7681d00ee5
Added igl library files
3226 lines
79 KiB
C++
3226 lines
79 KiB
C++
// This file is part of libigl, a simple c++ geometry processing library.
|
|
//
|
|
// Copyright (C) 2018 Zhongshi Jiang <jiangzs@nyu.edu>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla Public License
|
|
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
|
|
// obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#include "exact_geodesic.h"
|
|
|
|
//Copyright (C) 2008 Danil Kirsanov, MIT License
|
|
//Code from https://code.google.com/archive/p/geodesic/
|
|
// Compiled into a single file by Zhongshi Jiang
|
|
|
|
#include <igl/PI.h>
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cmath>
|
|
#include <cstddef>
|
|
#include <ctime>
|
|
#include <fstream>
|
|
#include <iostream>
|
|
#include <set>
|
|
#include <vector>
|
|
#include <memory>
|
|
namespace igl{
|
|
namespace geodesic{
|
|
|
|
//#include "geodesic_constants_and_simple_functions.h"
|
|
|
|
//double const GEODESIC_INF = std::numeric_limits<double>::max();
|
|
double const GEODESIC_INF = 1e100;
|
|
|
|
//in order to avoid numerical problems with "infinitely small" intervals,
|
|
//we drop all the intervals smaller than SMALLEST_INTERVAL_RATIO*edge_length
|
|
double const SMALLEST_INTERVAL_RATIO = 1e-6;
|
|
//double const SMALL_EPSILON = 1e-10;
|
|
|
|
|
|
inline double cos_from_edges(double const a, //compute the cosine of the angle given the lengths of the edges
|
|
double const b,
|
|
double const c)
|
|
{
|
|
assert(a>1e-50);
|
|
assert(b>1e-50);
|
|
assert(c>1e-50);
|
|
|
|
double result = (b*b + c*c - a*a)/(2.0*b*c);
|
|
result = std::max(result, -1.0);
|
|
return std::min(result, 1.0);
|
|
}
|
|
|
|
inline double angle_from_edges(double const a, //compute the cosine of the angle given the lengths of the edges
|
|
double const b,
|
|
double const c)
|
|
{
|
|
return acos(cos_from_edges(a,b,c));
|
|
}
|
|
|
|
template<class Points, class Faces>
|
|
inline bool read_mesh_from_file(char* filename,
|
|
Points& points,
|
|
Faces& faces)
|
|
{
|
|
std::ifstream file(filename);
|
|
assert(file.is_open());
|
|
if(!file.is_open()) return false;
|
|
|
|
unsigned num_points;
|
|
file >> num_points;
|
|
assert(num_points>=3);
|
|
|
|
unsigned num_faces;
|
|
file >> num_faces;
|
|
|
|
points.resize(num_points*3);
|
|
for(typename Points::iterator i=points.begin(); i!=points.end(); ++i)
|
|
{
|
|
file >> *i;
|
|
}
|
|
|
|
faces.resize(num_faces*3);
|
|
for(typename Faces::iterator i=faces.begin(); i!=faces.end(); ++i)
|
|
{
|
|
file >> *i;
|
|
}
|
|
file.close();
|
|
|
|
return true;
|
|
}
|
|
|
|
// #include "geodesic_memory"
|
|
template<class T> //quickly allocates multiple elements of a given type; no deallocation
|
|
class SimlpeMemoryAllocator
|
|
{
|
|
public:
|
|
typedef T* pointer;
|
|
|
|
SimlpeMemoryAllocator(unsigned block_size = 0,
|
|
unsigned max_number_of_blocks = 0)
|
|
{
|
|
reset(block_size,
|
|
max_number_of_blocks);
|
|
};
|
|
|
|
~SimlpeMemoryAllocator(){};
|
|
|
|
void reset(unsigned block_size,
|
|
unsigned max_number_of_blocks)
|
|
{
|
|
m_block_size = block_size;
|
|
m_max_number_of_blocks = max_number_of_blocks;
|
|
|
|
|
|
m_current_position = 0;
|
|
|
|
m_storage.reserve(max_number_of_blocks);
|
|
m_storage.resize(1);
|
|
m_storage[0].resize(block_size);
|
|
};
|
|
|
|
pointer allocate(unsigned const n) //allocate n units
|
|
{
|
|
assert(n < m_block_size);
|
|
|
|
if(m_current_position + n >= m_block_size)
|
|
{
|
|
m_storage.push_back( std::vector<T>() );
|
|
m_storage.back().resize(m_block_size);
|
|
m_current_position = 0;
|
|
}
|
|
pointer result = & m_storage.back()[m_current_position];
|
|
m_current_position += n;
|
|
|
|
return result;
|
|
};
|
|
private:
|
|
std::vector<std::vector<T> > m_storage;
|
|
unsigned m_block_size; //size of a single block
|
|
unsigned m_max_number_of_blocks; //maximum allowed number of blocks
|
|
unsigned m_current_position; //first unused element inside the current block
|
|
};
|
|
|
|
|
|
template<class T> //quickly allocates and deallocates single elements of a given type
|
|
class MemoryAllocator
|
|
{
|
|
public:
|
|
typedef T* pointer;
|
|
|
|
MemoryAllocator(unsigned block_size = 1024,
|
|
unsigned max_number_of_blocks = 1024)
|
|
{
|
|
reset(block_size,
|
|
max_number_of_blocks);
|
|
};
|
|
|
|
~MemoryAllocator(){};
|
|
|
|
void clear()
|
|
{
|
|
reset(m_block_size,
|
|
m_max_number_of_blocks);
|
|
}
|
|
|
|
void reset(unsigned block_size,
|
|
unsigned max_number_of_blocks)
|
|
{
|
|
m_block_size = block_size;
|
|
m_max_number_of_blocks = max_number_of_blocks;
|
|
|
|
assert(m_block_size > 0);
|
|
assert(m_max_number_of_blocks > 0);
|
|
|
|
m_current_position = 0;
|
|
|
|
m_storage.reserve(max_number_of_blocks);
|
|
m_storage.resize(1);
|
|
m_storage[0].resize(block_size);
|
|
|
|
m_deleted.clear();
|
|
m_deleted.reserve(2*block_size);
|
|
};
|
|
|
|
pointer allocate() //allocates single unit of memory
|
|
{
|
|
pointer result;
|
|
if(m_deleted.empty())
|
|
{
|
|
if(m_current_position + 1 >= m_block_size)
|
|
{
|
|
m_storage.push_back( std::vector<T>() );
|
|
m_storage.back().resize(m_block_size);
|
|
m_current_position = 0;
|
|
}
|
|
result = & m_storage.back()[m_current_position];
|
|
++m_current_position;
|
|
}
|
|
else
|
|
{
|
|
result = m_deleted.back();
|
|
m_deleted.pop_back();
|
|
}
|
|
|
|
return result;
|
|
};
|
|
|
|
void deallocate(pointer p) //allocate n units
|
|
{
|
|
if(m_deleted.size() < m_deleted.capacity())
|
|
{
|
|
m_deleted.push_back(p);
|
|
}
|
|
};
|
|
|
|
private:
|
|
std::vector<std::vector<T> > m_storage;
|
|
unsigned m_block_size; //size of a single block
|
|
unsigned m_max_number_of_blocks; //maximum allowed number of blocks
|
|
unsigned m_current_position; //first unused element inside the current block
|
|
|
|
std::vector<pointer> m_deleted; //pointers to deleted elemets
|
|
};
|
|
|
|
|
|
class OutputBuffer
|
|
{
|
|
public:
|
|
OutputBuffer():
|
|
m_num_bytes(0)
|
|
{}
|
|
|
|
void clear()
|
|
{
|
|
m_num_bytes = 0;
|
|
m_buffer = std::shared_ptr<double>();
|
|
}
|
|
|
|
template<class T>
|
|
T* allocate(unsigned n)
|
|
{
|
|
double wanted = n*sizeof(T);
|
|
if(wanted > m_num_bytes)
|
|
{
|
|
unsigned new_size = (unsigned) ceil(wanted / (double)sizeof(double));
|
|
m_buffer = std::shared_ptr<double>(new double[new_size]);
|
|
m_num_bytes = new_size*sizeof(double);
|
|
}
|
|
|
|
return (T*)m_buffer.get();
|
|
}
|
|
|
|
template <class T>
|
|
T* get()
|
|
{
|
|
return (T*)m_buffer.get();
|
|
}
|
|
|
|
template<class T>
|
|
unsigned capacity()
|
|
{
|
|
return (unsigned)floor((double)m_num_bytes/(double)sizeof(T));
|
|
};
|
|
|
|
private:
|
|
|
|
std::shared_ptr<double> m_buffer;
|
|
unsigned m_num_bytes;
|
|
};
|
|
|
|
|
|
|
|
|
|
class Vertex;
|
|
class Edge;
|
|
class Face;
|
|
class Mesh;
|
|
class MeshElementBase;
|
|
|
|
typedef Vertex* vertex_pointer;
|
|
typedef Edge* edge_pointer;
|
|
typedef Face* face_pointer;
|
|
typedef Mesh* mesh_pointer;
|
|
typedef MeshElementBase* base_pointer;
|
|
|
|
template <class Data> //simple vector that stores info about mesh references
|
|
class SimpleVector //for efficiency, it uses an outside memory allocator
|
|
{
|
|
public:
|
|
SimpleVector():
|
|
m_size(0),
|
|
m_begin(NULL)
|
|
{};
|
|
|
|
typedef Data* iterator;
|
|
|
|
unsigned size(){return m_size;};
|
|
iterator begin(){return m_begin;};
|
|
iterator end(){return m_begin + m_size;};
|
|
|
|
template<class DataPointer>
|
|
void set_allocation(DataPointer begin, unsigned size)
|
|
{
|
|
assert(begin != NULL || size == 0);
|
|
m_size = size;
|
|
m_begin = (iterator)begin;
|
|
}
|
|
|
|
Data& operator[](unsigned i)
|
|
{
|
|
assert(i < m_size);
|
|
return *(m_begin + i);
|
|
}
|
|
|
|
void clear()
|
|
{
|
|
m_size = 0;
|
|
m_begin = NULL;
|
|
}
|
|
|
|
private:
|
|
unsigned m_size;
|
|
Data* m_begin;
|
|
};
|
|
|
|
enum PointType
|
|
{
|
|
VERTEX,
|
|
EDGE,
|
|
FACE,
|
|
UNDEFINED_POINT
|
|
};
|
|
|
|
class MeshElementBase //prototype of vertices, edges and faces
|
|
{
|
|
public:
|
|
typedef SimpleVector<vertex_pointer> vertex_pointer_vector;
|
|
typedef SimpleVector<edge_pointer> edge_pointer_vector;
|
|
typedef SimpleVector<face_pointer> face_pointer_vector;
|
|
|
|
MeshElementBase():
|
|
m_id(0),
|
|
m_type(UNDEFINED_POINT)
|
|
{};
|
|
|
|
vertex_pointer_vector& adjacent_vertices(){return m_adjacent_vertices;};
|
|
edge_pointer_vector& adjacent_edges(){return m_adjacent_edges;};
|
|
face_pointer_vector& adjacent_faces(){return m_adjacent_faces;};
|
|
|
|
unsigned& id(){return m_id;};
|
|
PointType type(){return m_type;};
|
|
|
|
protected:
|
|
vertex_pointer_vector m_adjacent_vertices; //list of the adjacent vertices
|
|
edge_pointer_vector m_adjacent_edges; //list of the adjacent edges
|
|
face_pointer_vector m_adjacent_faces; //list of the adjacent faces
|
|
|
|
unsigned m_id; //unique id
|
|
PointType m_type; //vertex, edge or face
|
|
};
|
|
|
|
class Point3D //point in 3D and corresponding operations
|
|
{
|
|
public:
|
|
Point3D(){};
|
|
Point3D(Point3D* p)
|
|
{
|
|
x() = p->x();
|
|
y() = p->y();
|
|
z() = p->z();
|
|
};
|
|
|
|
double* xyz(){return m_coordinates;};
|
|
double& x(){return *m_coordinates;};
|
|
double& y(){return *(m_coordinates+1);};
|
|
double& z(){return *(m_coordinates+2);};
|
|
|
|
void set(double new_x, double new_y, double new_z)
|
|
{
|
|
x() = new_x;
|
|
y() = new_y;
|
|
z() = new_z;
|
|
}
|
|
|
|
void set(double* data)
|
|
{
|
|
x() = *data;
|
|
y() = *(data+1);
|
|
z() = *(data+2);
|
|
}
|
|
|
|
double distance(double* v)
|
|
{
|
|
double dx = m_coordinates[0] - v[0];
|
|
double dy = m_coordinates[1] - v[1];
|
|
double dz = m_coordinates[2] - v[2];
|
|
|
|
return sqrt(dx*dx + dy*dy + dz*dz);
|
|
};
|
|
|
|
double distance(Point3D* v)
|
|
{
|
|
return distance(v->xyz());
|
|
};
|
|
|
|
void add(Point3D* v)
|
|
{
|
|
x() += v->x();
|
|
y() += v->y();
|
|
z() += v->z();
|
|
};
|
|
|
|
void multiply(double v)
|
|
{
|
|
x() *= v;
|
|
y() *= v;
|
|
z() *= v;
|
|
};
|
|
|
|
private:
|
|
double m_coordinates[3]; //xyz
|
|
};
|
|
|
|
class Vertex: public MeshElementBase, public Point3D
|
|
{
|
|
public:
|
|
Vertex()
|
|
{
|
|
m_type = VERTEX;
|
|
};
|
|
|
|
~Vertex(){};
|
|
|
|
bool& saddle_or_boundary(){return m_saddle_or_boundary;};
|
|
private:
|
|
//this flag speeds up exact geodesic algorithm
|
|
bool m_saddle_or_boundary; //it is true if total adjacent angle is larger than 2*PI or this vertex belongs to the mesh boundary
|
|
};
|
|
|
|
|
|
class Face: public MeshElementBase
|
|
{
|
|
public:
|
|
Face()
|
|
{
|
|
m_type = FACE;
|
|
};
|
|
|
|
~Face(){};
|
|
|
|
edge_pointer opposite_edge(vertex_pointer v);
|
|
vertex_pointer opposite_vertex(edge_pointer e);
|
|
edge_pointer next_edge(edge_pointer e, vertex_pointer v);
|
|
|
|
double vertex_angle(vertex_pointer v)
|
|
{
|
|
for(unsigned i=0; i<3; ++i)
|
|
{
|
|
if(adjacent_vertices()[i]->id() == v->id())
|
|
{
|
|
return m_corner_angles[i];
|
|
}
|
|
}
|
|
assert(0);
|
|
return 0;
|
|
}
|
|
|
|
double* corner_angles(){return m_corner_angles;};
|
|
|
|
private:
|
|
double m_corner_angles[3]; //triangle angles in radians; angles correspond to vertices in m_adjacent_vertices
|
|
};
|
|
|
|
class Edge: public MeshElementBase
|
|
{
|
|
public:
|
|
Edge()
|
|
{
|
|
m_type = EDGE;
|
|
};
|
|
|
|
~Edge(){};
|
|
|
|
double& length(){return m_length;};
|
|
|
|
face_pointer opposite_face(face_pointer f)
|
|
{
|
|
if(adjacent_faces().size() == 1)
|
|
{
|
|
assert(adjacent_faces()[0]->id() == f->id());
|
|
return NULL;
|
|
}
|
|
|
|
assert(adjacent_faces()[0]->id() == f->id() ||
|
|
adjacent_faces()[1]->id() == f->id());
|
|
|
|
return adjacent_faces()[0]->id() == f->id() ?
|
|
adjacent_faces()[1] : adjacent_faces()[0];
|
|
};
|
|
|
|
vertex_pointer opposite_vertex(vertex_pointer v)
|
|
{
|
|
assert(belongs(v));
|
|
|
|
return adjacent_vertices()[0]->id() == v->id() ?
|
|
adjacent_vertices()[1] : adjacent_vertices()[0];
|
|
};
|
|
|
|
bool belongs(vertex_pointer v)
|
|
{
|
|
return adjacent_vertices()[0]->id() == v->id() ||
|
|
adjacent_vertices()[1]->id() == v->id();
|
|
}
|
|
|
|
bool is_boundary(){return adjacent_faces().size() == 1;};
|
|
|
|
vertex_pointer v0(){return adjacent_vertices()[0];};
|
|
vertex_pointer v1(){return adjacent_vertices()[1];};
|
|
|
|
void local_coordinates(Point3D* point,
|
|
double& x,
|
|
double& y)
|
|
{
|
|
double d0 = point->distance(v0());
|
|
if(d0 < 1e-50)
|
|
{
|
|
x = 0.0;
|
|
y = 0.0;
|
|
return;
|
|
}
|
|
|
|
double d1 = point->distance(v1());
|
|
if(d1 < 1e-50)
|
|
{
|
|
x = m_length;
|
|
y = 0.0;
|
|
return;
|
|
}
|
|
|
|
x = m_length/2.0 + (d0*d0 - d1*d1)/(2.0*m_length);
|
|
y = sqrt(std::max(0.0, d0*d0 - x*x));
|
|
return;
|
|
}
|
|
|
|
private:
|
|
double m_length; //length of the edge
|
|
};
|
|
|
|
class SurfacePoint:public Point3D //point on the surface of the mesh
|
|
{
|
|
public:
|
|
SurfacePoint():
|
|
m_p(NULL)
|
|
{};
|
|
|
|
SurfacePoint(vertex_pointer v): //set the surface point in the vertex
|
|
SurfacePoint::Point3D(v),
|
|
m_p(v)
|
|
{};
|
|
|
|
SurfacePoint(face_pointer f): //set the surface point in the center of the face
|
|
m_p(f)
|
|
{
|
|
set(0,0,0);
|
|
add(f->adjacent_vertices()[0]);
|
|
add(f->adjacent_vertices()[1]);
|
|
add(f->adjacent_vertices()[2]);
|
|
multiply(1./3.);
|
|
};
|
|
|
|
SurfacePoint(edge_pointer e, //set the surface point in the middle of the edge
|
|
double a = 0.5):
|
|
m_p(e)
|
|
{
|
|
double b = 1 - a;
|
|
|
|
vertex_pointer v0 = e->adjacent_vertices()[0];
|
|
vertex_pointer v1 = e->adjacent_vertices()[1];
|
|
|
|
x() = b*v0->x() + a*v1->x();
|
|
y() = b*v0->y() + a*v1->y();
|
|
z() = b*v0->z() + a*v1->z();
|
|
};
|
|
|
|
SurfacePoint(base_pointer g,
|
|
double x,
|
|
double y,
|
|
double z,
|
|
PointType t = UNDEFINED_POINT):
|
|
m_p(g)
|
|
{
|
|
set(x,y,z);
|
|
};
|
|
|
|
void initialize(SurfacePoint const& p)
|
|
{
|
|
*this = p;
|
|
}
|
|
|
|
~SurfacePoint(){};
|
|
|
|
PointType type(){return m_p ? m_p->type() : UNDEFINED_POINT;};
|
|
base_pointer& base_element(){return m_p;};
|
|
protected:
|
|
base_pointer m_p; //could be face, vertex or edge pointer
|
|
};
|
|
|
|
inline edge_pointer Face::opposite_edge(vertex_pointer v)
|
|
{
|
|
for(unsigned i=0; i<3; ++i)
|
|
{
|
|
edge_pointer e = adjacent_edges()[i];
|
|
if(!e->belongs(v))
|
|
{
|
|
return e;
|
|
}
|
|
}
|
|
assert(0);
|
|
return NULL;
|
|
}
|
|
|
|
inline vertex_pointer Face::opposite_vertex(edge_pointer e)
|
|
{
|
|
for(unsigned i=0; i<3; ++i)
|
|
{
|
|
vertex_pointer v = adjacent_vertices()[i];
|
|
if(!e->belongs(v))
|
|
{
|
|
return v;
|
|
}
|
|
}
|
|
assert(0);
|
|
return NULL;
|
|
}
|
|
|
|
inline edge_pointer Face::next_edge(edge_pointer e, vertex_pointer v)
|
|
{
|
|
assert(e->belongs(v));
|
|
|
|
for(unsigned i=0; i<3; ++i)
|
|
{
|
|
edge_pointer next = adjacent_edges()[i];
|
|
if(e->id() != next->id() && next->belongs(v))
|
|
{
|
|
return next;
|
|
}
|
|
}
|
|
assert(0);
|
|
return NULL;
|
|
}
|
|
|
|
struct HalfEdge //prototype of the edge; used for mesh construction
|
|
{
|
|
unsigned face_id;
|
|
unsigned vertex_0; //adjacent vertices sorted by id value
|
|
unsigned vertex_1; //they are sorted, vertex_0 < vertex_1
|
|
};
|
|
|
|
inline bool operator < (const HalfEdge &x, const HalfEdge &y)
|
|
{
|
|
if(x.vertex_0 == y.vertex_0)
|
|
{
|
|
return x.vertex_1 < y.vertex_1;
|
|
}
|
|
else
|
|
{
|
|
return x.vertex_0 < y.vertex_0;
|
|
}
|
|
}
|
|
|
|
inline bool operator != (const HalfEdge &x, const HalfEdge &y)
|
|
{
|
|
return x.vertex_0 != y.vertex_0 || x.vertex_1 != y.vertex_1;
|
|
}
|
|
|
|
inline bool operator == (const HalfEdge &x, const HalfEdge &y)
|
|
{
|
|
return x.vertex_0 == y.vertex_0 && x.vertex_1 == y.vertex_1;
|
|
}
|
|
|
|
struct edge_visible_from_source
|
|
{
|
|
unsigned source;
|
|
edge_pointer edge;
|
|
};
|
|
|
|
class Mesh
|
|
{
|
|
public:
|
|
Mesh()
|
|
{};
|
|
|
|
~Mesh(){};
|
|
|
|
template<class Points, class Faces>
|
|
void initialize_mesh_data(unsigned num_vertices,
|
|
Points& p,
|
|
unsigned num_faces,
|
|
Faces& tri); //build mesh from regular point-triangle representation
|
|
|
|
template<class Points, class Faces>
|
|
void initialize_mesh_data(Points& p, Faces& tri); //build mesh from regular point-triangle representation
|
|
|
|
std::vector<Vertex>& vertices(){return m_vertices;};
|
|
std::vector<Edge>& edges(){return m_edges;};
|
|
std::vector<Face>& faces(){return m_faces;};
|
|
|
|
unsigned closest_vertices(SurfacePoint* p,
|
|
std::vector<vertex_pointer>* storage = NULL); //list vertices closest to the point
|
|
|
|
private:
|
|
|
|
void build_adjacencies(); //build internal structure of the mesh
|
|
bool verify(); //verifies connectivity of the mesh and prints some debug info
|
|
|
|
typedef void* void_pointer;
|
|
void_pointer allocate_pointers(unsigned n)
|
|
{
|
|
return m_pointer_allocator.allocate(n);
|
|
}
|
|
|
|
std::vector<Vertex> m_vertices;
|
|
std::vector<Edge> m_edges;
|
|
std::vector<Face> m_faces;
|
|
|
|
SimlpeMemoryAllocator<void_pointer> m_pointer_allocator; //fast memory allocating for Face/Vertex/Edge cross-references
|
|
};
|
|
|
|
inline unsigned Mesh::closest_vertices(SurfacePoint* p,
|
|
std::vector<vertex_pointer>* storage)
|
|
{
|
|
assert(p->type() != UNDEFINED_POINT);
|
|
|
|
if(p->type() == VERTEX)
|
|
{
|
|
if(storage)
|
|
{
|
|
storage->push_back(static_cast<vertex_pointer>(p->base_element()));
|
|
}
|
|
return 1;
|
|
}
|
|
else if(p->type() == FACE)
|
|
{
|
|
if(storage)
|
|
{
|
|
vertex_pointer* vp= p->base_element()->adjacent_vertices().begin();
|
|
storage->push_back(*vp);
|
|
storage->push_back(*(vp+1));
|
|
storage->push_back(*(vp+2));
|
|
}
|
|
return 2;
|
|
}
|
|
else if(p->type() == EDGE) //for edge include all 4 adjacent vertices
|
|
{
|
|
edge_pointer edge = static_cast<edge_pointer>(p->base_element());
|
|
|
|
if(storage)
|
|
{
|
|
storage->push_back(edge->adjacent_vertices()[0]);
|
|
storage->push_back(edge->adjacent_vertices()[1]);
|
|
|
|
for(unsigned i = 0; i < edge->adjacent_faces().size(); ++i)
|
|
{
|
|
face_pointer face = edge->adjacent_faces()[i];
|
|
storage->push_back(face->opposite_vertex(edge));
|
|
}
|
|
}
|
|
return 2 + edge->adjacent_faces().size();
|
|
}
|
|
|
|
assert(0);
|
|
return 0;
|
|
}
|
|
|
|
template<class Points, class Faces>
|
|
void Mesh::initialize_mesh_data(Points& p, Faces& tri) //build mesh from regular point-triangle representation
|
|
{
|
|
assert(p.size() % 3 == 0);
|
|
unsigned const num_vertices = p.size() / 3;
|
|
assert(tri.size() % 3 == 0);
|
|
unsigned const num_faces = tri.size() / 3;
|
|
|
|
initialize_mesh_data(num_vertices, p, num_faces, tri);
|
|
}
|
|
|
|
template<class Points, class Faces>
|
|
void Mesh::initialize_mesh_data(unsigned num_vertices,
|
|
Points& p,
|
|
unsigned num_faces,
|
|
Faces& tri)
|
|
{
|
|
unsigned const approximate_number_of_internal_pointers = (num_vertices + num_faces)*4;
|
|
unsigned const max_number_of_pointer_blocks = 100;
|
|
m_pointer_allocator.reset(approximate_number_of_internal_pointers,
|
|
max_number_of_pointer_blocks);
|
|
|
|
m_vertices.resize(num_vertices);
|
|
for(unsigned i=0; i<num_vertices; ++i) //copy coordinates to vertices
|
|
{
|
|
Vertex& v = m_vertices[i];
|
|
v.id() = i;
|
|
|
|
unsigned shift = 3*i;
|
|
v.x() = p[shift];
|
|
v.y() = p[shift + 1];
|
|
v.z() = p[shift + 2];
|
|
}
|
|
|
|
m_faces.resize(num_faces);
|
|
for(unsigned i=0; i<num_faces; ++i) //copy adjacent vertices to polygons/faces
|
|
{
|
|
Face& f = m_faces[i];
|
|
f.id() = i;
|
|
f.adjacent_vertices().set_allocation(allocate_pointers(3),3); //allocate three units of memory
|
|
|
|
unsigned shift = 3*i;
|
|
for(unsigned j=0; j<3; ++j)
|
|
{
|
|
unsigned vertex_index = tri[shift + j];
|
|
assert(vertex_index < num_vertices);
|
|
f.adjacent_vertices()[j] = &m_vertices[vertex_index];
|
|
}
|
|
}
|
|
|
|
build_adjacencies(); //build the structure of the mesh
|
|
}
|
|
|
|
inline void Mesh::build_adjacencies()
|
|
{
|
|
// Vertex->adjacent Faces
|
|
std::vector<unsigned> count(m_vertices.size()); //count adjacent vertices
|
|
for(unsigned i=0; i<m_faces.size(); ++i)
|
|
{
|
|
Face& f = m_faces[i];
|
|
for(unsigned j=0; j<3; ++j)
|
|
{
|
|
unsigned vertex_id = f.adjacent_vertices()[j]->id();
|
|
assert(vertex_id < m_vertices.size());
|
|
count[vertex_id]++;
|
|
}
|
|
}
|
|
|
|
for(unsigned i=0; i<m_vertices.size(); ++i) //reserve space
|
|
{
|
|
Vertex& v = m_vertices[i];
|
|
unsigned num_adjacent_faces = count[i];
|
|
|
|
v.adjacent_faces().set_allocation(allocate_pointers(num_adjacent_faces), //allocate three units of memory
|
|
num_adjacent_faces);
|
|
}
|
|
|
|
std::fill(count.begin(), count.end(), 0);
|
|
for(unsigned i=0; i<m_faces.size(); ++i)
|
|
{
|
|
Face& f = m_faces[i];
|
|
for(unsigned j=0; j<3; ++j)
|
|
{
|
|
vertex_pointer v = f.adjacent_vertices()[j];
|
|
v->adjacent_faces()[count[v->id()]++] = &f;
|
|
}
|
|
}
|
|
|
|
//find all edges
|
|
//i.e. find all half-edges, sort and combine them into edges
|
|
std::vector<HalfEdge> half_edges(m_faces.size()*3);
|
|
unsigned k = 0;
|
|
for(unsigned i=0; i<m_faces.size(); ++i)
|
|
{
|
|
Face& f = m_faces[i];
|
|
for(unsigned j=0; j<3; ++j)
|
|
{
|
|
half_edges[k].face_id = i;
|
|
unsigned vertex_id_1 = f.adjacent_vertices()[j]->id();
|
|
unsigned vertex_id_2 = f.adjacent_vertices()[(j+1) % 3]->id();
|
|
half_edges[k].vertex_0 = std::min(vertex_id_1, vertex_id_2);
|
|
half_edges[k].vertex_1 = std::max(vertex_id_1, vertex_id_2);
|
|
|
|
k++;
|
|
}
|
|
}
|
|
std::sort(half_edges.begin(), half_edges.end());
|
|
|
|
unsigned number_of_edges = 1;
|
|
for(unsigned i=1; i<half_edges.size(); ++i)
|
|
{
|
|
if(half_edges[i] != half_edges[i-1])
|
|
{
|
|
++number_of_edges;
|
|
}
|
|
else
|
|
{
|
|
if(i<half_edges.size()-1) //sanity check: there should be at most two equal half-edges
|
|
{ //if it fails, most likely the input data are messed up
|
|
assert(half_edges[i] != half_edges[i+1]);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Edges->adjacent Vertices and Faces
|
|
m_edges.resize(number_of_edges);
|
|
unsigned edge_id = 0;
|
|
for(unsigned i=0; i<half_edges.size();)
|
|
{
|
|
Edge& e = m_edges[edge_id];
|
|
e.id() = edge_id++;
|
|
|
|
e.adjacent_vertices().set_allocation(allocate_pointers(2),2); //allocate two units of memory
|
|
|
|
e.adjacent_vertices()[0] = &m_vertices[half_edges[i].vertex_0];
|
|
e.adjacent_vertices()[1] = &m_vertices[half_edges[i].vertex_1];
|
|
|
|
e.length() = e.adjacent_vertices()[0]->distance(e.adjacent_vertices()[1]);
|
|
assert(e.length() > 1e-100); //algorithm works well with non-degenerate meshes only
|
|
|
|
if(i != half_edges.size()-1 && half_edges[i] == half_edges[i+1]) //double edge
|
|
{
|
|
e.adjacent_faces().set_allocation(allocate_pointers(2),2);
|
|
e.adjacent_faces()[0] = &m_faces[half_edges[i].face_id];
|
|
e.adjacent_faces()[1] = &m_faces[half_edges[i+1].face_id];
|
|
i += 2;
|
|
}
|
|
else //single edge
|
|
{
|
|
e.adjacent_faces().set_allocation(allocate_pointers(1),1); //one adjucent faces
|
|
e.adjacent_faces()[0] = &m_faces[half_edges[i].face_id];
|
|
i += 1;
|
|
}
|
|
}
|
|
|
|
// Vertices->adjacent Edges
|
|
std::fill(count.begin(), count.end(), 0);
|
|
for(unsigned i=0; i<m_edges.size(); ++i)
|
|
{
|
|
Edge& e = m_edges[i];
|
|
assert(e.adjacent_vertices().size()==2);
|
|
count[e.adjacent_vertices()[0]->id()]++;
|
|
count[e.adjacent_vertices()[1]->id()]++;
|
|
}
|
|
for(unsigned i=0; i<m_vertices.size(); ++i)
|
|
{
|
|
m_vertices[i].adjacent_edges().set_allocation(allocate_pointers(count[i]),
|
|
count[i]);
|
|
}
|
|
std::fill(count.begin(), count.end(), 0);
|
|
for(unsigned i=0; i<m_edges.size(); ++i)
|
|
{
|
|
Edge& e = m_edges[i];
|
|
for(unsigned j=0; j<2; ++j)
|
|
{
|
|
vertex_pointer v = e.adjacent_vertices()[j];
|
|
v->adjacent_edges()[count[v->id()]++] = &e;
|
|
}
|
|
}
|
|
|
|
// Faces->adjacent Edges
|
|
for(unsigned i=0; i<m_faces.size(); ++i)
|
|
{
|
|
m_faces[i].adjacent_edges().set_allocation(allocate_pointers(3),3);
|
|
}
|
|
|
|
count.resize(m_faces.size());
|
|
std::fill(count.begin(), count.end(), 0);
|
|
for(unsigned i=0; i<m_edges.size(); ++i)
|
|
{
|
|
Edge& e = m_edges[i];
|
|
for(unsigned j=0; j<e.adjacent_faces().size(); ++j)
|
|
{
|
|
face_pointer f = e.adjacent_faces()[j];
|
|
assert(count[f->id()]<3);
|
|
f->adjacent_edges()[count[f->id()]++] = &e;
|
|
}
|
|
}
|
|
|
|
//compute angles for the faces
|
|
for(unsigned i=0; i<m_faces.size(); ++i)
|
|
{
|
|
Face& f = m_faces[i];
|
|
double abc[3];
|
|
double sum = 0;
|
|
for(unsigned j=0; j<3; ++j) //compute angle adjacent to the vertex j
|
|
{
|
|
for(unsigned k=0; k<3; ++k)
|
|
{
|
|
vertex_pointer v = f.adjacent_vertices()[(j + k)%3];
|
|
abc[k] = f.opposite_edge(v)->length();
|
|
}
|
|
|
|
double angle = angle_from_edges(abc[0], abc[1], abc[2]);
|
|
assert(angle>1e-5); //algorithm works well with non-degenerate meshes only
|
|
|
|
f.corner_angles()[j] = angle;
|
|
sum += angle;
|
|
}
|
|
assert(std::abs(sum - igl::PI) < 1e-5); //algorithm works well with non-degenerate meshes only
|
|
}
|
|
|
|
//define m_turn_around_flag for vertices
|
|
std::vector<double> total_vertex_angle(m_vertices.size());
|
|
for(unsigned i=0; i<m_faces.size(); ++i)
|
|
{
|
|
Face& f = m_faces[i];
|
|
for(unsigned j=0; j<3; ++j)
|
|
{
|
|
vertex_pointer v = f.adjacent_vertices()[j];
|
|
total_vertex_angle[v->id()] += f.corner_angles()[j];
|
|
}
|
|
}
|
|
|
|
for(unsigned i=0; i<m_vertices.size(); ++i)
|
|
{
|
|
Vertex& v = m_vertices[i];
|
|
v.saddle_or_boundary() = (total_vertex_angle[v.id()] > 2.0*igl::PI - 1e-5);
|
|
}
|
|
|
|
for(unsigned i=0; i<m_edges.size(); ++i)
|
|
{
|
|
Edge& e = m_edges[i];
|
|
if(e.is_boundary())
|
|
{
|
|
e.adjacent_vertices()[0]->saddle_or_boundary() = true;
|
|
e.adjacent_vertices()[1]->saddle_or_boundary() = true;
|
|
}
|
|
}
|
|
|
|
assert(verify());
|
|
}
|
|
|
|
inline bool Mesh::verify() //verifies connectivity of the mesh and prints some debug info
|
|
{
|
|
std::cout << std::endl;
|
|
// make sure that all vertices are mentioned at least once.
|
|
// though the loose vertex is not a bug, it most likely indicates that something is wrong with the mesh
|
|
std::vector<bool> map(m_vertices.size(), false);
|
|
for(unsigned i=0; i<m_edges.size(); ++i)
|
|
{
|
|
edge_pointer e = &m_edges[i];
|
|
map[e->adjacent_vertices()[0]->id()] = true;
|
|
map[e->adjacent_vertices()[1]->id()] = true;
|
|
}
|
|
assert(std::find(map.begin(), map.end(), false) == map.end());
|
|
|
|
//make sure that the mesh is connected trough its edges
|
|
//if mesh has more than one connected component, it is most likely a bug
|
|
std::vector<face_pointer> stack(1,&m_faces[0]);
|
|
stack.reserve(m_faces.size());
|
|
|
|
map.resize(m_faces.size());
|
|
std::fill(map.begin(), map.end(), false);
|
|
map[0] = true;
|
|
|
|
while(!stack.empty())
|
|
{
|
|
face_pointer f = stack.back();
|
|
stack.pop_back();
|
|
|
|
for(unsigned i=0; i<3; ++i)
|
|
{
|
|
edge_pointer e = f->adjacent_edges()[i];
|
|
face_pointer f_adjacent = e->opposite_face(f);
|
|
if(f_adjacent && !map[f_adjacent->id()])
|
|
{
|
|
map[f_adjacent->id()] = true;
|
|
stack.push_back(f_adjacent);
|
|
}
|
|
}
|
|
}
|
|
assert(std::find(map.begin(), map.end(), false) == map.end());
|
|
|
|
//print some mesh statistics that can be useful in debugging
|
|
// std::cout << "mesh has " << m_vertices.size()
|
|
// << " vertices, " << m_faces.size()
|
|
// << " faces, " << m_edges.size()
|
|
// << " edges\n";
|
|
|
|
unsigned total_boundary_edges = 0;
|
|
double longest_edge = 0;
|
|
double shortest_edge = 1e100;
|
|
for(unsigned i=0; i<m_edges.size(); ++i)
|
|
{
|
|
Edge& e = m_edges[i];
|
|
total_boundary_edges += e.is_boundary() ? 1 : 0;
|
|
longest_edge = std::max(longest_edge, e.length());
|
|
shortest_edge = std::min(shortest_edge, e.length());
|
|
}
|
|
// std::cout << total_boundary_edges << " edges are boundary edges\n";
|
|
// std::cout << "shortest/longest edges are "
|
|
// << shortest_edge << "/"
|
|
// << longest_edge << " = "
|
|
// << shortest_edge/longest_edge
|
|
// << std::endl;
|
|
|
|
double minx = 1e100;
|
|
double maxx = -1e100;
|
|
double miny = 1e100;
|
|
double maxy = -1e100;
|
|
double minz = 1e100;
|
|
double maxz = -1e100;
|
|
for(unsigned i=0; i<m_vertices.size(); ++i)
|
|
{
|
|
Vertex& v = m_vertices[i];
|
|
minx = std::min(minx, v.x());
|
|
maxx = std::max(maxx, v.x());
|
|
miny = std::min(miny, v.y());
|
|
maxy = std::max(maxy, v.y());
|
|
minz = std::min(minz, v.z());
|
|
maxz = std::max(maxz, v.z());
|
|
}
|
|
// std::cout << "enclosing XYZ box:"
|
|
// <<" X[" << minx << "," << maxx << "]"
|
|
// <<" Y[" << miny << "," << maxy << "]"
|
|
// <<" Z[" << minz << "," << maxz << "]"
|
|
// << std::endl;
|
|
|
|
double dx = maxx - minx;
|
|
double dy = maxy - miny;
|
|
double dz = maxz - minz;
|
|
// std::cout << "approximate diameter of the mesh is "
|
|
// << sqrt(dx*dx + dy*dy + dz*dz)
|
|
// << std::endl;
|
|
|
|
double min_angle = 1e100;
|
|
double max_angle = -1e100;
|
|
for(unsigned i=0; i<m_faces.size(); ++i)
|
|
{
|
|
Face& f = m_faces[i];
|
|
for(unsigned j=0; j<3; ++j)
|
|
{
|
|
double angle = f.corner_angles()[j];
|
|
min_angle = std::min(min_angle, angle);
|
|
max_angle = std::max(max_angle, angle);
|
|
}
|
|
}
|
|
// std::cout << "min/max face angles are "
|
|
// << min_angle/igl::PI*180.0 << "/"
|
|
// << max_angle/igl::PI*180.0
|
|
// << " degrees\n";
|
|
|
|
// std::cout << std::endl;
|
|
return true;
|
|
}
|
|
|
|
inline void fill_surface_point_structure(geodesic::SurfacePoint* point,
|
|
double* data,
|
|
Mesh* mesh)
|
|
{
|
|
point->set(data);
|
|
unsigned type = (unsigned) data[3];
|
|
unsigned id = (unsigned) data[4];
|
|
|
|
|
|
if(type == 0) //vertex
|
|
{
|
|
point->base_element() = &mesh->vertices()[id];
|
|
}
|
|
else if(type == 1) //edge
|
|
{
|
|
point->base_element() = &mesh->edges()[id];
|
|
}
|
|
else //face
|
|
{
|
|
point->base_element() = &mesh->faces()[id];
|
|
}
|
|
}
|
|
|
|
inline void fill_surface_point_double(geodesic::SurfacePoint* point,
|
|
double* data,
|
|
long mesh_id)
|
|
{
|
|
data[0] = point->x();
|
|
data[1] = point->y();
|
|
data[2] = point->z();
|
|
data[4] = point->base_element()->id();
|
|
|
|
if(point->type() == VERTEX) //vertex
|
|
{
|
|
data[3] = 0;
|
|
}
|
|
else if(point->type() == EDGE) //edge
|
|
{
|
|
data[3] = 1;
|
|
}
|
|
else //face
|
|
{
|
|
data[3] = 2;
|
|
}
|
|
}
|
|
|
|
class Interval;
|
|
class IntervalList;
|
|
typedef Interval* interval_pointer;
|
|
typedef IntervalList* list_pointer;
|
|
|
|
class Interval //interval of the edge
|
|
{
|
|
public:
|
|
|
|
Interval(){};
|
|
~Interval(){};
|
|
|
|
enum DirectionType
|
|
{
|
|
FROM_FACE_0,
|
|
FROM_FACE_1,
|
|
FROM_SOURCE,
|
|
UNDEFINED_DIRECTION
|
|
};
|
|
|
|
double signal(double x) //geodesic distance function at point x
|
|
{
|
|
assert(x>=0.0 && x <= m_edge->length());
|
|
|
|
if(m_d == GEODESIC_INF)
|
|
{
|
|
return GEODESIC_INF;
|
|
}
|
|
else
|
|
{
|
|
double dx = x - m_pseudo_x;
|
|
if(m_pseudo_y == 0.0)
|
|
{
|
|
return m_d + std::abs(dx);
|
|
}
|
|
else
|
|
{
|
|
return m_d + sqrt(dx*dx + m_pseudo_y*m_pseudo_y);
|
|
}
|
|
}
|
|
}
|
|
|
|
double max_distance(double end)
|
|
{
|
|
if(m_d == GEODESIC_INF)
|
|
{
|
|
return GEODESIC_INF;
|
|
}
|
|
else
|
|
{
|
|
double a = std::abs(m_start - m_pseudo_x);
|
|
double b = std::abs(end - m_pseudo_x);
|
|
|
|
return a > b ? m_d + sqrt(a*a + m_pseudo_y*m_pseudo_y):
|
|
m_d + sqrt(b*b + m_pseudo_y*m_pseudo_y);
|
|
}
|
|
}
|
|
|
|
void compute_min_distance(double stop) //compute min, given c,d theta, start, end.
|
|
{
|
|
assert(stop > m_start);
|
|
|
|
if(m_d == GEODESIC_INF)
|
|
{
|
|
m_min = GEODESIC_INF;
|
|
}
|
|
else if(m_start > m_pseudo_x)
|
|
{
|
|
m_min = signal(m_start);
|
|
}
|
|
else if(stop < m_pseudo_x)
|
|
{
|
|
m_min = signal(stop);
|
|
}
|
|
else
|
|
{
|
|
assert(m_pseudo_y<=0);
|
|
m_min = m_d - m_pseudo_y;
|
|
}
|
|
}
|
|
//compare two intervals in the queue
|
|
bool operator()(interval_pointer const x, interval_pointer const y) const
|
|
{
|
|
if(x->min() != y->min())
|
|
{
|
|
return x->min() < y->min();
|
|
}
|
|
else if(x->start() != y->start())
|
|
{
|
|
return x->start() < y->start();
|
|
}
|
|
else
|
|
{
|
|
return x->edge()->id() < y->edge()->id();
|
|
}
|
|
}
|
|
|
|
double stop() //return the endpoint of the interval
|
|
{
|
|
return m_next ? m_next->start() : m_edge->length();
|
|
}
|
|
|
|
double hypotenuse(double a, double b)
|
|
{
|
|
return sqrt(a*a + b*b);
|
|
}
|
|
|
|
void find_closest_point(double const x,
|
|
double const y,
|
|
double& offset,
|
|
double& distance); //find the point on the interval that is closest to the point (alpha, s)
|
|
|
|
double& start(){return m_start;};
|
|
double& d(){return m_d;};
|
|
double& pseudo_x(){return m_pseudo_x;};
|
|
double& pseudo_y(){return m_pseudo_y;};
|
|
double& min(){return m_min;};
|
|
interval_pointer& next(){return m_next;};
|
|
edge_pointer& edge(){return m_edge;};
|
|
DirectionType& direction(){return m_direction;};
|
|
bool visible_from_source(){return m_direction == FROM_SOURCE;};
|
|
unsigned& source_index(){return m_source_index;};
|
|
|
|
void initialize(edge_pointer edge,
|
|
SurfacePoint* point = NULL,
|
|
unsigned source_index = 0);
|
|
|
|
protected:
|
|
double m_start; //initial point of the interval on the edge
|
|
double m_d; //distance from the source to the pseudo-source
|
|
double m_pseudo_x; //coordinates of the pseudo-source in the local coordinate system
|
|
double m_pseudo_y; //y-coordinate should be always negative
|
|
double m_min; //minimum distance on the interval
|
|
|
|
interval_pointer m_next; //pointer to the next interval in the list
|
|
edge_pointer m_edge; //edge that the interval belongs to
|
|
unsigned m_source_index; //the source it belongs to
|
|
DirectionType m_direction; //where the interval is coming from
|
|
};
|
|
|
|
struct IntervalWithStop : public Interval
|
|
{
|
|
public:
|
|
double& stop(){return m_stop;};
|
|
protected:
|
|
double m_stop;
|
|
};
|
|
|
|
class IntervalList //list of the of intervals of the given edge
|
|
{
|
|
public:
|
|
IntervalList(){m_first = NULL;};
|
|
~IntervalList(){};
|
|
|
|
void clear()
|
|
{
|
|
m_first = NULL;
|
|
};
|
|
|
|
void initialize(edge_pointer e)
|
|
{
|
|
m_edge = e;
|
|
m_first = NULL;
|
|
};
|
|
|
|
interval_pointer covering_interval(double offset) //returns the interval that covers the offset
|
|
{
|
|
assert(offset >= 0.0 && offset <= m_edge->length());
|
|
|
|
interval_pointer p = m_first;
|
|
while(p && p->stop() < offset)
|
|
{
|
|
p = p->next();
|
|
}
|
|
|
|
return p;// && p->start() <= offset ? p : NULL;
|
|
};
|
|
|
|
void find_closest_point(SurfacePoint* point,
|
|
double& offset,
|
|
double& distance,
|
|
interval_pointer& interval)
|
|
{
|
|
interval_pointer p = m_first;
|
|
distance = GEODESIC_INF;
|
|
interval = NULL;
|
|
|
|
double x,y;
|
|
m_edge->local_coordinates(point, x, y);
|
|
|
|
while(p)
|
|
{
|
|
if(p->min()<GEODESIC_INF)
|
|
{
|
|
double o, d;
|
|
p->find_closest_point(x, y, o, d);
|
|
if(d < distance)
|
|
{
|
|
distance = d;
|
|
offset = o;
|
|
interval = p;
|
|
}
|
|
}
|
|
p = p->next();
|
|
}
|
|
};
|
|
|
|
unsigned number_of_intervals()
|
|
{
|
|
interval_pointer p = m_first;
|
|
unsigned count = 0;
|
|
while(p)
|
|
{
|
|
++count;
|
|
p = p->next();
|
|
}
|
|
return count;
|
|
}
|
|
|
|
interval_pointer last()
|
|
{
|
|
interval_pointer p = m_first;
|
|
if(p)
|
|
{
|
|
while(p->next())
|
|
{
|
|
p = p->next();
|
|
}
|
|
}
|
|
return p;
|
|
}
|
|
|
|
double signal(double x)
|
|
{
|
|
interval_pointer interval = covering_interval(x);
|
|
|
|
return interval ? interval->signal(x) : GEODESIC_INF;
|
|
}
|
|
|
|
interval_pointer& first(){return m_first;};
|
|
edge_pointer& edge(){return m_edge;};
|
|
private:
|
|
interval_pointer m_first; //pointer to the first member of the list
|
|
edge_pointer m_edge; //edge that owns this list
|
|
};
|
|
|
|
class SurfacePointWithIndex : public SurfacePoint
|
|
{
|
|
public:
|
|
unsigned index(){return m_index;};
|
|
|
|
void initialize(SurfacePoint& p, unsigned index)
|
|
{
|
|
SurfacePoint::initialize(p);
|
|
m_index = index;
|
|
}
|
|
|
|
bool operator()(SurfacePointWithIndex* x, SurfacePointWithIndex* y) const //used for sorting
|
|
{
|
|
assert(x->type() != UNDEFINED_POINT && y->type() !=UNDEFINED_POINT);
|
|
|
|
if(x->type() != y->type())
|
|
{
|
|
return x->type() < y->type();
|
|
}
|
|
else
|
|
{
|
|
return x->base_element()->id() < y->base_element()->id();
|
|
}
|
|
}
|
|
|
|
private:
|
|
unsigned m_index;
|
|
};
|
|
|
|
class SortedSources : public std::vector<SurfacePointWithIndex>
|
|
{
|
|
private:
|
|
typedef std::vector<SurfacePointWithIndex*> sorted_vector_type;
|
|
public:
|
|
typedef sorted_vector_type::iterator sorted_iterator;
|
|
typedef std::pair<sorted_iterator, sorted_iterator> sorted_iterator_pair;
|
|
|
|
sorted_iterator_pair sources(base_pointer mesh_element)
|
|
{
|
|
m_search_dummy.base_element() = mesh_element;
|
|
|
|
return equal_range(m_sorted.begin(),
|
|
m_sorted.end(),
|
|
&m_search_dummy,
|
|
m_compare_less);
|
|
}
|
|
|
|
void initialize(std::vector<SurfacePoint>& sources) //we initialize the sources by copie
|
|
{
|
|
resize(sources.size());
|
|
m_sorted.resize(sources.size());
|
|
for(unsigned i=0; i<sources.size(); ++i)
|
|
{
|
|
SurfacePointWithIndex& p = *(begin() + i);
|
|
|
|
p.initialize(sources[i],i);
|
|
m_sorted[i] = &p;
|
|
}
|
|
|
|
std::sort(m_sorted.begin(), m_sorted.end(), m_compare_less);
|
|
};
|
|
|
|
SurfacePointWithIndex& operator[](unsigned i)
|
|
{
|
|
assert(i < size());
|
|
return *(begin() + i);
|
|
}
|
|
|
|
private:
|
|
sorted_vector_type m_sorted;
|
|
SurfacePointWithIndex m_search_dummy; //used as a search template
|
|
SurfacePointWithIndex m_compare_less; //used as a compare functor
|
|
};
|
|
|
|
|
|
inline void Interval::find_closest_point(double const rs,
|
|
double const hs,
|
|
double& r,
|
|
double& d_out) //find the point on the interval that is closest to the point (alpha, s)
|
|
{
|
|
if(m_d == GEODESIC_INF)
|
|
{
|
|
r = GEODESIC_INF;
|
|
d_out = GEODESIC_INF;
|
|
return;
|
|
}
|
|
|
|
double hc = -m_pseudo_y;
|
|
double rc = m_pseudo_x;
|
|
double end = stop();
|
|
|
|
double local_epsilon = SMALLEST_INTERVAL_RATIO*m_edge->length();
|
|
if(std::abs(hs+hc) < local_epsilon)
|
|
{
|
|
if(rs<=m_start)
|
|
{
|
|
r = m_start;
|
|
d_out = signal(m_start) + std::abs(rs - m_start);
|
|
}
|
|
else if(rs>=end)
|
|
{
|
|
r = end;
|
|
d_out = signal(end) + fabs(end - rs);
|
|
}
|
|
else
|
|
{
|
|
r = rs;
|
|
d_out = signal(rs);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
double ri = (rs*hc + hs*rc)/(hs+hc);
|
|
|
|
if(ri<m_start)
|
|
{
|
|
r = m_start;
|
|
d_out = signal(m_start) + hypotenuse(m_start - rs, hs);
|
|
}
|
|
else if(ri>end)
|
|
{
|
|
r = end;
|
|
d_out = signal(end) + hypotenuse(end - rs, hs);
|
|
}
|
|
else
|
|
{
|
|
r = ri;
|
|
d_out = m_d + hypotenuse(rc - rs, hc + hs);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
inline void Interval::initialize(edge_pointer edge,
|
|
SurfacePoint* source,
|
|
unsigned source_index)
|
|
{
|
|
m_next = NULL;
|
|
//m_geodesic_previous = NULL;
|
|
m_direction = UNDEFINED_DIRECTION;
|
|
m_edge = edge;
|
|
m_source_index = source_index;
|
|
|
|
m_start = 0.0;
|
|
//m_stop = edge->length();
|
|
if(!source)
|
|
{
|
|
m_d = GEODESIC_INF;
|
|
m_min = GEODESIC_INF;
|
|
return;
|
|
}
|
|
m_d = 0;
|
|
|
|
if(source->base_element()->type() == VERTEX)
|
|
{
|
|
if(source->base_element()->id() == edge->v0()->id())
|
|
{
|
|
m_pseudo_x = 0.0;
|
|
m_pseudo_y = 0.0;
|
|
m_min = 0.0;
|
|
return;
|
|
}
|
|
else if(source->base_element()->id() == edge->v1()->id())
|
|
{
|
|
m_pseudo_x = stop();
|
|
m_pseudo_y = 0.0;
|
|
m_min = 0.0;
|
|
return;
|
|
}
|
|
}
|
|
|
|
edge->local_coordinates(source, m_pseudo_x, m_pseudo_y);
|
|
m_pseudo_y = -m_pseudo_y;
|
|
|
|
compute_min_distance(stop());
|
|
}
|
|
|
|
|
|
|
|
// #include "geodesic_algorithm_base.h"
|
|
class GeodesicAlgorithmBase
|
|
{
|
|
public:
|
|
enum AlgorithmType
|
|
{
|
|
EXACT,
|
|
DIJKSTRA,
|
|
SUBDIVISION,
|
|
UNDEFINED_ALGORITHM
|
|
};
|
|
|
|
GeodesicAlgorithmBase(geodesic::Mesh* mesh):
|
|
m_type(UNDEFINED_ALGORITHM),
|
|
m_max_propagation_distance(1e100),
|
|
m_mesh(mesh)
|
|
{};
|
|
|
|
virtual ~GeodesicAlgorithmBase(){};
|
|
|
|
virtual void propagate(std::vector<SurfacePoint>& sources,
|
|
double max_propagation_distance = GEODESIC_INF, //propagation algorithm stops after reaching the certain distance from the source
|
|
std::vector<SurfacePoint>* stop_points = NULL) = 0; //or after ensuring that all the stop_points are covered
|
|
|
|
virtual void trace_back(SurfacePoint& destination, //trace back piecewise-linear path
|
|
std::vector<SurfacePoint>& path) = 0;
|
|
|
|
void geodesic(SurfacePoint& source,
|
|
SurfacePoint& destination,
|
|
std::vector<SurfacePoint>& path); //lazy people can find geodesic path with one function call
|
|
|
|
void geodesic(std::vector<SurfacePoint>& sources,
|
|
std::vector<SurfacePoint>& destinations,
|
|
std::vector<std::vector<SurfacePoint> >& paths); //lazy people can find geodesic paths with one function call
|
|
|
|
virtual unsigned best_source(SurfacePoint& point, //after propagation step is done, quickly find what source this point belongs to and what is the distance to this source
|
|
double& best_source_distance) = 0;
|
|
|
|
virtual void print_statistics() //print info about timing and memory usage in the propagation step of the algorithm
|
|
{
|
|
std::cout << "propagation step took " << m_time_consumed << " seconds " << std::endl;
|
|
};
|
|
|
|
AlgorithmType type(){return m_type;};
|
|
|
|
virtual std::string name();
|
|
|
|
geodesic::Mesh* mesh(){return m_mesh;};
|
|
protected:
|
|
|
|
void set_stop_conditions(std::vector<SurfacePoint>* stop_points,
|
|
double stop_distance);
|
|
double stop_distance()
|
|
{
|
|
return m_max_propagation_distance;
|
|
}
|
|
|
|
AlgorithmType m_type; // type of the algorithm
|
|
|
|
typedef std::pair<vertex_pointer, double> stop_vertex_with_distace_type;
|
|
std::vector<stop_vertex_with_distace_type> m_stop_vertices; // algorithm stops propagation after covering certain vertices
|
|
double m_max_propagation_distance; // or reaching the certain distance
|
|
|
|
geodesic::Mesh* m_mesh;
|
|
|
|
double m_time_consumed; //how much time does the propagation step takes
|
|
double m_propagation_distance_stopped; //at what distance (if any) the propagation algorithm stopped
|
|
};
|
|
|
|
inline double length(std::vector<SurfacePoint>& path)
|
|
{
|
|
double length = 0;
|
|
if(!path.empty())
|
|
{
|
|
for(unsigned i=0; i<path.size()-1; ++i)
|
|
{
|
|
length += path[i].distance(&path[i+1]);
|
|
}
|
|
}
|
|
return length;
|
|
}
|
|
|
|
inline void print_info_about_path(std::vector<SurfacePoint>& path)
|
|
{
|
|
std::cout << "number of the points in the path = " << path.size()
|
|
<< ", length of the path = " << length(path)
|
|
<< std::endl;
|
|
}
|
|
|
|
inline std::string GeodesicAlgorithmBase::name()
|
|
{
|
|
switch(m_type)
|
|
{
|
|
case EXACT:
|
|
return "exact";
|
|
case DIJKSTRA:
|
|
return "dijkstra";
|
|
case SUBDIVISION:
|
|
return "subdivision";
|
|
default:
|
|
case UNDEFINED_ALGORITHM:
|
|
return "undefined";
|
|
}
|
|
}
|
|
|
|
inline void GeodesicAlgorithmBase::geodesic(SurfacePoint& source,
|
|
SurfacePoint& destination,
|
|
std::vector<SurfacePoint>& path) //lazy people can find geodesic path with one function call
|
|
{
|
|
std::vector<SurfacePoint> sources(1, source);
|
|
std::vector<SurfacePoint> stop_points(1, destination);
|
|
double const max_propagation_distance = GEODESIC_INF;
|
|
|
|
propagate(sources,
|
|
max_propagation_distance,
|
|
&stop_points);
|
|
|
|
trace_back(destination, path);
|
|
}
|
|
|
|
inline void GeodesicAlgorithmBase::geodesic(std::vector<SurfacePoint>& sources,
|
|
std::vector<SurfacePoint>& destinations,
|
|
std::vector<std::vector<SurfacePoint> >& paths) //lazy people can find geodesic paths with one function call
|
|
{
|
|
double const max_propagation_distance = GEODESIC_INF;
|
|
|
|
propagate(sources,
|
|
max_propagation_distance,
|
|
&destinations); //we use desinations as stop points
|
|
|
|
paths.resize(destinations.size());
|
|
|
|
for(unsigned i=0; i<paths.size(); ++i)
|
|
{
|
|
trace_back(destinations[i], paths[i]);
|
|
}
|
|
}
|
|
|
|
inline void GeodesicAlgorithmBase::set_stop_conditions(std::vector<SurfacePoint>* stop_points,
|
|
double stop_distance)
|
|
{
|
|
m_max_propagation_distance = stop_distance;
|
|
|
|
if(!stop_points)
|
|
{
|
|
m_stop_vertices.clear();
|
|
return;
|
|
}
|
|
|
|
m_stop_vertices.resize(stop_points->size());
|
|
|
|
std::vector<vertex_pointer> possible_vertices;
|
|
for(unsigned i = 0; i < stop_points->size(); ++i)
|
|
{
|
|
SurfacePoint* point = &(*stop_points)[i];
|
|
|
|
possible_vertices.clear();
|
|
m_mesh->closest_vertices(point, &possible_vertices);
|
|
|
|
vertex_pointer closest_vertex = NULL;
|
|
double min_distance = 1e100;
|
|
for(unsigned j = 0; j < possible_vertices.size(); ++j)
|
|
{
|
|
double distance = point->distance(possible_vertices[j]);
|
|
if(distance < min_distance)
|
|
{
|
|
min_distance = distance;
|
|
closest_vertex = possible_vertices[j];
|
|
}
|
|
}
|
|
assert(closest_vertex);
|
|
|
|
m_stop_vertices[i].first = closest_vertex;
|
|
m_stop_vertices[i].second = min_distance;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
class GeodesicAlgorithmExact : public GeodesicAlgorithmBase
|
|
{
|
|
public:
|
|
GeodesicAlgorithmExact(geodesic::Mesh* mesh):
|
|
GeodesicAlgorithmBase(mesh),
|
|
m_memory_allocator(mesh->edges().size(), mesh->edges().size()),
|
|
m_edge_interval_lists(mesh->edges().size())
|
|
{
|
|
m_type = EXACT;
|
|
|
|
for(unsigned i=0; i<m_edge_interval_lists.size(); ++i)
|
|
{
|
|
m_edge_interval_lists[i].initialize(&mesh->edges()[i]);
|
|
}
|
|
};
|
|
|
|
~GeodesicAlgorithmExact(){};
|
|
|
|
void propagate(std::vector<SurfacePoint>& sources,
|
|
double max_propagation_distance = GEODESIC_INF, //propagation algorithm stops after reaching the certain distance from the source
|
|
std::vector<SurfacePoint>* stop_points = NULL); //or after ensuring that all the stop_points are covered
|
|
|
|
void trace_back(SurfacePoint& destination, //trace back piecewise-linear path
|
|
std::vector<SurfacePoint>& path);
|
|
|
|
unsigned best_source(SurfacePoint& point, //quickly find what source this point belongs to and what is the distance to this source
|
|
double& best_source_distance);
|
|
|
|
void print_statistics();
|
|
|
|
private:
|
|
typedef std::set<interval_pointer, Interval> IntervalQueue;
|
|
|
|
void update_list_and_queue(list_pointer list,
|
|
IntervalWithStop* candidates, //up to two candidates
|
|
unsigned num_candidates);
|
|
|
|
unsigned compute_propagated_parameters(double pseudo_x,
|
|
double pseudo_y,
|
|
double d, //parameters of the interval
|
|
double start,
|
|
double end, //start/end of the interval
|
|
double alpha, //corner angle
|
|
double L, //length of the new edge
|
|
bool first_interval, //if it is the first interval on the edge
|
|
bool last_interval,
|
|
bool turn_left,
|
|
bool turn_right,
|
|
IntervalWithStop* candidates); //if it is the last interval on the edge
|
|
|
|
void construct_propagated_intervals(bool invert,
|
|
edge_pointer edge,
|
|
face_pointer face, //constructs iNew from the rest of the data
|
|
IntervalWithStop* candidates,
|
|
unsigned& num_candidates,
|
|
interval_pointer source_interval);
|
|
|
|
double compute_positive_intersection(double start,
|
|
double pseudo_x,
|
|
double pseudo_y,
|
|
double sin_alpha,
|
|
double cos_alpha); //used in construct_propagated_intervals
|
|
|
|
unsigned intersect_intervals(interval_pointer zero,
|
|
IntervalWithStop* one); //intersecting two intervals with up to three intervals in the end
|
|
|
|
interval_pointer best_first_interval(SurfacePoint& point,
|
|
double& best_total_distance,
|
|
double& best_interval_position,
|
|
unsigned& best_source_index);
|
|
|
|
bool check_stop_conditions(unsigned& index);
|
|
|
|
void clear()
|
|
{
|
|
m_memory_allocator.clear();
|
|
m_queue.clear();
|
|
for(unsigned i=0; i<m_edge_interval_lists.size(); ++i)
|
|
{
|
|
m_edge_interval_lists[i].clear();
|
|
}
|
|
m_propagation_distance_stopped = GEODESIC_INF;
|
|
};
|
|
|
|
list_pointer interval_list(edge_pointer e)
|
|
{
|
|
return &m_edge_interval_lists[e->id()];
|
|
};
|
|
|
|
void set_sources(std::vector<SurfacePoint>& sources)
|
|
{
|
|
m_sources.initialize(sources);
|
|
}
|
|
|
|
void initialize_propagation_data();
|
|
|
|
void list_edges_visible_from_source(MeshElementBase* p,
|
|
std::vector<edge_pointer>& storage); //used in initialization
|
|
|
|
long visible_from_source(SurfacePoint& point); //used in backtracing
|
|
|
|
void best_point_on_the_edge_set(SurfacePoint& point,
|
|
std::vector<edge_pointer> const& storage,
|
|
interval_pointer& best_interval,
|
|
double& best_total_distance,
|
|
double& best_interval_position);
|
|
|
|
void possible_traceback_edges(SurfacePoint& point,
|
|
std::vector<edge_pointer>& storage);
|
|
|
|
bool erase_from_queue(interval_pointer p);
|
|
|
|
IntervalQueue m_queue; //interval queue
|
|
|
|
MemoryAllocator<Interval> m_memory_allocator; //quickly allocate and deallocate intervals
|
|
std::vector<IntervalList> m_edge_interval_lists; //every edge has its interval data
|
|
|
|
enum MapType {OLD, NEW}; //used for interval intersection
|
|
MapType map[5];
|
|
double start[6];
|
|
interval_pointer i_new[5];
|
|
|
|
unsigned m_queue_max_size; //used for statistics
|
|
unsigned m_iterations; //used for statistics
|
|
|
|
SortedSources m_sources;
|
|
};
|
|
|
|
inline void GeodesicAlgorithmExact::best_point_on_the_edge_set(SurfacePoint& point,
|
|
std::vector<edge_pointer> const& storage,
|
|
interval_pointer& best_interval,
|
|
double& best_total_distance,
|
|
double& best_interval_position)
|
|
{
|
|
best_total_distance = 1e100;
|
|
for(unsigned i=0; i<storage.size(); ++i)
|
|
{
|
|
edge_pointer e = storage[i];
|
|
list_pointer list = interval_list(e);
|
|
|
|
double offset;
|
|
double distance;
|
|
interval_pointer interval;
|
|
|
|
list->find_closest_point(&point,
|
|
offset,
|
|
distance,
|
|
interval);
|
|
|
|
if(distance < best_total_distance)
|
|
{
|
|
best_interval = interval;
|
|
best_total_distance = distance;
|
|
best_interval_position = offset;
|
|
}
|
|
}
|
|
}
|
|
|
|
inline void GeodesicAlgorithmExact::possible_traceback_edges(SurfacePoint& point,
|
|
std::vector<edge_pointer>& storage)
|
|
{
|
|
storage.clear();
|
|
|
|
if(point.type() == VERTEX)
|
|
{
|
|
vertex_pointer v = static_cast<vertex_pointer>(point.base_element());
|
|
for(unsigned i=0; i<v->adjacent_faces().size(); ++i)
|
|
{
|
|
face_pointer f = v->adjacent_faces()[i];
|
|
storage.push_back(f->opposite_edge(v));
|
|
}
|
|
}
|
|
else if(point.type() == EDGE)
|
|
{
|
|
edge_pointer e = static_cast<edge_pointer>(point.base_element());
|
|
for(unsigned i=0; i<e->adjacent_faces().size(); ++i)
|
|
{
|
|
face_pointer f = e->adjacent_faces()[i];
|
|
|
|
storage.push_back(f->next_edge(e,e->v0()));
|
|
storage.push_back(f->next_edge(e,e->v1()));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
face_pointer f = static_cast<face_pointer>(point.base_element());
|
|
storage.push_back(f->adjacent_edges()[0]);
|
|
storage.push_back(f->adjacent_edges()[1]);
|
|
storage.push_back(f->adjacent_edges()[2]);
|
|
}
|
|
}
|
|
|
|
|
|
inline long GeodesicAlgorithmExact::visible_from_source(SurfacePoint& point) //negative if not visible
|
|
{
|
|
assert(point.type() != UNDEFINED_POINT);
|
|
|
|
if(point.type() == EDGE)
|
|
{
|
|
edge_pointer e = static_cast<edge_pointer>(point.base_element());
|
|
list_pointer list = interval_list(e);
|
|
double position = std::min(point.distance(e->v0()), e->length());
|
|
interval_pointer interval = list->covering_interval(position);
|
|
//assert(interval);
|
|
if(interval && interval->visible_from_source())
|
|
{
|
|
return (long)interval->source_index();
|
|
}
|
|
else
|
|
{
|
|
return -1;
|
|
}
|
|
}
|
|
else if(point.type() == FACE)
|
|
{
|
|
return -1;
|
|
}
|
|
else if(point.type() == VERTEX)
|
|
{
|
|
vertex_pointer v = static_cast<vertex_pointer>(point.base_element());
|
|
for(unsigned i=0; i<v->adjacent_edges().size(); ++i)
|
|
{
|
|
edge_pointer e = v->adjacent_edges()[i];
|
|
list_pointer list = interval_list(e);
|
|
|
|
double position = e->v0()->id() == v->id() ? 0.0 : e->length();
|
|
interval_pointer interval = list->covering_interval(position);
|
|
if(interval && interval->visible_from_source())
|
|
{
|
|
return (long)interval->source_index();
|
|
}
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
assert(0);
|
|
return 0;
|
|
}
|
|
|
|
inline double GeodesicAlgorithmExact::compute_positive_intersection(double start,
|
|
double pseudo_x,
|
|
double pseudo_y,
|
|
double sin_alpha,
|
|
double cos_alpha)
|
|
{
|
|
assert(pseudo_y < 0);
|
|
|
|
double denominator = sin_alpha*(pseudo_x - start) - cos_alpha*pseudo_y;
|
|
if(denominator<0.0)
|
|
{
|
|
return -1.0;
|
|
}
|
|
|
|
double numerator = -pseudo_y*start;
|
|
|
|
if(numerator < 1e-30)
|
|
{
|
|
return 0.0;
|
|
}
|
|
|
|
if(denominator < 1e-30)
|
|
{
|
|
return -1.0;
|
|
}
|
|
|
|
return numerator/denominator;
|
|
}
|
|
|
|
inline void GeodesicAlgorithmExact::list_edges_visible_from_source(MeshElementBase* p,
|
|
std::vector<edge_pointer>& storage)
|
|
{
|
|
assert(p->type() != UNDEFINED_POINT);
|
|
|
|
if(p->type() == FACE)
|
|
{
|
|
face_pointer f = static_cast<face_pointer>(p);
|
|
for(unsigned i=0; i<3; ++i)
|
|
{
|
|
storage.push_back(f->adjacent_edges()[i]);
|
|
}
|
|
}
|
|
else if(p->type() == EDGE)
|
|
{
|
|
edge_pointer e = static_cast<edge_pointer>(p);
|
|
storage.push_back(e);
|
|
}
|
|
else //VERTEX
|
|
{
|
|
vertex_pointer v = static_cast<vertex_pointer>(p);
|
|
for(unsigned i=0; i<v->adjacent_edges().size(); ++i)
|
|
{
|
|
storage.push_back(v->adjacent_edges()[i]);
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
inline bool GeodesicAlgorithmExact::erase_from_queue(interval_pointer p)
|
|
{
|
|
if(p->min() < GEODESIC_INF/10.0)// && p->min >= queue->begin()->first)
|
|
{
|
|
assert(m_queue.count(p)<=1); //the set is unique
|
|
|
|
IntervalQueue::iterator it = m_queue.find(p);
|
|
|
|
if(it != m_queue.end())
|
|
{
|
|
m_queue.erase(it);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
inline unsigned GeodesicAlgorithmExact::intersect_intervals(interval_pointer zero,
|
|
IntervalWithStop* one) //intersecting two intervals with up to three intervals in the end
|
|
{
|
|
assert(zero->edge()->id() == one->edge()->id());
|
|
assert(zero->stop() > one->start() && zero->start() < one->stop());
|
|
assert(one->min() < GEODESIC_INF/10.0);
|
|
|
|
double const local_epsilon = SMALLEST_INTERVAL_RATIO*one->edge()->length();
|
|
|
|
unsigned N=0;
|
|
if(zero->min() > GEODESIC_INF/10.0)
|
|
{
|
|
start[0] = zero->start();
|
|
if(zero->start() < one->start() - local_epsilon)
|
|
{
|
|
map[0] = OLD;
|
|
start[1] = one->start();
|
|
map[1] = NEW;
|
|
N = 2;
|
|
}
|
|
else
|
|
{
|
|
map[0] = NEW;
|
|
N = 1;
|
|
}
|
|
|
|
if(zero->stop() > one->stop() + local_epsilon)
|
|
{
|
|
map[N] = OLD; //"zero" interval
|
|
start[N++] = one->stop();
|
|
}
|
|
|
|
start[N+1] = zero->stop();
|
|
return N;
|
|
}
|
|
|
|
double const local_small_epsilon = 1e-8*one->edge()->length();
|
|
|
|
double D = zero->d() - one->d();
|
|
double x0 = zero->pseudo_x();
|
|
double x1 = one->pseudo_x();
|
|
double R0 = x0*x0 + zero->pseudo_y()*zero->pseudo_y();
|
|
double R1 = x1*x1 + one->pseudo_y()*one->pseudo_y();
|
|
|
|
double inter[2]; //points of intersection
|
|
char Ninter=0; //number of the points of the intersection
|
|
|
|
if(std::abs(D)<local_epsilon) //if d1 == d0, equation is linear
|
|
{
|
|
double denom = x1 - x0;
|
|
if(std::abs(denom)>local_small_epsilon)
|
|
{
|
|
inter[0] = (R1 - R0)/(2.*denom); //one solution
|
|
Ninter = 1;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
double D2 = D*D;
|
|
double Q = 0.5*(R1-R0-D2);
|
|
double X = x0 - x1;
|
|
|
|
double A = X*X - D2;
|
|
double B = Q*X + D2*x0;
|
|
double C = Q*Q - D2*R0;
|
|
|
|
if (std::abs(A)<local_small_epsilon) //if A == 0, linear equation
|
|
{
|
|
if(std::abs(B)>local_small_epsilon)
|
|
{
|
|
inter[0] = -C/B; //one solution
|
|
Ninter = 1;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
double det = B*B-A*C;
|
|
if(det>local_small_epsilon*local_small_epsilon) //two roots
|
|
{
|
|
det = sqrt(det);
|
|
if(A>0.0) //make sure that the roots are ordered
|
|
{
|
|
inter[0] = (-B - det)/A;
|
|
inter[1] = (-B + det)/A;
|
|
}
|
|
else
|
|
{
|
|
inter[0] = (-B + det)/A;
|
|
inter[1] = (-B - det)/A;
|
|
}
|
|
|
|
if(inter[1] - inter[0] > local_small_epsilon)
|
|
{
|
|
Ninter = 2;
|
|
}
|
|
else
|
|
{
|
|
Ninter = 1;
|
|
}
|
|
}
|
|
else if(det>=0.0) //single root
|
|
{
|
|
inter[0] = -B/A;
|
|
Ninter = 1;
|
|
}
|
|
}
|
|
}
|
|
//---------------------------find possible intervals---------------------------------------
|
|
double left = std::max(zero->start(), one->start()); //define left and right boundaries of the intersection of the intervals
|
|
double right = std::min(zero->stop(), one->stop());
|
|
|
|
double good_start[4]; //points of intersection within the (left, right) limits +"left" + "right"
|
|
good_start[0] = left;
|
|
char Ngood_start=1; //number of the points of the intersection
|
|
|
|
for(char i=0; i<Ninter; ++i) //for all points of intersection
|
|
{
|
|
double x = inter[i];
|
|
if(x > left + local_epsilon && x < right - local_epsilon)
|
|
{
|
|
good_start[Ngood_start++] = x;
|
|
}
|
|
}
|
|
good_start[Ngood_start++] = right;
|
|
|
|
MapType mid_map[3];
|
|
for(char i=0; i<Ngood_start-1; ++i)
|
|
{
|
|
double mid = (good_start[i] + good_start[i+1])*0.5;
|
|
mid_map[i] = zero->signal(mid) <= one->signal(mid) ? OLD : NEW;
|
|
}
|
|
|
|
//-----------------------------------output----------------------------------
|
|
N = 0;
|
|
if(zero->start() < left - local_epsilon) //additional "zero" interval
|
|
{
|
|
if(mid_map[0] == OLD) //first interval in the map is already the old one
|
|
{
|
|
good_start[0] = zero->start();
|
|
}
|
|
else
|
|
{
|
|
map[N] = OLD; //"zero" interval
|
|
start[N++] = zero->start();
|
|
}
|
|
}
|
|
|
|
for(long i=0;i<Ngood_start-1;++i) //for all intervals
|
|
{
|
|
MapType current_map = mid_map[i];
|
|
if(N==0 || map[N-1] != current_map)
|
|
{
|
|
map[N] = current_map;
|
|
start[N++] = good_start[i];
|
|
}
|
|
}
|
|
|
|
if(zero->stop() > one->stop() + local_epsilon)
|
|
{
|
|
if(N==0 || map[N-1] == NEW)
|
|
{
|
|
map[N] = OLD; //"zero" interval
|
|
start[N++] = one->stop();
|
|
}
|
|
}
|
|
|
|
start[0] = zero->start(); // just to make sure that epsilons do not damage anything
|
|
//start[N] = zero->stop();
|
|
|
|
return N;
|
|
}
|
|
|
|
inline void GeodesicAlgorithmExact::initialize_propagation_data()
|
|
{
|
|
clear();
|
|
|
|
IntervalWithStop candidate;
|
|
std::vector<edge_pointer> edges_visible_from_source;
|
|
for(unsigned i=0; i<m_sources.size(); ++i) //for all edges adjacent to the starting vertex
|
|
{
|
|
SurfacePoint* source = &m_sources[i];
|
|
|
|
edges_visible_from_source.clear();
|
|
list_edges_visible_from_source(source->base_element(),
|
|
edges_visible_from_source);
|
|
|
|
for(unsigned j=0; j<edges_visible_from_source.size(); ++j)
|
|
{
|
|
edge_pointer e = edges_visible_from_source[j];
|
|
candidate.initialize(e, source, i);
|
|
candidate.stop() = e->length();
|
|
candidate.compute_min_distance(candidate.stop());
|
|
candidate.direction() = Interval::FROM_SOURCE;
|
|
|
|
update_list_and_queue(interval_list(e), &candidate, 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
inline void GeodesicAlgorithmExact::propagate(std::vector<SurfacePoint>& sources,
|
|
double max_propagation_distance, //propagation algorithm stops after reaching the certain distance from the source
|
|
std::vector<SurfacePoint>* stop_points)
|
|
{
|
|
set_stop_conditions(stop_points, max_propagation_distance);
|
|
set_sources(sources);
|
|
initialize_propagation_data();
|
|
|
|
clock_t start = clock();
|
|
|
|
unsigned satisfied_index = 0;
|
|
|
|
m_iterations = 0; //for statistics
|
|
m_queue_max_size = 0;
|
|
|
|
IntervalWithStop candidates[2];
|
|
|
|
while(!m_queue.empty())
|
|
{
|
|
m_queue_max_size = std::max(static_cast<unsigned int>(m_queue.size()), m_queue_max_size);
|
|
|
|
unsigned const check_period = 10;
|
|
if(++m_iterations % check_period == 0) //check if we covered all required vertices
|
|
{
|
|
if (check_stop_conditions(satisfied_index))
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
|
|
interval_pointer min_interval = *m_queue.begin();
|
|
m_queue.erase(m_queue.begin());
|
|
edge_pointer edge = min_interval->edge();
|
|
list_pointer list = interval_list(edge);
|
|
|
|
assert(min_interval->d() < GEODESIC_INF);
|
|
|
|
bool const first_interval = min_interval->start() == 0.0;
|
|
//bool const last_interval = min_interval->stop() == edge->length();
|
|
bool const last_interval = min_interval->next() == NULL;
|
|
|
|
bool const turn_left = edge->v0()->saddle_or_boundary();
|
|
bool const turn_right = edge->v1()->saddle_or_boundary();
|
|
|
|
for(unsigned i=0; i<edge->adjacent_faces().size(); ++i) //two possible faces to propagate
|
|
{
|
|
if(!edge->is_boundary()) //just in case, always propagate boundary edges
|
|
{
|
|
if((i == 0 && min_interval->direction() == Interval::FROM_FACE_0) ||
|
|
(i == 1 && min_interval->direction() == Interval::FROM_FACE_1))
|
|
{
|
|
continue;
|
|
}
|
|
}
|
|
|
|
face_pointer face = edge->adjacent_faces()[i]; //if we come from 1, go to 2
|
|
edge_pointer next_edge = face->next_edge(edge,edge->v0());
|
|
|
|
unsigned num_propagated = compute_propagated_parameters(min_interval->pseudo_x(),
|
|
min_interval->pseudo_y(),
|
|
min_interval->d(), //parameters of the interval
|
|
min_interval->start(),
|
|
min_interval->stop(), //start/end of the interval
|
|
face->vertex_angle(edge->v0()), //corner angle
|
|
next_edge->length(), //length of the new edge
|
|
first_interval, //if it is the first interval on the edge
|
|
last_interval,
|
|
turn_left,
|
|
turn_right,
|
|
candidates); //if it is the last interval on the edge
|
|
bool propagate_to_right = true;
|
|
|
|
if(num_propagated)
|
|
{
|
|
if(candidates[num_propagated-1].stop() != next_edge->length())
|
|
{
|
|
propagate_to_right = false;
|
|
}
|
|
|
|
bool const invert = next_edge->v0()->id() != edge->v0()->id(); //if the origins coinside, do not invert intervals
|
|
|
|
construct_propagated_intervals(invert, //do not inverse
|
|
next_edge,
|
|
face,
|
|
candidates,
|
|
num_propagated,
|
|
min_interval);
|
|
|
|
update_list_and_queue(interval_list(next_edge),
|
|
candidates,
|
|
num_propagated);
|
|
}
|
|
|
|
if(propagate_to_right)
|
|
{
|
|
//propogation to the right edge
|
|
double length = edge->length();
|
|
next_edge = face->next_edge(edge,edge->v1());
|
|
|
|
num_propagated = compute_propagated_parameters(length - min_interval->pseudo_x(),
|
|
min_interval->pseudo_y(),
|
|
min_interval->d(), //parameters of the interval
|
|
length - min_interval->stop(),
|
|
length - min_interval->start(), //start/end of the interval
|
|
face->vertex_angle(edge->v1()), //corner angle
|
|
next_edge->length(), //length of the new edge
|
|
last_interval, //if it is the first interval on the edge
|
|
first_interval,
|
|
turn_right,
|
|
turn_left,
|
|
candidates); //if it is the last interval on the edge
|
|
|
|
if(num_propagated)
|
|
{
|
|
bool const invert = next_edge->v0()->id() != edge->v1()->id(); //if the origins coinside, do not invert intervals
|
|
|
|
construct_propagated_intervals(invert, //do not inverse
|
|
next_edge,
|
|
face,
|
|
candidates,
|
|
num_propagated,
|
|
min_interval);
|
|
|
|
update_list_and_queue(interval_list(next_edge),
|
|
candidates,
|
|
num_propagated);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
m_propagation_distance_stopped = m_queue.empty() ? GEODESIC_INF : (*m_queue.begin())->min();
|
|
clock_t stop = clock();
|
|
m_time_consumed = (static_cast<double>(stop)-static_cast<double>(start))/CLOCKS_PER_SEC;
|
|
|
|
/* for(unsigned i=0; i<m_edge_interval_lists.size(); ++i)
|
|
{
|
|
list_pointer list = &m_edge_interval_lists[i];
|
|
interval_pointer p = list->first();
|
|
assert(p->start() == 0.0);
|
|
while(p->next())
|
|
{
|
|
assert(p->stop() == p->next()->start());
|
|
assert(p->d() < GEODESIC_INF);
|
|
p = p->next();
|
|
}
|
|
}*/
|
|
}
|
|
|
|
|
|
inline bool GeodesicAlgorithmExact::check_stop_conditions(unsigned& index)
|
|
{
|
|
double queue_distance = (*m_queue.begin())->min();
|
|
if(queue_distance < stop_distance())
|
|
{
|
|
return false;
|
|
}
|
|
|
|
while(index < m_stop_vertices.size())
|
|
{
|
|
vertex_pointer v = m_stop_vertices[index].first;
|
|
edge_pointer edge = v->adjacent_edges()[0]; //take any edge
|
|
|
|
double distance = edge->v0()->id() == v->id() ?
|
|
interval_list(edge)->signal(0.0) :
|
|
interval_list(edge)->signal(edge->length());
|
|
|
|
if(queue_distance < distance + m_stop_vertices[index].second)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
++index;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
inline void GeodesicAlgorithmExact::update_list_and_queue(list_pointer list,
|
|
IntervalWithStop* candidates, //up to two candidates
|
|
unsigned num_candidates)
|
|
{
|
|
assert(num_candidates <= 2);
|
|
//assert(list->first() != NULL);
|
|
edge_pointer edge = list->edge();
|
|
double const local_epsilon = SMALLEST_INTERVAL_RATIO * edge->length();
|
|
|
|
if(list->first() == NULL)
|
|
{
|
|
interval_pointer* p = &list->first();
|
|
IntervalWithStop* first;
|
|
IntervalWithStop* second;
|
|
|
|
if(num_candidates == 1)
|
|
{
|
|
first = candidates;
|
|
second = candidates;
|
|
first->compute_min_distance(first->stop());
|
|
}
|
|
else
|
|
{
|
|
if(candidates->start() <= (candidates+1)->start())
|
|
{
|
|
first = candidates;
|
|
second = candidates+1;
|
|
}
|
|
else
|
|
{
|
|
first = candidates+1;
|
|
second = candidates;
|
|
}
|
|
assert(first->stop() == second->start());
|
|
|
|
first->compute_min_distance(first->stop());
|
|
second->compute_min_distance(second->stop());
|
|
}
|
|
|
|
if(first->start() > 0.0)
|
|
{
|
|
*p = m_memory_allocator.allocate();
|
|
(*p)->initialize(edge);
|
|
p = &(*p)->next();
|
|
}
|
|
|
|
*p = m_memory_allocator.allocate();
|
|
memcpy(*p,first,sizeof(Interval));
|
|
m_queue.insert(*p);
|
|
|
|
if(num_candidates == 2)
|
|
{
|
|
p = &(*p)->next();
|
|
*p = m_memory_allocator.allocate();
|
|
memcpy(*p,second,sizeof(Interval));
|
|
m_queue.insert(*p);
|
|
}
|
|
|
|
if(second->stop() < edge->length())
|
|
{
|
|
p = &(*p)->next();
|
|
*p = m_memory_allocator.allocate();
|
|
(*p)->initialize(edge);
|
|
(*p)->start() = second->stop();
|
|
}
|
|
else
|
|
{
|
|
(*p)->next() = NULL;
|
|
}
|
|
return;
|
|
}
|
|
|
|
bool propagate_flag;
|
|
|
|
for(unsigned i=0; i<num_candidates; ++i) //for all new intervals
|
|
{
|
|
IntervalWithStop* q = &candidates[i];
|
|
|
|
interval_pointer previous = NULL;
|
|
|
|
interval_pointer p = list->first();
|
|
assert(p->start() == 0.0);
|
|
|
|
while(p != NULL && p->stop() - local_epsilon < q->start())
|
|
{
|
|
p = p->next();
|
|
}
|
|
|
|
while(p != NULL && p->start() < q->stop() - local_epsilon) //go through all old intervals
|
|
{
|
|
unsigned const N = intersect_intervals(p, q); //interset two intervals
|
|
|
|
if(N == 1)
|
|
{
|
|
if(map[0]==OLD) //if "p" is always better, we do not need to update anything)
|
|
{
|
|
if(previous) //close previous interval and put in into the queue
|
|
{
|
|
previous->next() = p;
|
|
previous->compute_min_distance(p->start());
|
|
m_queue.insert(previous);
|
|
previous = NULL;
|
|
}
|
|
|
|
p = p->next();
|
|
|
|
}
|
|
else if(previous) //extend previous interval to cover everything; remove p
|
|
{
|
|
previous->next() = p->next();
|
|
erase_from_queue(p);
|
|
m_memory_allocator.deallocate(p);
|
|
|
|
p = previous->next();
|
|
}
|
|
else //p becomes "previous"
|
|
{
|
|
previous = p;
|
|
interval_pointer next = p->next();
|
|
erase_from_queue(p);
|
|
|
|
memcpy(previous,q,sizeof(Interval));
|
|
|
|
previous->start() = start[0];
|
|
previous->next() = next;
|
|
|
|
p = next;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
//update_flag = true;
|
|
|
|
Interval swap(*p); //used for swapping information
|
|
propagate_flag = erase_from_queue(p);
|
|
|
|
for(unsigned j=1; j<N; ++j) //no memory is needed for the first one
|
|
{
|
|
i_new[j] = m_memory_allocator.allocate(); //create new intervals
|
|
}
|
|
|
|
if(map[0]==OLD) //finish previous, if any
|
|
{
|
|
if(previous)
|
|
{
|
|
previous->next() = p;
|
|
previous->compute_min_distance(previous->stop());
|
|
m_queue.insert(previous);
|
|
previous = NULL;
|
|
}
|
|
i_new[0] = p;
|
|
p->next() = i_new[1];
|
|
p->start() = start[0];
|
|
}
|
|
else if(previous) //extend previous interval to cover everything; remove p
|
|
{
|
|
i_new[0] = previous;
|
|
previous->next() = i_new[1];
|
|
m_memory_allocator.deallocate(p);
|
|
previous = NULL;
|
|
}
|
|
else //p becomes "previous"
|
|
{
|
|
i_new[0] = p;
|
|
memcpy(p,q,sizeof(Interval));
|
|
|
|
p->next() = i_new[1];
|
|
p->start() = start[0];
|
|
}
|
|
|
|
assert(!previous);
|
|
|
|
for(unsigned j=1; j<N; ++j)
|
|
{
|
|
interval_pointer current_interval = i_new[j];
|
|
|
|
if(map[j] == OLD)
|
|
{
|
|
memcpy(current_interval,&swap,sizeof(Interval));
|
|
}
|
|
else
|
|
{
|
|
memcpy(current_interval,q,sizeof(Interval));
|
|
}
|
|
|
|
if(j == N-1)
|
|
{
|
|
current_interval->next() = swap.next();
|
|
}
|
|
else
|
|
{
|
|
current_interval->next() = i_new[j+1];
|
|
}
|
|
|
|
current_interval->start() = start[j];
|
|
}
|
|
|
|
for(unsigned j=0; j<N; ++j) //find "min" and add the intervals to the queue
|
|
{
|
|
if(j==N-1 && map[j]==NEW)
|
|
{
|
|
previous = i_new[j];
|
|
}
|
|
else
|
|
{
|
|
interval_pointer current_interval = i_new[j];
|
|
|
|
current_interval->compute_min_distance(current_interval->stop()); //compute minimal distance
|
|
|
|
if(map[j]==NEW || (map[j]==OLD && propagate_flag))
|
|
{
|
|
m_queue.insert(current_interval);
|
|
}
|
|
}
|
|
}
|
|
|
|
p = swap.next();
|
|
}
|
|
|
|
if(previous) //close previous interval and put in into the queue
|
|
{
|
|
previous->compute_min_distance(previous->stop());
|
|
m_queue.insert(previous);
|
|
previous = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
inline unsigned GeodesicAlgorithmExact::compute_propagated_parameters(double pseudo_x,
|
|
double pseudo_y,
|
|
double d, //parameters of the interval
|
|
double begin,
|
|
double end, //start/end of the interval
|
|
double alpha, //corner angle
|
|
double L, //length of the new edge
|
|
bool first_interval, //if it is the first interval on the edge
|
|
bool last_interval,
|
|
bool turn_left,
|
|
bool turn_right,
|
|
IntervalWithStop* candidates) //if it is the last interval on the edge
|
|
{
|
|
assert(pseudo_y<=0.0);
|
|
assert(d<GEODESIC_INF/10.0);
|
|
assert(begin<=end);
|
|
assert(first_interval ? (begin == 0.0) : true);
|
|
|
|
IntervalWithStop* p = candidates;
|
|
|
|
if(std::abs(pseudo_y) <= 1e-30) //pseudo-source is on the edge
|
|
{
|
|
if(first_interval && pseudo_x <= 0.0)
|
|
{
|
|
p->start() = 0.0;
|
|
p->stop() = L;
|
|
p->d() = d - pseudo_x;
|
|
p->pseudo_x() = 0.0;
|
|
p->pseudo_y() = 0.0;
|
|
return 1;
|
|
}
|
|
else if(last_interval && pseudo_x >= end)
|
|
{
|
|
p->start() = 0.0;
|
|
p->stop() = L;
|
|
p->d() = d + pseudo_x-end;
|
|
p->pseudo_x() = end*cos(alpha);
|
|
p->pseudo_y() = -end*sin(alpha);
|
|
return 1;
|
|
}
|
|
else if(pseudo_x >= begin && pseudo_x <= end)
|
|
{
|
|
p->start() = 0.0;
|
|
p->stop() = L;
|
|
p->d() = d;
|
|
p->pseudo_x() = pseudo_x*cos(alpha);
|
|
p->pseudo_y() = -pseudo_x*sin(alpha);
|
|
return 1;
|
|
}
|
|
else
|
|
{
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
double sin_alpha = sin(alpha);
|
|
double cos_alpha = cos(alpha);
|
|
|
|
//important: for the first_interval, this function returns zero only if the new edge is "visible" from the source
|
|
//if the new edge can be covered only after turn_over, the value is negative (-1.0)
|
|
double L1 = compute_positive_intersection(begin,
|
|
pseudo_x,
|
|
pseudo_y,
|
|
sin_alpha,
|
|
cos_alpha);
|
|
|
|
if(L1 < 0 || L1 >= L)
|
|
{
|
|
if(first_interval && turn_left)
|
|
{
|
|
p->start() = 0.0;
|
|
p->stop() = L;
|
|
p->d() = d + sqrt(pseudo_x*pseudo_x + pseudo_y*pseudo_y);
|
|
p->pseudo_y() = 0.0;
|
|
p->pseudo_x() = 0.0;
|
|
return 1;
|
|
}
|
|
else
|
|
{
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
double L2 = compute_positive_intersection(end,
|
|
pseudo_x,
|
|
pseudo_y,
|
|
sin_alpha,
|
|
cos_alpha);
|
|
|
|
if(L2 < 0 || L2 >= L)
|
|
{
|
|
p->start() = L1;
|
|
p->stop() = L;
|
|
p->d() = d;
|
|
p->pseudo_x() = cos_alpha*pseudo_x + sin_alpha*pseudo_y;
|
|
p->pseudo_y() = -sin_alpha*pseudo_x + cos_alpha*pseudo_y;
|
|
|
|
return 1;
|
|
}
|
|
|
|
p->start() = L1;
|
|
p->stop() = L2;
|
|
p->d() = d;
|
|
p->pseudo_x() = cos_alpha*pseudo_x + sin_alpha*pseudo_y;
|
|
p->pseudo_y() = -sin_alpha*pseudo_x + cos_alpha*pseudo_y;
|
|
assert(p->pseudo_y() <= 0.0);
|
|
|
|
if(!(last_interval && turn_right))
|
|
{
|
|
return 1;
|
|
}
|
|
else
|
|
{
|
|
p = candidates + 1;
|
|
|
|
p->start() = L2;
|
|
p->stop() = L;
|
|
double dx = pseudo_x - end;
|
|
p->d() = d + sqrt(dx*dx + pseudo_y*pseudo_y);
|
|
p->pseudo_x() = end*cos_alpha;
|
|
p->pseudo_y() = -end*sin_alpha;
|
|
|
|
return 2;
|
|
}
|
|
}
|
|
|
|
inline void GeodesicAlgorithmExact::construct_propagated_intervals(bool invert,
|
|
edge_pointer edge,
|
|
face_pointer face, //constructs iNew from the rest of the data
|
|
IntervalWithStop* candidates,
|
|
unsigned& num_candidates,
|
|
interval_pointer source_interval) //up to two candidates
|
|
{
|
|
double edge_length = edge->length();
|
|
double local_epsilon = SMALLEST_INTERVAL_RATIO * edge_length;
|
|
|
|
//kill very small intervals in order to avoid precision problems
|
|
if(num_candidates == 2)
|
|
{
|
|
double start = std::min(candidates->start(), (candidates+1)->start());
|
|
double stop = std::max(candidates->stop(), (candidates+1)->stop());
|
|
if(candidates->stop()-candidates->start() < local_epsilon) // kill interval 0
|
|
{
|
|
*candidates = *(candidates+1);
|
|
num_candidates = 1;
|
|
candidates->start() = start;
|
|
candidates->stop() = stop;
|
|
}
|
|
else if ((candidates+1)->stop() - (candidates+1)->start() < local_epsilon)
|
|
{
|
|
num_candidates = 1;
|
|
candidates->start() = start;
|
|
candidates->stop() = stop;
|
|
}
|
|
}
|
|
|
|
IntervalWithStop* first;
|
|
IntervalWithStop* second;
|
|
if(num_candidates == 1)
|
|
{
|
|
first = candidates;
|
|
second = candidates;
|
|
}
|
|
else
|
|
{
|
|
if(candidates->start() <= (candidates+1)->start())
|
|
{
|
|
first = candidates;
|
|
second = candidates+1;
|
|
}
|
|
else
|
|
{
|
|
first = candidates+1;
|
|
second = candidates;
|
|
}
|
|
assert(first->stop() == second->start());
|
|
}
|
|
|
|
if(first->start() < local_epsilon)
|
|
{
|
|
first->start() = 0.0;
|
|
}
|
|
if(edge_length - second->stop() < local_epsilon)
|
|
{
|
|
second->stop() = edge_length;
|
|
}
|
|
|
|
//invert intervals if necessary; fill missing data and set pointers correctly
|
|
Interval::DirectionType direction = edge->adjacent_faces()[0]->id() == face->id() ?
|
|
Interval::FROM_FACE_0 :
|
|
Interval::FROM_FACE_1;
|
|
|
|
if(!invert) //in this case everything is straighforward, we do not have to invert the intervals
|
|
{
|
|
for(unsigned i=0; i<num_candidates; ++i)
|
|
{
|
|
IntervalWithStop* p = candidates + i;
|
|
|
|
p->next() = (i == num_candidates - 1) ? NULL : candidates + i + 1;
|
|
p->edge() = edge;
|
|
p->direction() = direction;
|
|
p->source_index() = source_interval->source_index();
|
|
|
|
p->min() = 0.0; //it will be changed later on
|
|
|
|
assert(p->start() < p->stop());
|
|
}
|
|
}
|
|
else //now we have to invert the intervals
|
|
{
|
|
for(unsigned i=0; i<num_candidates; ++i)
|
|
{
|
|
IntervalWithStop* p = candidates + i;
|
|
|
|
p->next() = (i == 0) ? NULL : candidates + i - 1;
|
|
p->edge() = edge;
|
|
p->direction() = direction;
|
|
p->source_index() = source_interval->source_index();
|
|
|
|
double length = edge_length;
|
|
p->pseudo_x() = length - p->pseudo_x();
|
|
|
|
double start = length - p->stop();
|
|
p->stop() = length - p->start();
|
|
p->start() = start;
|
|
|
|
p->min() = 0;
|
|
|
|
assert(p->start() < p->stop());
|
|
assert(p->start() >= 0.0);
|
|
assert(p->stop() <= edge->length());
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
inline unsigned GeodesicAlgorithmExact::best_source(SurfacePoint& point, //quickly find what source this point belongs to and what is the distance to this source
|
|
double& best_source_distance)
|
|
{
|
|
double best_interval_position;
|
|
unsigned best_source_index;
|
|
|
|
best_first_interval(point,
|
|
best_source_distance,
|
|
best_interval_position,
|
|
best_source_index);
|
|
|
|
return best_source_index;
|
|
}
|
|
|
|
inline interval_pointer GeodesicAlgorithmExact::best_first_interval(SurfacePoint& point,
|
|
double& best_total_distance,
|
|
double& best_interval_position,
|
|
unsigned& best_source_index)
|
|
{
|
|
assert(point.type() != UNDEFINED_POINT);
|
|
|
|
interval_pointer best_interval = NULL;
|
|
best_total_distance = GEODESIC_INF;
|
|
|
|
if(point.type() == EDGE)
|
|
{
|
|
edge_pointer e = static_cast<edge_pointer>(point.base_element());
|
|
list_pointer list = interval_list(e);
|
|
|
|
best_interval_position = point.distance(e->v0());
|
|
best_interval = list->covering_interval(best_interval_position);
|
|
if(best_interval)
|
|
{
|
|
//assert(best_interval && best_interval->d() < GEODESIC_INF);
|
|
best_total_distance = best_interval->signal(best_interval_position);
|
|
best_source_index = best_interval->source_index();
|
|
}
|
|
}
|
|
else if(point.type() == FACE)
|
|
{
|
|
face_pointer f = static_cast<face_pointer>(point.base_element());
|
|
for(unsigned i=0; i<3; ++i)
|
|
{
|
|
edge_pointer e = f->adjacent_edges()[i];
|
|
list_pointer list = interval_list(e);
|
|
|
|
double offset;
|
|
double distance;
|
|
interval_pointer interval;
|
|
|
|
list->find_closest_point(&point,
|
|
offset,
|
|
distance,
|
|
interval);
|
|
|
|
if(interval && distance < best_total_distance)
|
|
{
|
|
best_interval = interval;
|
|
best_total_distance = distance;
|
|
best_interval_position = offset;
|
|
best_source_index = interval->source_index();
|
|
}
|
|
}
|
|
|
|
//check for all sources that might be located inside this face
|
|
SortedSources::sorted_iterator_pair local_sources = m_sources.sources(f);
|
|
for(SortedSources::sorted_iterator it=local_sources.first; it != local_sources.second; ++it)
|
|
{
|
|
SurfacePointWithIndex* source = *it;
|
|
double distance = point.distance(source);
|
|
if(distance < best_total_distance)
|
|
{
|
|
best_interval = NULL;
|
|
best_total_distance = distance;
|
|
best_interval_position = 0.0;
|
|
best_source_index = source->index();
|
|
}
|
|
}
|
|
}
|
|
else if(point.type() == VERTEX)
|
|
{
|
|
vertex_pointer v = static_cast<vertex_pointer>(point.base_element());
|
|
for(unsigned i=0; i<v->adjacent_edges().size(); ++i)
|
|
{
|
|
edge_pointer e = v->adjacent_edges()[i];
|
|
list_pointer list = interval_list(e);
|
|
|
|
double position = e->v0()->id() == v->id() ? 0.0 : e->length();
|
|
interval_pointer interval = list->covering_interval(position);
|
|
if(interval)
|
|
{
|
|
double distance = interval->signal(position);
|
|
|
|
if(distance < best_total_distance)
|
|
{
|
|
best_interval = interval;
|
|
best_total_distance = distance;
|
|
best_interval_position = position;
|
|
best_source_index = interval->source_index();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if(best_total_distance > m_propagation_distance_stopped) //result is unreliable
|
|
{
|
|
best_total_distance = GEODESIC_INF;
|
|
return NULL;
|
|
}
|
|
else
|
|
{
|
|
return best_interval;
|
|
}
|
|
}
|
|
|
|
inline void GeodesicAlgorithmExact::trace_back(SurfacePoint& destination, //trace back piecewise-linear path
|
|
std::vector<SurfacePoint>& path)
|
|
{
|
|
path.clear();
|
|
double best_total_distance;
|
|
double best_interval_position;
|
|
unsigned source_index = std::numeric_limits<unsigned>::max();
|
|
interval_pointer best_interval = best_first_interval(destination,
|
|
best_total_distance,
|
|
best_interval_position,
|
|
source_index);
|
|
|
|
if(best_total_distance >= GEODESIC_INF/2.0) //unable to find the right path
|
|
{
|
|
return;
|
|
}
|
|
|
|
path.push_back(destination);
|
|
|
|
if(best_interval) //if we did not hit the face source immediately
|
|
{
|
|
std::vector<edge_pointer> possible_edges;
|
|
possible_edges.reserve(10);
|
|
|
|
while(visible_from_source(path.back()) < 0) //while this point is not in the direct visibility of some source (if we are inside the FACE, we obviously hit the source)
|
|
{
|
|
SurfacePoint& q = path.back();
|
|
|
|
possible_traceback_edges(q, possible_edges);
|
|
|
|
interval_pointer interval;
|
|
double total_distance;
|
|
double position;
|
|
|
|
best_point_on_the_edge_set(q,
|
|
possible_edges,
|
|
interval,
|
|
total_distance,
|
|
position);
|
|
|
|
//std::cout << total_distance + length(path) << std::endl;
|
|
assert(total_distance<GEODESIC_INF);
|
|
source_index = interval->source_index();
|
|
|
|
edge_pointer e = interval->edge();
|
|
double local_epsilon = SMALLEST_INTERVAL_RATIO*e->length();
|
|
if(position < local_epsilon)
|
|
{
|
|
path.push_back(SurfacePoint(e->v0()));
|
|
}
|
|
else if(position > e->length()-local_epsilon)
|
|
{
|
|
path.push_back(SurfacePoint(e->v1()));
|
|
}
|
|
else
|
|
{
|
|
double normalized_position = position/e->length();
|
|
path.push_back(SurfacePoint(e, normalized_position));
|
|
}
|
|
}
|
|
}
|
|
|
|
SurfacePoint& source = static_cast<SurfacePoint&>(m_sources[source_index]);
|
|
if(path.back().distance(&source) > 0)
|
|
{
|
|
path.push_back(source);
|
|
}
|
|
}
|
|
|
|
inline void GeodesicAlgorithmExact::print_statistics()
|
|
{
|
|
GeodesicAlgorithmBase::print_statistics();
|
|
|
|
unsigned interval_counter = 0;
|
|
for(unsigned i=0; i<m_edge_interval_lists.size(); ++i)
|
|
{
|
|
interval_counter += m_edge_interval_lists[i].number_of_intervals();
|
|
}
|
|
double intervals_per_edge = (double)interval_counter/(double)m_edge_interval_lists.size();
|
|
|
|
double memory = m_edge_interval_lists.size()*sizeof(IntervalList) +
|
|
interval_counter*sizeof(Interval);
|
|
|
|
std::cout << "uses about " << memory/1e6 << "Mb of memory" <<std::endl;
|
|
std::cout << interval_counter << " total intervals, or "
|
|
<< intervals_per_edge << " intervals per edge"
|
|
<< std::endl;
|
|
std::cout << "maximum interval queue size is " << m_queue_max_size << std::endl;
|
|
std::cout << "number of interval propagations is " << m_iterations << std::endl;
|
|
}
|
|
|
|
} //geodesic
|
|
}
|
|
|
|
template <
|
|
typename DerivedV,
|
|
typename DerivedF,
|
|
typename DerivedVS,
|
|
typename DerivedFS,
|
|
typename DerivedVT,
|
|
typename DerivedFT,
|
|
typename DerivedD>
|
|
IGL_INLINE void igl::exact_geodesic(
|
|
const Eigen::MatrixBase<DerivedV> &V,
|
|
const Eigen::MatrixBase<DerivedF> &F,
|
|
const Eigen::MatrixBase<DerivedVS> &VS,
|
|
const Eigen::MatrixBase<DerivedFS> &FS,
|
|
const Eigen::MatrixBase<DerivedVT> &VT,
|
|
const Eigen::MatrixBase<DerivedFT> &FT,
|
|
Eigen::PlainObjectBase<DerivedD> &D)
|
|
{
|
|
assert(V.cols() == 3 && F.cols() == 3 && "Only support 3D triangle mesh");
|
|
assert(VS.cols() ==1 && FS.cols() == 1 && VT.cols() == 1 && FT.cols() ==1 && "Only support one dimensional inputs");
|
|
std::vector<typename DerivedV::Scalar> points(V.rows() * V.cols());
|
|
std::vector<typename DerivedF::Scalar> faces(F.rows() * F.cols());
|
|
for (int i = 0; i < points.size(); i++)
|
|
{
|
|
points[i] = V(i / 3, i % 3);
|
|
}
|
|
for (int i = 0; i < faces.size(); i++)
|
|
{
|
|
faces[i] = F(i / 3, i % 3);
|
|
}
|
|
|
|
igl::geodesic::Mesh mesh;
|
|
mesh.initialize_mesh_data(points, faces);
|
|
igl::geodesic::GeodesicAlgorithmExact exact_algorithm(&mesh);
|
|
|
|
std::vector<igl::geodesic::SurfacePoint> source(VS.rows() + FS.rows());
|
|
std::vector<igl::geodesic::SurfacePoint> target(VT.rows() + FT.rows());
|
|
for (int i = 0; i < VS.rows(); i++)
|
|
{
|
|
source[i] = (igl::geodesic::SurfacePoint(&mesh.vertices()[VS(i)]));
|
|
}
|
|
for (int i = 0; i < FS.rows(); i++)
|
|
{
|
|
source[i] = (igl::geodesic::SurfacePoint(&mesh.faces()[FS(i)]));
|
|
}
|
|
|
|
for (int i = 0; i < VT.rows(); i++)
|
|
{
|
|
target[i] = (igl::geodesic::SurfacePoint(&mesh.vertices()[VT(i)]));
|
|
}
|
|
for (int i = 0; i < FT.rows(); i++)
|
|
{
|
|
target[i] = (igl::geodesic::SurfacePoint(&mesh.faces()[FT(i)]));
|
|
}
|
|
|
|
exact_algorithm.propagate(source);
|
|
std::vector<igl::geodesic::SurfacePoint> path;
|
|
D.resize(target.size(), 1);
|
|
for (int i = 0; i < target.size(); i++)
|
|
{
|
|
exact_algorithm.trace_back(target[i], path);
|
|
D(i) = igl::geodesic::length(path);
|
|
}
|
|
}
|
|
|
|
#ifdef IGL_STATIC_LIBRARY
|
|
template void igl::exact_geodesic<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, 1, 0, -1, 1>, Eigen::Matrix<int, -1, 1, 0, -1, 1>, Eigen::Matrix<int, -1, 1, 0, -1, 1>, Eigen::Matrix<int, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, 1, 0, -1, 1>>(Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1>> const &, Eigen::MatrixBase<Eigen::Matrix<int, -1, -1, 0, -1, -1>> const &, Eigen::MatrixBase<Eigen::Matrix<int, -1, 1, 0, -1, 1>> const &, Eigen::MatrixBase<Eigen::Matrix<int, -1, 1, 0, -1, 1>> const &, Eigen::MatrixBase<Eigen::Matrix<int, -1, 1, 0, -1, 1>> const &, Eigen::MatrixBase<Eigen::Matrix<int, -1, 1, 0, -1, 1>> const &, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1>> &);
|
|
template void igl::exact_geodesic<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1> >(Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::MatrixBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::MatrixBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::MatrixBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::MatrixBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::MatrixBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&);
|
|
#endif
|