COLOR = { {
ColorRGBA::YELLOW(),
{ 1.0f, 0.5f, 0.5f, 1.0f },
{ 0.5f, 1.0f, 0.5f, 1.0f },
{ 0.5f, 0.5f, 1.0f, 1.0f }
} };
GLVolume::GLVolume(float r, float g, float b, float a)
: m_sla_shift_z(0.0)
, m_sinking_contours(*this)
, m_non_manifold_edges(*this)
// geometry_id == 0 -> invalid
, geometry_id(std::pair<size_t, size_t>(0, 0))
, extruder_id(0)
, selected(false)
, disabled(false)
, printable(true)
, is_active(true)
, zoom_to_volumes(true)
, shader_outside_printer_detection_enabled(false)
, is_outside(false)
, hover(HS_None)
, is_modifier(false)
, is_wipe_tower(false)
, is_extrusion_path(false)
, force_native_color(false)
, force_neutral_color(false)
, force_sinking_contours(false)
, tverts_range(0, size_t(-1))
{
color = { r, g, b, a };
set_render_color(color);
}
void GLVolume::set_render_color(bool force_transparent)
{
bool outside = is_outside || is_below_printbed();
if (force_native_color || force_neutral_color) {
if (outside && shader_outside_printer_detection_enabled)
set_render_color(OUTSIDE_COLOR);
else {
if (force_native_color)
set_render_color(color);
else
set_render_color(NEUTRAL_COLOR);
}
}
else {
if (hover == HS_Select)
set_render_color(HOVER_SELECT_COLOR);
else if (hover == HS_Deselect)
set_render_color(HOVER_DESELECT_COLOR);
else if (selected)
set_render_color(outside ? SELECTED_OUTSIDE_COLOR : SELECTED_COLOR);
else if (disabled)
set_render_color(DISABLED_COLOR);
else if (outside && shader_outside_printer_detection_enabled)
set_render_color(OUTSIDE_COLOR);
else
set_render_color(color);
}
if (!printable)
render_color = saturate(render_color, 0.25f);
if (force_transparent)
render_color.a(color.a());
}
ColorRGBA color_from_model_volume(const ModelVolume& model_volume)
{
ColorRGBA color;
if (model_volume.is_negative_volume())
color = { 0.2f, 0.2f, 0.2f, 1.0f };
else if (model_volume.is_modifier())
color = { 1.0, 1.0f, 0.2f, 1.0f };
else if (model_volume.is_support_blocker())
color = { 1.0f, 0.2f, 0.2f, 1.0f };
else if (model_volume.is_support_enforcer())
color = { 0.2f, 0.2f, 1.0f, 1.0f };
if (!model_volume.is_model_part())
color.a(0.5f);
return color;
}
Transform3d GLVolume::world_matrix() const
{
Transform3d m = m_instance_transformation.get_matrix() * m_volume_transformation.get_matrix();
m.translation()(2) += m_sla_shift_z;
return m;
}
bool GLVolume::is_left_handed() const
{
const Vec3d &m1 = m_instance_transformation.get_mirror();
const Vec3d &m2 = m_volume_transformation.get_mirror();
return m1.x() * m1.y() * m1.z() * m2.x() * m2.y() * m2.z() < 0.;
}
const BoundingBoxf3& GLVolume::transformed_bounding_box() const
{
if (!m_transformed_bounding_box.has_value()) {
const BoundingBoxf3& box = bounding_box();
assert(box.defined || box.min.x() >= box.max.x() || box.min.y() >= box.max.y() || box.min.z() >= box.max.z());
std::optional<BoundingBoxf3>* trans_box = const_cast<std::optional<BoundingBoxf3>*>(&m_transformed_bounding_box);
*trans_box = box.transformed(world_matrix());
}
return *m_transformed_bounding_box;
}
const BoundingBoxf3& GLVolume::transformed_convex_hull_bounding_box() const
{
if (!m_transformed_convex_hull_bounding_box.has_value()) {
std::optional<BoundingBoxf3>* trans_box = const_cast<std::optional<BoundingBoxf3>*>(&m_transformed_convex_hull_bounding_box);
*trans_box = transformed_convex_hull_bounding_box(world_matrix());
}
return *m_transformed_convex_hull_bounding_box;
}
BoundingBoxf3 GLVolume::transformed_convex_hull_bounding_box(const Transform3d &trafo) const
{
return (m_convex_hull && ! m_convex_hull->empty()) ?
m_convex_hull->transformed_bounding_box(trafo) :
bounding_box().transformed(trafo);
}
BoundingBoxf3 GLVolume::transformed_non_sinking_bounding_box(const Transform3d& trafo) const
{
return GUI::wxGetApp().plater()->model().objects[object_idx()]->volumes[volume_idx()]->mesh().transformed_bounding_box(trafo, 0.0);
}
const BoundingBoxf3& GLVolume::transformed_non_sinking_bounding_box() const
{
if (!m_transformed_non_sinking_bounding_box.has_value()) {
std::optional<BoundingBoxf3>* trans_box = const_cast<std::optional<BoundingBoxf3>*>(&m_transformed_non_sinking_bounding_box);
const Transform3d& trafo = world_matrix();
*trans_box = transformed_non_sinking_bounding_box(trafo);
}
return *m_transformed_non_sinking_bounding_box;
}
void GLVolume::set_range(double min_z, double max_z)
{
this->tverts_range.first = 0;
this->tverts_range.second = this->model.indices_count();
if (!this->print_zs.empty()) {
// The Z layer range is specified.
// First test whether the Z span of this object is not out of (min_z, max_z) completely.
if (this->print_zs.front() > max_z || this->print_zs.back() < min_z)
this->tverts_range.second = 0;
else {
// Then find the lowest layer to be displayed.
size_t i = 0;
for (; i < this->print_zs.size() && this->print_zs[i] < min_z; ++i);
if (i == this->print_zs.size())
// This shall not happen.
this->tverts_range.second = 0;
else {
// Remember start of the layer.
this->tverts_range.first = this->offsets[i];
// Some layers are above $min_z. Which?
for (; i < this->print_zs.size() && this->print_zs[i] <= max_z; ++i);
if (i < this->print_zs.size())
this->tverts_range.second = this->offsets[i];
}
}
}
}
void GLVolume::render()
{
if (!is_active)
return;
GLShaderProgram* shader = GUI::wxGetApp().get_current_shader();
if (shader == nullptr)
return;
const bool is_left_handed = this->is_left_handed();
if (is_left_handed)
glsafe(::glFrontFace(GL_CW));
glsafe(::glCullFace(GL_BACK));
if (tverts_range == std::make_pair<size_t, size_t>(0, -1))
model.render();
else
model.render(this->tverts_range);
if (is_left_handed)
glsafe(::glFrontFace(GL_CCW));
}
bool GLVolume::is_sla_support() const { return this->composite_id.volume_id == -int(slaposSupportTree); }
bool GLVolume::is_sla_pad() const { return this->composite_id.volume_id == -int(slaposPad); }
bool GLVolume::is_sinking() const
{
if (is_modifier || GUI::wxGetApp().preset_bundle->printers.get_edited_preset().printer_technology() == ptSLA)
return false;
const BoundingBoxf3& box = transformed_convex_hull_bounding_box();
return box.min.z() < SINKING_Z_THRESHOLD && box.max.z() >= SINKING_Z_THRESHOLD;
}
bool GLVolume::is_below_printbed() const
{
return transformed_convex_hull_bounding_box().max.z() < 0.0;
}
void GLVolume::render_sinking_contours()
{
m_sinking_contours.render();
}
void GLVolume::render_non_manifold_edges()
{
m_non_manifold_edges.render();
}
std::vector<int> GLVolumeCollection::load_object(
const ModelObject* model_object,
int obj_idx,
const std::vector<int>& instance_idxs)
{
std::vector<int> volumes_idx;
for (int volume_idx = 0; volume_idx < int(model_object->volumes.size()); ++volume_idx)
for (int instance_idx : instance_idxs)
volumes_idx.emplace_back(this->GLVolumeCollection::load_object_volume(model_object, obj_idx, volume_idx, instance_idx));
return volumes_idx;
}
int GLVolumeCollection::load_object_volume(
const ModelObject* model_object,
int obj_idx,
int volume_idx,
int instance_idx)
{
const ModelVolume *model_volume = model_object->volumes[volume_idx];
const int extruder_id = model_volume->extruder_id();
const ModelInstance *instance = model_object->instances[instance_idx];
std::shared_ptr<const TriangleMesh> mesh = model_volume->mesh_ptr();
this->volumes.emplace_back(new GLVolume());
GLVolume& v = *this->volumes.back();
v.set_color(color_from_model_volume(*model_volume));
// apply printable value from the instance
v.printable = instance->printable;
#if ENABLE_SMOOTH_NORMALS
v.model.init_from(*mesh, true);
if (m_use_raycasters)
v.mesh_raycaster = std::make_unique<GUI::MeshRaycaster>(mesh);
#else
v.model.init_from(*mesh);
if (m_use_raycasters)
v.mesh_raycaster = std::make_unique<GUI::MeshRaycaster>(mesh);
#endif // ENABLE_SMOOTH_NORMALS
v.composite_id = GLVolume::CompositeID(obj_idx, volume_idx, instance_idx);
if (model_volume->is_model_part()) {
// GLVolume will reference a convex hull from model_volume!
v.set_convex_hull(model_volume->get_convex_hull_shared_ptr());
if (extruder_id != -1)
v.extruder_id = extruder_id;
}
v.is_modifier = !model_volume->is_model_part();
v.shader_outside_printer_detection_enabled = model_volume->is_model_part();
v.set_instance_transformation(instance->get_transformation());
v.set_volume_transformation(model_volume->get_transformation());
return int(this->volumes.size() - 1);
}
#if ENABLE_OPENGL_ES
int GLVolumeCollection::load_wipe_tower_preview(
float pos_x, float pos_y, float width, float depth, float height, float cone_angle,
float rotation_angle, bool size_unknown, float brim_width, TriangleMesh* out_mesh)
#else
int GLVolumeCollection::load_wipe_tower_preview(
float pos_x, float pos_y, float width, float depth, float height, float cone_angle,
float rotation_angle, bool size_unknown, float brim_width)
#endif // ENABLE_OPENGL_ES
{
if (height == 0.0f)
height = 0.1f;
static const float brim_height = 0.2f;
// const float scaled_brim_height = brim_height / height;
TriangleMesh mesh;
ColorRGBA color = ColorRGBA::DARK_YELLOW();
// In case we don't know precise dimensions of the wipe tower yet, we'll draw
// the box with different color with one side jagged:
if (size_unknown) {
color.r(0.9f);
color.g(0.6f);
// Too narrow tower would interfere with the teeth. The estimate is not precise anyway.
depth = std::max(depth, 10.f);
float min_width = 30.f;
// We'll now create the box with jagged edge. y-coordinates of the pre-generated model
// are shifted so that the front edge has y=0 and centerline of the back edge has y=depth:
float out_points_idx[][3] = { { 0, -depth, 0 }, { 0, 0, 0 }, { 38.453f, 0, 0 }, { 61.547f, 0, 0 }, { 100.0f, 0, 0 }, { 100.0f, -depth, 0 }, { 55.7735f, -10.0f, 0 }, { 44.2265f, 10.0f, 0 },
{ 38.453f, 0, 1 }, { 0, 0, 1 }, { 0, -depth, 1 }, { 100.0f, -depth, 1 }, { 100.0f, 0, 1 }, { 61.547f, 0, 1 }, { 55.7735f, -10.0f, 1 }, { 44.2265f, 10.0f, 1 } };
static constexpr const int out_facets_idx[][3] = {
{ 0, 1, 2 }, { 3, 4, 5 }, { 6, 5, 0 }, { 3, 5, 6 }, { 6, 2, 7 }, { 6, 0, 2 }, { 8, 9, 10 }, { 11, 12, 13 }, { 10, 11, 14 }, { 14, 11, 13 }, { 15, 8, 14 },
{ 8, 10, 14 }, { 3, 12, 4 }, { 3, 13, 12 }, { 6, 13, 3 }, { 6, 14, 13 }, { 7, 14, 6 }, { 7, 15, 14 }, { 2, 15, 7 }, { 2, 8, 15 }, { 1, 8, 2 }, { 1, 9, 8 },
{ 0, 9, 1 }, { 0, 10, 9 }, { 5, 10, 0 }, { 5, 11, 10 }, { 4, 11, 5 }, { 4, 12, 11 } };
indexed_triangle_set its;
for (int i = 0; i < 16; ++i)
its.vertices.emplace_back(out_points_idx[i][0] / (100.f / min_width), out_points_idx[i][1] + depth, out_points_idx[i][2]);
its.indices.reserve(28);
for (const int* face : out_facets_idx)
its.indices.emplace_back(face);
TriangleMesh tooth_mesh(std::move(its));
// We have the mesh ready. It has one tooth and width of min_width. We will now
// append several of these together until we are close to the required width
// of the block. Than we can scale it precisely.
size_t n = std::max(1, int(width / min_width)); // How many shall be merged?
for (size_t i = 0; i < n; ++i) {
mesh.merge(tooth_mesh);
tooth_mesh.translate(min_width, 0.f, 0.f);
}
mesh.scale(Vec3f(width / (n * min_width), 1.f, height)); // Scaling to proper width
}
else
mesh = make_cube(width, depth, height);
// We'll make another mesh to show the brim (fixed layer height):
TriangleMesh brim_mesh = make_cube(width + 2.f * brim_width, depth + 2.f * brim_width, 0.2f);
brim_mesh.translate(-brim_width, -brim_width, 0.f);
mesh.merge(brim_mesh);
// Now the stabilization cone and its base.
const auto [R, scale_x] = WipeTower::get_wipe_tower_cone_base(width, height, depth, cone_angle);
if (R > 0.) {
TriangleMesh cone_mesh(its_make_cone(R, height));
cone_mesh.scale(Vec3f(1.f/scale_x, 1.f, 1.f));
TriangleMesh disk_mesh(its_make_cylinder(R, brim_height));
disk_mesh.scale(Vec3f(1. / scale_x, 1., 1.)); // Now it matches the base, which may be elliptic.
disk_mesh.scale(Vec3f(1.f + scale_x*brim_width/R, 1.f + brim_width/R, 1.f)); // Scale so the brim is not deformed.
cone_mesh.merge(disk_mesh);
cone_mesh.translate(width / 2., depth / 2., 0.);
mesh.merge(cone_mesh);
}
volumes.emplace_back(new GLVolume(color));
GLVolume& v = *volumes.back();
#if ENABLE_OPENGL_ES
if (out_mesh != nullptr)
*out_mesh = mesh;
#endif // ENABLE_OPENGL_ES
v.model.init_from(mesh);
v.model.set_color(color);
v.mesh_raycaster = std::make_unique<GUI::MeshRaycaster>(std::make_shared<const TriangleMesh>(mesh));
v.set_convex_hull(mesh.convex_hull_3d());
v.set_volume_offset(Vec3d(pos_x, pos_y, 0.0));
v.set_volume_rotation(Vec3d(0., 0., (M_PI / 180.) * rotation_angle));
v.composite_id = GLVolume::CompositeID(INT_MAX, 0, 0);
v.geometry_id.first = 0;
v.geometry_id.second = wipe_tower_instance_id().id;
v.is_wipe_tower = true;
v.shader_outside_printer_detection_enabled = !size_unknown;
return int(volumes.size() - 1);
}
// Load SLA auxiliary GLVolumes (for support trees or pad).
// This function produces volumes for multiple instances in a single shot,
// as some object specific mesh conversions may be expensive.
void GLVolumeCollection::load_object_auxiliary(
const SLAPrintObject* print_object,
int obj_idx,
// pairs of <instance_idx, print_instance_idx>
const std::vector<std::pair<size_t, size_t>>& instances,
SLAPrintObjectStep milestone,
// Timestamp of the last change of the milestone
size_t timestamp)
{
if (print_object->get_mesh_to_print() == nullptr)
return;
const Transform3d mesh_trafo_inv = print_object->trafo().inverse();
auto add_volume = [this, &instances, timestamp](int obj_idx, int inst_idx, const ModelInstance& model_instance, SLAPrintObjectStep step,
const TriangleMesh& mesh, const ColorRGBA& color, std::optional<const TriangleMesh> convex_hull = std::nullopt) {
if (mesh.empty())
return;
GLVolume& v = *this->volumes.emplace_back(new GLVolume(color));
#if ENABLE_SMOOTH_NORMALS
v.model.init_from(mesh, true);
#else
v.model.init_from(mesh);
v.model.set_color(color);
v.mesh_raycaster = std::make_unique<GUI::MeshRaycaster>(std::make_shared<const TriangleMesh>(mesh));
#endif // ENABLE_SMOOTH_NORMALS
v.composite_id = GLVolume::CompositeID(obj_idx, -int(step), inst_idx);
v.geometry_id = std::pair<size_t, size_t>(timestamp, model_instance.id().id);
if (convex_hull.has_value())
v.set_convex_hull(*convex_hull);
v.is_modifier = false;
v.shader_outside_printer_detection_enabled = (step == slaposSupportTree);
v.set_instance_transformation(model_instance.get_transformation());
};
// Get the support mesh.
if (milestone == SLAPrintObjectStep::slaposSupportTree) {
TriangleMesh supports_mesh = print_object->support_mesh();
if (!supports_mesh.empty()) {
supports_mesh.transform(mesh_trafo_inv);
TriangleMesh convex_hull = supports_mesh.convex_hull_3d();
for (const std::pair<size_t, size_t>& instance_idx : instances) {
const ModelInstance& model_instance = *print_object->model_object()->instances[instance_idx.first];
add_volume(obj_idx, (int)instance_idx.first, model_instance, slaposSupportTree, supports_mesh, GLVolume::SLA_SUPPORT_COLOR, convex_hull);
}
}
}
// Get the pad mesh.
if (milestone == SLAPrintObjectStep::slaposPad) {
TriangleMesh pad_mesh = print_object->pad_mesh();
if (!pad_mesh.empty()) {
pad_mesh.transform(mesh_trafo_inv);
TriangleMesh convex_hull = pad_mesh.convex_hull_3d();
for (const std::pair<size_t, size_t>& instance_idx : instances) {
const ModelInstance& model_instance = *print_object->model_object()->instances[instance_idx.first];
add_volume(obj_idx, (int)instance_idx.first, model_instance, slaposPad, pad_mesh, GLVolume::SLA_PAD_COLOR, convex_hull);
}
}
}
}
GLVolume* GLVolumeCollection::new_toolpath_volume(const ColorRGBA& rgba)
{
GLVolume* out = new_nontoolpath_volume(rgba);
out->is_extrusion_path = true;
return out;
}
GLVolume* GLVolumeCollection::new_nontoolpath_volume(const ColorRGBA& rgba)
{
GLVolume* out = new GLVolume(rgba);
out->is_extrusion_path = false;
this->volumes.emplace_back(out);
return out;
}
GLVolumeWithIdAndZList volumes_to_render(const GLVolumePtrs& volumes, GLVolumeCollection::ERenderType type, const Transform3d& view_matrix, std::function<bool(const GLVolume&)> filter_func)
{
GLVolumeWithIdAndZList list;
list.reserve(volumes.size());
for (unsigned int i = 0; i < (unsigned int)volumes.size(); ++i) {
GLVolume* volume = volumes[i];
bool is_transparent = volume->render_color.is_transparent();
if (((type == GLVolumeCollection::ERenderType::Opaque && !is_transparent) ||
(type == GLVolumeCollection::ERenderType::Transparent && is_transparent) ||
type == GLVolumeCollection::ERenderType::All) &&
(! filter_func || filter_func(*volume)))
list.emplace_back(std::make_pair(volume, std::make_pair(i, 0.0)));
}
if (type == GLVolumeCollection::ERenderType::Transparent && list.size() > 1) {
for (GLVolumeWithIdAndZ& volume : list) {
volume.second.second = volume.first->bounding_box().transformed(view_matrix * volume.first->world_matrix()).max(2);
}
std::sort(list.begin(), list.end(),
[](const GLVolumeWithIdAndZ& v1, const GLVolumeWithIdAndZ& v2) -> bool { return v1.second.second < v2.second.second; }
);
}
else if (type == GLVolumeCollection::ERenderType::Opaque && list.size() > 1) {
std::sort(list.begin(), list.end(),
[](const GLVolumeWithIdAndZ& v1, const GLVolumeWithIdAndZ& v2) -> bool { return v1.first->selected && !v2.first->selected; }
);
}
return list;
}
void GLVolumeCollection::render(GLVolumeCollection::ERenderType type, bool disable_cullface, const Transform3d& view_matrix, const Transform3d& projection_matrix,
std::function<bool(const GLVolume&)> filter_func) const
{
GLVolumeWithIdAndZList to_render = volumes_to_render(volumes, type, view_matrix, filter_func);
if (to_render.empty())
return;
GLShaderProgram* shader = GUI::wxGetApp().get_current_shader();
if (shader == nullptr)
return;
GLShaderProgram* sink_shader = GUI::wxGetApp().get_shader("flat");
#if ENABLE_GL_CORE_PROFILE
GLShaderProgram* edges_shader = GUI::OpenGLManager::get_gl_info().is_core_profile() ? GUI::wxGetApp().get_shader("dashed_thick_lines") : GUI::wxGetApp().get_shader("flat");
#else
GLShaderProgram* edges_shader = GUI::wxGetApp().get_shader("flat");
#endif // ENABLE_GL_CORE_PROFILE
if (type == ERenderType::Transparent) {
glsafe(::glEnable(GL_BLEND));
glsafe(::glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA));
glsafe(::glDepthMask(false));
}
glsafe(::glCullFace(GL_BACK));
if (disable_cullface)
glsafe(::glDisable(GL_CULL_FACE));
for (GLVolumeWithIdAndZ& volume : to_render) {
const Transform3d& world_matrix = volume.first->world_matrix();
volume.first->set_render_color(true);
// render sinking contours of non-hovered volumes
shader->stop_using();
if (sink_shader != nullptr) {
sink_shader->start_using();
if (m_show_sinking_contours) {
if (volume.first->is_sinking() && !volume.first->is_below_printbed() &&
volume.first->hover == GLVolume::HS_None && !volume.first->force_sinking_contours) {
volume.first->render_sinking_contours();
}
}
sink_shader->stop_using();
}
shader->start_using();
shader->set_uniform("z_range", m_z_range);
shader->set_uniform("clipping_plane", m_clipping_plane);
shader->set_uniform("use_color_clip_plane", m_use_color_clip_plane);
shader->set_uniform("color_clip_plane", m_color_clip_plane);
shader->set_uniform("uniform_color_clip_plane_1", m_color_clip_plane_colors[0]);
shader->set_uniform("uniform_color_clip_plane_2", m_color_clip_plane_colors[1]);
shader->set_uniform("print_volume.type", static_cast<int>(m_print_volume.type));
shader->set_uniform("print_volume.xy_data", m_print_volume.data);
shader->set_uniform("print_volume.z_data", m_print_volume.zs);
shader->set_uniform("volume_world_matrix", world_matrix);
shader->set_uniform("slope.actived", m_slope.active && !volume.first->is_modifier && !volume.first->is_wipe_tower);
shader->set_uniform("slope.volume_world_normal_matrix", static_cast<Matrix3f>(world_matrix.matrix().block(0, 0, 3, 3).inverse().transpose().cast<float>()));
shader->set_uniform("slope.normal_z", m_slope.normal_z);
#if ENABLE_ENVIRONMENT_MAP
unsigned int environment_texture_id = GUI::wxGetApp().plater()->get_environment_texture_id();
bool use_environment_texture = environment_texture_id > 0 && GUI::wxGetApp().app_config->get_bool("use_environment_map");
shader->set_uniform("use_environment_tex", use_environment_texture);
if (use_environment_texture)
glsafe(::glBindTexture(GL_TEXTURE_2D, environment_texture_id));
#endif // ENABLE_ENVIRONMENT_MAP
glcheck();
volume.first->model.set_color(volume.first->render_color);
const Transform3d model_matrix = world_matrix;
shader->set_uniform("view_model_matrix", view_matrix * model_matrix);
shader->set_uniform("projection_matrix", projection_matrix);
const Matrix3d view_normal_matrix = view_matrix.matrix().block(0, 0, 3, 3) * model_matrix.matrix().block(0, 0, 3, 3).inverse().transpose();
shader->set_uniform("view_normal_matrix", view_normal_matrix);
volume.first->render();
#if ENABLE_ENVIRONMENT_MAP
if (use_environment_texture)
glsafe(::glBindTexture(GL_TEXTURE_2D, 0));
#endif // ENABLE_ENVIRONMENT_MAP
glsafe(::glBindBuffer(GL_ARRAY_BUFFER, 0));
glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0));
}
if (m_show_sinking_contours) {
shader->stop_using();
if (sink_shader != nullptr) {
sink_shader->start_using();
for (GLVolumeWithIdAndZ& volume : to_render) {
// render sinking contours of hovered/displaced volumes
if (volume.first->is_sinking() && !volume.first->is_below_printbed() &&
(volume.first->hover != GLVolume::HS_None || volume.first->force_sinking_contours)) {
glsafe(::glDepthFunc(GL_ALWAYS));
volume.first->render_sinking_contours();
glsafe(::glDepthFunc(GL_LESS));
}
}
sink_shader->start_using();
}
shader->start_using();
}
shader->stop_using();
if (edges_shader != nullptr) {
edges_shader->start_using();
if (m_show_non_manifold_edges && GUI::wxGetApp().app_config->get_bool("non_manifold_edges")) {
for (GLVolumeWithIdAndZ& volume : to_render) {
volume.first->render_non_manifold_edges();
}
}
edges_shader->stop_using();
}
shader->start_using();
if (disable_cullface)
glsafe(::glEnable(GL_CULL_FACE));
if (type == ERenderType::Transparent) {
glsafe(::glDisable(GL_BLEND));
glsafe(::glDepthMask(true));
}
}
bool GLVolumeCollection::check_outside_state(const BuildVolume &build_volume, ModelInstanceEPrintVolumeState *out_state) const
{
const Model& model = GUI::wxGetApp().plater()->model();
auto volume_below = [](GLVolume& volume) -> bool
{ return volume.object_idx() != -1 && volume.volume_idx() != -1 && volume.is_below_printbed(); };
// Volume is partially below the print bed, thus a pre-calculated convex hull cannot be used.
auto volume_sinking = [](GLVolume& volume) -> bool
{ return volume.object_idx() != -1 && volume.volume_idx() != -1 && volume.is_sinking(); };
// Cached bounding box of a volume above the print bed.
auto volume_bbox = [volume_sinking](GLVolume& volume) -> BoundingBoxf3
{ return volume_sinking(volume) ? volume.transformed_non_sinking_bounding_box() : volume.transformed_convex_hull_bounding_box(); };
// Cached 3D convex hull of a volume above the print bed.
auto volume_convex_mesh = [volume_sinking, &model](GLVolume& volume) -> const TriangleMesh&
{ return volume_sinking(volume) ? model.objects[volume.object_idx()]->volumes[volume.volume_idx()]->mesh() : *volume.convex_hull(); };
ModelInstanceEPrintVolumeState overall_state = ModelInstancePVS_Inside;
bool contained_min_one = false;
for (GLVolume* volume : this->volumes)
if (! volume->is_modifier && (volume->shader_outside_printer_detection_enabled || (! volume->is_wipe_tower && volume->composite_id.volume_id >= 0))) {
BuildVolume::ObjectState state;
if (volume_below(*volume))
state = BuildVolume::ObjectState::Below;
else {
switch (build_volume.type()) {
case BuildVolume::Type::Rectangle:
//FIXME this test does not evaluate collision of a build volume bounding box with non-convex objects.
state = build_volume.volume_state_bbox(volume_bbox(*volume));
break;
case BuildVolume::Type::Circle:
case BuildVolume::Type::Convex:
//FIXME doing test on convex hull until we learn to do test on non-convex polygons efficiently.
case BuildVolume::Type::Custom:
state = build_volume.object_state(volume_convex_mesh(*volume).its, volume->world_matrix().cast<float>(), volume_sinking(*volume));
break;
default:
// Ignore, don't produce any collision.
state = BuildVolume::ObjectState::Inside;
break;
}
assert(state != BuildVolume::ObjectState::Below);
}
volume->is_outside = state != BuildVolume::ObjectState::Inside;
if (volume->printable) {
if (overall_state == ModelInstancePVS_Inside && volume->is_outside)
overall_state = ModelInstancePVS_Fully_Outside;
if (overall_state == ModelInstancePVS_Fully_Outside && volume->is_outside && state == BuildVolume::ObjectState::Colliding)
overall_state = ModelInstancePVS_Partly_Outside;
contained_min_one |= !volume->is_outside;
}
}
if (out_state != nullptr)
*out_state = overall_state;
return contained_min_one;
}
void GLVolumeCollection::reset_outside_state()
{
for (GLVolume* volume : this->volumes) {
if (volume != nullptr)
volume->is_outside = false;
}
}
void GLVolumeCollection::update_colors_by_extruder(const DynamicPrintConfig* config)
{
using ColorItem = std::pair<std::string, ColorRGB>;
std::vector<ColorItem> colors;
if (static_cast<PrinterTechnology>(config->opt_int("printer_technology")) == ptSLA) {
const std::string& txt_color = config->opt_string("material_colour").empty() ?
print_config_def.get("material_colour")->get_default_value<ConfigOptionString>()->value :
config->opt_string("material_colour");
ColorRGB rgb;
if (decode_color(txt_color, rgb))
colors.push_back({ txt_color, rgb });
}
else {
const ConfigOptionStrings* extruders_opt = dynamic_cast<const ConfigOptionStrings*>(config->option("extruder_colour"));
if (extruders_opt == nullptr)
return;
const ConfigOptionStrings* filamemts_opt = dynamic_cast<const ConfigOptionStrings*>(config->option("filament_colour"));
if (filamemts_opt == nullptr)
return;
size_t colors_count = std::max(extruders_opt->values.size(), filamemts_opt->values.size());
if (colors_count == 0)
return;
colors.resize(colors_count);
for (unsigned int i = 0; i < colors_count; ++i) {
const std::string& ext_color = config->opt_string("extruder_colour", i);
ColorRGB rgb;
if (decode_color(ext_color, rgb))
colors[i] = { ext_color, rgb };
else {
const std::string& fil_color = config->opt_string("filament_colour", i);
if (decode_color(fil_color, rgb))
colors[i] = { fil_color, rgb };
}
}
}
for (GLVolume* volume : volumes) {
if (volume == nullptr || volume->is_modifier || volume->is_wipe_tower || volume->volume_idx() < 0)
continue;
int extruder_id = volume->extruder_id - 1;
if (extruder_id < 0 || (int)colors.size() <= extruder_id)
extruder_id = 0;
const ColorItem& color = colors[extruder_id];
if (!color.first.empty())
volume->color = to_rgba(color.second, volume->color.a());
}
}
std::vector<double> GLVolumeCollection::get_current_print_zs(bool active_only) const
{
// Collect layer top positions of all volumes.
std::vector<double> print_zs;
for (GLVolume *vol : this->volumes)
{
if (!active_only || vol->is_active)
append(print_zs, vol->print_zs);
}
std::sort(print_zs.begin(), print_zs.end());
// Replace intervals of layers with similar top positions with their average value.
int n = int(print_zs.size());
int k = 0;
for (int i = 0; i < n;) {
int j = i + 1;
coordf_t zmax = print_zs[i] + EPSILON;
for (; j < n && print_zs[j] <= zmax; ++ j) ;
print_zs[k ++] = (j > i + 1) ? (0.5 * (print_zs[i] + print_zs[j - 1])) : print_zs[i];
i = j;
}
if (k < n)
print_zs.erase(print_zs.begin() + k, print_zs.end());
return print_zs;
}
size_t GLVolumeCollection::cpu_memory_used() const
{
size_t memsize = sizeof(*this) + this->volumes.capacity() * sizeof(GLVolume);
for (const GLVolume *volume : this->volumes)
memsize += volume->cpu_memory_used();
return memsize;
}
size_t GLVolumeCollection::gpu_memory_used() const
{
size_t memsize = 0;
for (const GLVolume *volume : this->volumes)
memsize += volume->gpu_memory_used();
return memsize;
}
std::string GLVolumeCollection::log_memory_info() const
{
return " (GLVolumeCollection RAM: " + format_memsize_MB(this->cpu_memory_used()) + " GPU: " + format_memsize_MB(this->gpu_memory_used()) + " Both: " + format_memsize_MB(this->gpu_memory_used()) + ")";
}
static void thick_lines_to_geometry(
const Lines& lines,
const std::vector<double>& widths,
const std::vector<double>& heights,
bool closed,
double top_z,
GUI::GLModel::Geometry& geometry)
{
assert(!lines.empty());
if (lines.empty())
return;
enum Direction : unsigned char
{
Left,
Right,
Top,
Bottom
};
// right, left, top, bottom
std::array<int, 4> idx_prev = { -1, -1, -1, -1 };
std::array<int, 4> idx_initial = { -1, -1, -1, -1 };
double bottom_z_prev = 0.0;
Vec2d b1_prev(Vec2d::Zero());
Vec2d v_prev(Vec2d::Zero());
double len_prev = 0.0;
double width_initial = 0.0;
double bottom_z_initial = 0.0;
// Reserve for a smooth path. Likley the path will not be that smooth, but better than nothing.
// Allocated 1.5x more data than minimum.
// Number of indices, not triangles.
geometry.reserve_more_indices((lines.size() * 8 * 3) * 3 / 2);
// Number of vertices, not floats.
geometry.reserve_more_vertices(((lines.size() + 1) * 4) * 3 / 2);
// loop once more in case of closed loops
const size_t lines_end = closed ? (lines.size() + 1) : lines.size();
for (size_t ii = 0; ii < lines_end; ++ii) {
const size_t i = (ii == lines.size()) ? 0 : ii;
const Line& line = lines[i];
const double bottom_z = top_z - heights[i];
const double middle_z = 0.5 * (top_z + bottom_z);
const double width = widths[i];
const bool is_first = (ii == 0);
const bool is_last = (ii == lines_end - 1);
const bool is_closing = closed && is_last;
const Vec2d v = unscale(line.vector()).normalized();
const double len = unscale<double>(line.length());
const Vec2d a = unscale(line.a);
const Vec2d b = unscale(line.b);
Vec2d a1 = a;
Vec2d a2 = a;
Vec2d b1 = b;
Vec2d b2 = b;
{
const double dist = 0.5 * width; // scaled
const double dx = dist * v.x();
const double dy = dist * v.y();
a1 += Vec2d(+dy, -dx);
a2 += Vec2d(-dy, +dx);
b1 += Vec2d(+dy, -dx);
b2 += Vec2d(-dy, +dx);
}
// calculate new XY normals
const Vec2d xy_right_normal = unscale(line.normal()).normalized();
std::array<int, 4> idx_a = { 0, 0, 0, 0 };
std::array<int, 4> idx_b = { 0, 0, 0, 0 };
int idx_last = int(geometry.vertices_count());
const bool bottom_z_different = bottom_z_prev != bottom_z;
bottom_z_prev = bottom_z;
if (!is_first && bottom_z_different) {
// Found a change of the layer thickness -> Add a cap at the end of the previous segment.
geometry.add_triangle(idx_b[Bottom], idx_b[Left], idx_b[Top]);
geometry.add_triangle(idx_b[Bottom], idx_b[Top], idx_b[Right]);
}
// Share top / bottom vertices if possible.
if (is_first) {
idx_a[Top] = idx_last++;
geometry.add_vertex(Vec3f(a.x(), a.y(), top_z), Vec3f(0.0f, 0.0f, 1.0f));
}
else
idx_a[Top] = idx_prev[Top];
if (is_first || bottom_z_different) {
// Start of the 1st line segment or a change of the layer thickness while maintaining the print_z.
idx_a[Bottom] = idx_last++;
geometry.add_vertex(Vec3f(a.x(), a.y(), bottom_z), Vec3f(0.0f, 0.0f, -1.0f));
idx_a[Left] = idx_last++;
geometry.add_vertex(Vec3f(a2.x(), a2.y(), middle_z), Vec3f(-xy_right_normal.x(), -xy_right_normal.y(), 0.0f));
idx_a[Right] = idx_last++;
geometry.add_vertex(Vec3f(a1.x(), a1.y(), middle_z), Vec3f(xy_right_normal.x(), xy_right_normal.y(), 0.0f));
}
else
idx_a[Bottom] = idx_prev[Bottom];
if (is_first) {
// Start of the 1st line segment.
width_initial = width;
bottom_z_initial = bottom_z;
idx_initial = idx_a;
}
else {
// Continuing a previous segment.
// Share left / right vertices if possible.
const double v_dot = v_prev.dot(v);
// To reduce gpu memory usage, we try to reuse vertices
// To reduce the visual artifacts, due to averaged normals, we allow to reuse vertices only when any of two adjacent edges
// is longer than a fixed threshold.
// The following value is arbitrary, it comes from tests made on a bunch of models showing the visual artifacts
const double len_threshold = 2.5;
// Generate new vertices if the angle between adjacent edges is greater than 45 degrees or thresholds conditions are met
const bool sharp = (v_dot < 0.707) || (len_prev > len_threshold) || (len > len_threshold);
if (sharp) {
if (!bottom_z_different) {
// Allocate new left / right points for the start of this segment as these points will receive their own normals to indicate a sharp turn.
idx_a[Right] = idx_last++;
geometry.add_vertex(Vec3f(a1.x(), a1.y(), middle_z), Vec3f(xy_right_normal.x(), xy_right_normal.y(), 0.0f));
idx_a[Left] = idx_last++;
geometry.add_vertex(Vec3f(a2.x(), a2.y(), middle_z), Vec3f(-xy_right_normal.x(), -xy_right_normal.y(), 0.0f));
if (cross2(v_prev, v) > 0.0) {
// Right turn. Fill in the right turn wedge.
geometry.add_triangle(idx_prev[Right], idx_a[Right], idx_prev[Top]);
geometry.add_triangle(idx_prev[Right], idx_prev[Bottom], idx_a[Right]);
}
else {
// Left turn. Fill in the left turn wedge.
geometry.add_triangle(idx_prev[Left], idx_prev[Top], idx_a[Left]);
geometry.add_triangle(idx_prev[Left], idx_a[Left], idx_prev[Bottom]);
}
}
}
else {
if (!bottom_z_different) {
// The two successive segments are nearly collinear.
idx_a[Left] = idx_prev[Left];
idx_a[Right] = idx_prev[Right];
}
}
if (is_closing) {
if (!sharp) {
if (!bottom_z_different) {
// Closing a loop with smooth transition. Unify the closing left / right vertices.
geometry.set_vertex(idx_initial[Left], geometry.extract_position_3(idx_prev[Left]), geometry.extract_normal_3(idx_prev[Left]));
geometry.set_vertex(idx_initial[Right], geometry.extract_position_3(idx_prev[Right]), geometry.extract_normal_3(idx_prev[Right]));
geometry.remove_vertex(geometry.vertices_count() - 1);
geometry.remove_vertex(geometry.vertices_count() - 1);
// Replace the left / right vertex indices to point to the start of the loop.
const size_t indices_count = geometry.indices_count();
for (size_t u = indices_count - 24; u < indices_count; ++u) {
const unsigned int id = geometry.extract_index(u);
if (id == (unsigned int)idx_prev[Left])
geometry.set_index(u, (unsigned int)idx_initial[Left]);
else if (id == (unsigned int)idx_prev[Right])
geometry.set_index(u, (unsigned int)idx_initial[Right]);
}
}
}
// This is the last iteration, only required to solve the transition.
break;
}
}
// Only new allocate top / bottom vertices, if not closing a loop.
if (is_closing)
idx_b[Top] = idx_initial[Top];
else {
idx_b[Top] = idx_last++;
geometry.add_vertex(Vec3f(b.x(), b.y(), top_z), Vec3f(0.0f, 0.0f, 1.0f));
}
if (is_closing && width == width_initial && bottom_z == bottom_z_initial)
idx_b[Bottom] = idx_initial[Bottom];
else {
idx_b[Bottom] = idx_last++;
geometry.add_vertex(Vec3f(b.x(), b.y(), bottom_z), Vec3f(0.0f, 0.0f, -1.0f));
}
// Generate new vertices for the end of this line segment.
idx_b[Left] = idx_last++;
geometry.add_vertex(Vec3f(b2.x(), b2.y(), middle_z), Vec3f(-xy_right_normal.x(), -xy_right_normal.y(), 0.0f));
idx_b[Right] = idx_last++;
geometry.add_vertex(Vec3f(b1.x(), b1.y(), middle_z), Vec3f(xy_right_normal.x(), xy_right_normal.y(), 0.0f));
idx_prev = idx_b;
bottom_z_prev = bottom_z;
b1_prev = b1;
v_prev = v;
len_prev = len;
if (bottom_z_different && (closed || (!is_first && !is_last))) {
// Found a change of the layer thickness -> Add a cap at the beginning of this segment.
geometry.add_triangle(idx_a[Bottom], idx_a[Right], idx_a[Top]);
geometry.add_triangle(idx_a[Bottom], idx_a[Top], idx_a[Left]);
}
if (!closed) {
// Terminate open paths with caps.
if (is_first) {
geometry.add_triangle(idx_a[Bottom], idx_a[Right], idx_a[Top]);
geometry.add_triangle(idx_a[Bottom], idx_a[Top], idx_a[Left]);
}
// We don't use 'else' because both cases are true if we have only one line.
if (is_last) {
geometry.add_triangle(idx_b[Bottom], idx_b[Left], idx_b[Top]);
geometry.add_triangle(idx_b[Bottom], idx_b[Top], idx_b[Right]);
}
}
// Add quads for a straight hollow tube-like segment.
// bottom-right face
geometry.add_triangle(idx_a[Bottom], idx_b[Bottom], idx_b[Right]);
geometry.add_triangle(idx_a[Bottom], idx_b[Right], idx_a[Right]);
// top-right face
geometry.add_triangle(idx_a[Right], idx_b[Right], idx_b[Top]);
geometry.add_triangle(idx_a[Right], idx_b[Top], idx_a[Top]);
// top-left face
geometry.add_triangle(idx_a[Top], idx_b[Top], idx_b[Left]);
geometry.add_triangle(idx_a[Top], idx_b[Left], idx_a[Left]);
// bottom-left face
geometry.add_triangle(idx_a[Left], idx_b[Left], idx_b[Bottom]);
geometry.add_triangle(idx_a[Left], idx_b[Bottom], idx_a[Bottom]);
}
}
// caller is responsible for supplying NO lines with zero length
static void thick_lines_to_geometry(
const Lines3& lines,
const std::vector<double>& widths,
const std::vector<double>& heights,
bool closed,
GUI::GLModel::Geometry& geometry)
{
assert(!lines.empty());
if (lines.empty())
return;
enum Direction : unsigned char
{
Left,
Right,
Top,
Bottom
};
// left, right, top, bottom
std::array<int, 4> idx_prev = { -1, -1, -1, -1 };
std::array<int, 4> idx_initial = { -1, -1, -1, -1 };
double z_prev = 0.0;
double len_prev = 0.0;
Vec3d n_right_prev = Vec3d::Zero();
Vec3d n_top_prev = Vec3d::Zero();
Vec3d unit_v_prev = Vec3d::Zero();
double width_initial = 0.0;
// new vertices around the line endpoints
// left, right, top, bottom
std::array<Vec3d, 4> a = { Vec3d::Zero(), Vec3d::Zero(), Vec3d::Zero(), Vec3d::Zero() };
std::array<Vec3d, 4> b = { Vec3d::Zero(), Vec3d::Zero(), Vec3d::Zero(), Vec3d::Zero() };
// loop once more in case of closed loops
const size_t lines_end = closed ? (lines.size() + 1) : lines.size();
for (size_t ii = 0; ii < lines_end; ++ii) {
const size_t i = (ii == lines.size()) ? 0 : ii;
const Line3& line = lines[i];
const double height = heights[i];
const double width = widths[i];
const Vec3d unit_v = unscale(line.vector()).normalized();
const double len = unscale<double>(line.length());
Vec3d n_top = Vec3d::Zero();
Vec3d n_right = Vec3d::Zero();
if (line.a.x() == line.b.x() && line.a.y() == line.b.y()) {
// vertical segment
n_top = Vec3d::UnitY();
n_right = Vec3d::UnitX();
if (line.a.z() < line.b.z())
n_right = -n_right;
}
else {
// horizontal segment
n_right = unit_v.cross(Vec3d::UnitZ()).normalized();
n_top = n_right.cross(unit_v).normalized();
}
const Vec3d rl_displacement = 0.5 * width * n_right;
const Vec3d tb_displacement = 0.5 * height * n_top;
const Vec3d l_a = unscale(line.a);
const Vec3d l_b = unscale(line.b);
a[Right] = l_a + rl_displacement;
a[Left] = l_a - rl_displacement;
a[Top] = l_a + tb_displacement;
a[Bottom] = l_a - tb_displacement;
b[Right] = l_b + rl_displacement;
b[Left] = l_b - rl_displacement;
b[Top] = l_b + tb_displacement;
b[Bottom] = l_b - tb_displacement;
const Vec3d n_bottom = -n_top;
const Vec3d n_left = -n_right;
std::array<int, 4> idx_a = { 0, 0, 0, 0};
std::array<int, 4> idx_b = { 0, 0, 0, 0 };
int idx_last = int(geometry.vertices_count());
const bool z_different = (z_prev != l_a.z());
z_prev = l_b.z();
// Share top / bottom vertices if possible.
if (ii == 0) {
idx_a[Top] = idx_last++;
geometry.add_vertex((Vec3f)a[Top].cast<float>(), (Vec3f)n_top.cast<float>());
}
else
idx_a[Top] = idx_prev[Top];
if (ii == 0 || z_different) {
// Start of the 1st line segment or a change of the layer thickness while maintaining the print_z.
idx_a[Bottom] = idx_last++;
geometry.add_vertex((Vec3f)a[Bottom].cast<float>(), (Vec3f)n_bottom.cast<float>());
idx_a[Left] = idx_last++;
geometry.add_vertex((Vec3f)a[Left].cast<float>(), (Vec3f)n_left.cast<float>());
idx_a[Right] = idx_last++;
geometry.add_vertex((Vec3f)a[Right].cast<float>(), (Vec3f)n_right.cast<float>());
}
else
idx_a[Bottom] = idx_prev[Bottom];
if (ii == 0) {
// Start of the 1st line segment.
width_initial = width;
idx_initial = idx_a;
}
else {
// Continuing a previous segment.
// Share left / right vertices if possible.
const double v_dot = unit_v_prev.dot(unit_v);
const bool is_right_turn = n_top_prev.dot(unit_v_prev.cross(unit_v)) > 0.0;
// To reduce gpu memory usage, we try to reuse vertices
// To reduce the visual artifacts, due to averaged normals, we allow to reuse vertices only when any of two adjacent edges
// is longer than a fixed threshold.
// The following value is arbitrary, it comes from tests made on a bunch of models showing the visual artifacts
const double len_threshold = 2.5;
// Generate new vertices if the angle between adjacent edges is greater than 45 degrees or thresholds conditions are met
const bool is_sharp = v_dot < 0.707 || len_prev > len_threshold || len > len_threshold;
if (is_sharp) {
// Allocate new left / right points for the start of this segment as these points will receive their own normals to indicate a sharp turn.
idx_a[Right] = idx_last++;
geometry.add_vertex((Vec3f)a[Right].cast<float>(), (Vec3f)n_right.cast<float>());
idx_a[Left] = idx_last++;
geometry.add_vertex((Vec3f)a[Left].cast<float>(), (Vec3f)n_left.cast<float>());
if (is_right_turn) {
// Right turn. Fill in the right turn wedge.
geometry.add_triangle(idx_prev[Right], idx_a[Right], idx_prev[Top]);
geometry.add_triangle(idx_prev[Right], idx_prev[Bottom], idx_a[Right]);
}
else {
// Left turn. Fill in the left turn wedge.
geometry.add_triangle(idx_prev[Left], idx_prev[Top], idx_a[Left]);
geometry.add_triangle(idx_prev[Left], idx_a[Left], idx_prev[Bottom]);
}
}
else {
// The two successive segments are nearly collinear.
idx_a[Left] = idx_prev[Left];
idx_a[Right] = idx_prev[Right];
}
if (ii == lines.size()) {
if (!is_sharp) {
// Closing a loop with smooth transition. Unify the closing left / right vertices.
geometry.set_vertex(idx_initial[Left], geometry.extract_position_3(idx_prev[Left]), geometry.extract_normal_3(idx_prev[Left]));
geometry.set_vertex(idx_initial[Right], geometry.extract_position_3(idx_prev[Right]), geometry.extract_normal_3(idx_prev[Right]));
geometry.remove_vertex(geometry.vertices_count() - 1);
geometry.remove_vertex(geometry.vertices_count() - 1);
// Replace the left / right vertex indices to point to the start of the loop.
const size_t indices_count = geometry.indices_count();
for (size_t u = indices_count - 24; u < indices_count; ++u) {
const unsigned int id = geometry.extract_index(u);
if (id == (unsigned int)idx_prev[Left])
geometry.set_index(u, (unsigned int)idx_initial[Left]);
else if (id == (unsigned int)idx_prev[Right])
geometry.set_index(u, (unsigned int)idx_initial[Right]);
}
}
// This is the last iteration, only required to solve the transition.
break;
}
}
// Only new allocate top / bottom vertices, if not closing a loop.
if (closed && ii + 1 == lines.size())
idx_b[Top] = idx_initial[Top];
else {
idx_b[Top] = idx_last++;
geometry.add_vertex((Vec3f)b[Top].cast<float>(), (Vec3f)n_top.cast<float>());
}
if (closed && ii + 1 == lines.size() && width == width_initial)
idx_b[Bottom] = idx_initial[Bottom];
else {
idx_b[Bottom] = idx_last++;
geometry.add_vertex((Vec3f)b[Bottom].cast<float>(), (Vec3f)n_bottom.cast<float>());
}
// Generate new vertices for the end of this line segment.
idx_b[Left] = idx_last++;
geometry.add_vertex((Vec3f)b[Left].cast<float>(), (Vec3f)n_left.cast<float>());
idx_b[Right] = idx_last++;
geometry.add_vertex((Vec3f)b[Right].cast<float>(), (Vec3f)n_right.cast<float>());
idx_prev = idx_b;
n_right_prev = n_right;
n_top_prev = n_top;
unit_v_prev = unit_v;
len_prev = len;
if (!closed) {
// Terminate open paths with caps.
if (i == 0) {
geometry.add_triangle(idx_a[Bottom], idx_a[Right], idx_a[Top]);
geometry.add_triangle(idx_a[Bottom], idx_a[Top], idx_a[Left]);
}
// We don't use 'else' because both cases are true if we have only one line.
if (i + 1 == lines.size()) {
geometry.add_triangle(idx_b[Bottom], idx_b[Left], idx_b[Top]);
geometry.add_triangle(idx_b[Bottom], idx_b[Top], idx_b[Right]);
}
}
// Add quads for a straight hollow tube-like segment.
// bottom-right face
geometry.add_triangle(idx_a[Bottom], idx_b[Bottom], idx_b[Right]);
geometry.add_triangle(idx_a[Bottom], idx_b[Right], idx_a[Right]);
// top-right face
geometry.add_triangle(idx_a[Right], idx_b[Right], idx_b[Top]);
geometry.add_triangle(idx_a[Right], idx_b[Top], idx_a[Top]);
// top-left face
geometry.add_triangle(idx_a[Top], idx_b[Top], idx_b[Left]);
geometry.add_triangle(idx_a[Top], idx_b[Left], idx_a[Left]);
// bottom-left face
geometry.add_triangle(idx_a[Left], idx_b[Left], idx_b[Bottom]);
geometry.add_triangle(idx_a[Left], idx_b[Bottom], idx_a[Bottom]);
}
}
void _3DScene::thick_lines_to_verts(
const Lines& lines,
const std::vector<double>& widths,
const std::vector<double>& heights,
bool closed,
double top_z,
GUI::GLModel::Geometry& geometry)
{
thick_lines_to_geometry(lines, widths, heights, closed, top_z, geometry);
}
void _3DScene::thick_lines_to_verts(
const Lines3& lines,
const std::vector<double>& widths,
const std::vector<double>& heights,
bool closed,
GUI::GLModel::Geometry& geometry)
{
thick_lines_to_geometry(lines, widths, heights, closed, geometry);
}
// Fill in the qverts and tverts with quads and triangles for the extrusion_path.
void _3DScene::extrusionentity_to_verts(const ExtrusionPath& extrusion_path, float print_z, const Point& copy, GUI::GLModel::Geometry& geometry)
{
Polyline polyline = extrusion_path.polyline;
polyline.remove_duplicate_points();
polyline.translate(copy);
const Lines lines = polyline.lines();
std::vector<double> widths(lines.size(), extrusion_path.width);
std::vector<double> heights(lines.size(), extrusion_path.height);
thick_lines_to_verts(lines, widths, heights, false, print_z, geometry);
}
// Fill in the qverts and tverts with quads and triangles for the extrusion_loop.
void _3DScene::extrusionentity_to_verts(const ExtrusionLoop& extrusion_loop, float print_z, const Point& copy, GUI::GLModel::Geometry& geometry)
{
Lines lines;
std::vector<double> widths;
std::vector<double> heights;
for (const ExtrusionPath& extrusion_path : extrusion_loop.paths) {
Polyline polyline = extrusion_path.polyline;
polyline.remove_duplicate_points();
polyline.translate(copy);
const Lines lines_this = polyline.lines();
append(lines, lines_this);
widths.insert(widths.end(), lines_this.size(), extrusion_path.width);
heights.insert(heights.end(), lines_this.size(), extrusion_path.height);
}
thick_lines_to_verts(lines, widths, heights, true, print_z, geometry);
}
// Fill in the qverts and tverts with quads and triangles for the extrusion_multi_path.
void _3DScene::extrusionentity_to_verts(const ExtrusionMultiPath& extrusion_multi_path, float print_z, const Point& copy, GUI::GLModel::Geometry& geometry)
{
Lines lines;
std::vector<double> widths;
std::vector<double> heights;
for (const ExtrusionPath& extrusion_path : extrusion_multi_path.paths) {
Polyline polyline = extrusion_path.polyline;
polyline.remove_duplicate_points();
polyline.translate(copy);
const Lines lines_this = polyline.lines();
append(lines, lines_this);
widths.insert(widths.end(), lines_this.size(), extrusion_path.width);
heights.insert(heights.end(), lines_this.size(), extrusion_path.height);
}
thick_lines_to_verts(lines, widths, heights, false, print_z, geometry);
}
void _3DScene::extrusionentity_to_verts(const ExtrusionEntityCollection& extrusion_entity_collection, float print_z, const Point& copy, GUI::GLModel::Geometry& geometry)
{
for (const ExtrusionEntity* extrusion_entity : extrusion_entity_collection.entities)
extrusionentity_to_verts(extrusion_entity, print_z, copy, geometry);
}
void _3DScene::extrusionentity_to_verts(const ExtrusionEntity* extrusion_entity, float print_z, const Point& copy, GUI::GLModel::Geometry& geometry)
{
if (extrusion_entity != nullptr) {
auto* extrusion_path = dynamic_cast<const ExtrusionPath*>(extrusion_entity);
if (extrusion_path != nullptr)
extrusionentity_to_verts(*extrusion_path, print_z, copy, geometry);
else {
auto* extrusion_loop = dynamic_cast<const ExtrusionLoop*>(extrusion_entity);
if (extrusion_loop != nullptr)
extrusionentity_to_verts(*extrusion_loop, print_z, copy, geometry);
else {
auto* extrusion_multi_path = dynamic_cast<const ExtrusionMultiPath*>(extrusion_entity);
if (extrusion_multi_path != nullptr)
extrusionentity_to_verts(*extrusion_multi_path, print_z, copy, geometry);
else {
auto* extrusion_entity_collection = dynamic_cast<const ExtrusionEntityCollection*>(extrusion_entity);
if (extrusion_entity_collection != nullptr)
extrusionentity_to_verts(*extrusion_entity_collection, print_z, copy, geometry);
else
throw Slic3r::RuntimeError("Unexpected extrusion_entity type in to_verts()");
}
}
}
}
}
} // namespace Slic3r